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Abstract

A large body of recent work focuses on methods for extracting low-dimensional
latent structure from multi-neuron spike train data. Most such methods employ
either linear latent dynamics or linear mappings from latent space to log spike
rates. Here we propose a doubly nonlinear latent variable model that can identify
low-dimensional structure underlying apparently high-dimensional spike train data.
We introduce the Poisson Gaussian-Process Latent Variable Model (P-GPLVM),
which consists of Poisson spiking observations and two underlying Gaussian
processes—one governing a temporal latent variable and another governing a set
of nonlinear tuning curves. The use of nonlinear tuning curves enables discovery
of low-dimensional latent structure even when spike responses exhibit high linear
dimensionality (e.g., as found in hippocampal place cell codes). To learn the model
from data, we introduce the decoupled Laplace approximation, a fast approxi-
mate inference method that allows us to efficiently optimize the latent path while
marginalizing over tuning curves. We show that this method outperforms previous
Laplace-approximation-based inference methods in both the speed of convergence
and accuracy. We apply the model to spike trains recorded from hippocampal place
cells and show that it compares favorably to a variety of previous methods for latent
structure discovery, including variational auto-encoder (VAE) based methods that
parametrize the nonlinear mapping from latent space to spike rates with a deep
neural network.

1 Introduction
Recent advances in multi-electrode array recording techniques have made it possible to measure
the simultaneous spiking activity of increasingly large neural populations. These datasets have
highlighted the need for robust statistical methods for identifying the latent structure underlying
high-dimensional spike train data, so as to provide insight into the dynamics governing large-scale
activity patterns and the computations they perform [1–4].

Recent work has focused on the development of sophisticated model-based methods that seek to
extract a shared, low-dimensional latent process underlying population spiking activity. These
methods can be roughly categorized on the basis of two basic modeling choices: (1) the dynamics of
the underlying latent variable; and (2) the mapping from latent variable to neural responses. For choice
of dynamics, one popular approach assumes the latent variable is governed by a linear dynamical
system [5–11], while a second assumes that it evolves according to a Gaussian process, relaxing the
linearity assumption and imposing only smoothness in the evolution of the latent state [1, 12–14].
For choice of mapping function, most previous methods have assumed a fixed linear or log-linear
relationship between the latent variable and the mean response level [1, 5–8, 11, 12]. These methods
seek to find a linear embedding of population spiking activity, akin to PCA or factor analysis. In many
cases, however, the relationship between neural activity and the quantity it encodes can be highly
nonlinear. Hippocampal place cells provide an illustrative example: if each discrete location in a 2D
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Figure 1: Schematic diagram of the Poisson Gaussian Process Latent Variable Model (P-GPLVM),
illustrating multi-neuron spike train data generated by the model with a one-dimensional latent
process.

environment has a single active place cell, population activity spans a space whose dimensionality is
equal to the number of neurons; a linear latent variable model cannot find a reduced-dimensional
representation of population activity, despite the fact that the underlying latent variable (“position”)
is clearly two-dimensional.

Several recent studies have introduced nonlinear coupling between latent dynamics and firing rate
[7, 9, 10, 15]. These models use deep neural networks to parametrize the nonlinear mapping from
latent space to spike rates, but often require repeated trials or long training sets. Table 1 summarizes
these different model structures for latent neural trajectory estimation (including the original Gaussian
process latent variable model (GPLVM) [16], which assumes Gaussian observations and does not
produce spikes).

model latent mapping function output nonlinearity observation

PLDS [8] LDS linear exp Poisson
PfLDS [9, 10] LDS neural net exp Poisson
LFADS [15] RNN neural net exp Poisson
GPFA [1] GP linear identity Gaussian
P-GPFA [13, 14] GP linear exp Poisson
GPLVM [16] GP GP identity Gaussian
P-GPLVM GP GP exp Poisson

Table 1: Modeling assumptions of various latent variable models for spike trains.

In this paper, we propose the Poisson Gaussian process latent variable model (P-GPLVM) for spike
train data, which allows for nonlinearity in both the latent state dynamics and in the mapping from
the latent states to the spike rates. Our model posits a low-dimensional latent variable that evolves
in time according to a Gaussian process prior; this latent variable governs firing rates via a set
of non-parametric tuning curves, parametrized as exponentiated samples from a second Gaussian
process, from which spikes are then generated by a Poisson process (Fig. 1).

The paper is organized as follows: Section 2 introduces the P-GPLVM; Section 3 describes the
decoupled Laplace approximation for performing efficient inference for the latent variable and
tuning curves; Section 4 describes tuning curve estimation; Section 5 compares P-GPLVM to other
models using simulated data and hippocampal place-cell recordings, demonstrating the accuracy and
interpretability of P-GPLVM relative to other methods.

2 Poisson-Gaussian process latent variable model (P-GPLVM)
Suppose we have simultaneously recorded spike trains from N neurons. Let Y ∈ RN×T denote the
matrix of spike count data, with neurons indexed by i ∈ (1, . . . , N) and spikes counted in discrete
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time bins indexed by t ∈ (1, . . . , T ). Our goal is to construct a generative model of the latent structure
underlying these data, which will here take the form of a P -dimensional latent variable x(t) and a set
of mapping functions or tuning curves {hi(x)}, i ∈ (1, . . . , N) which map the latent variable to the
spike rates of each neuron.

Latent dynamics
Let x(t) denote a (vector-valued) latent process, where each component xj(t), j ∈ (1, . . . , P ),
evolves according to an independent Gaussian process (GP),

xj(t) ∼ GP (0, kt) , (1)

with covariance function kt(t, t′) , cov(xj(t), xj(t
′)) governing how each scalar process varies

over time. Although we can select any valid covariance function for kt, here we use the exponential
covariance function, a special case of the Matérn kernel, given by k(t, t′) = r exp (−|t− t′|/l),
which is parametrized by a marginal variance r > 0 and length-scale l > 0. Samples from this GP
are continuous but not differentiable, equivalent to a Gaussian random walk with a bias toward the
origin, also known as the Ornstein-Uhlenbeck process [17].

The latent state x(t) at any time t is a P -dimensional vector that we will write as xt ∈ RP×1. The
collection of such vectors over T time bins forms a matrix X ∈ RP×T . Let xj denote the jth row
of X, which contains the set of states in latent dimension j. From the definition of a GP, xj has a
multivariate normal distribution,

xj ∼ N (0,Kt) (2)
with a T × T covariance matrix Kt generated by evaluating the covariance function kt at all time
bins in (1, . . . , T ).

Nonlinear mapping
Let h : RP −→ R denote a nonlinear function mapping from the latent vector xt to a firing rate λt.
We will refer to h(x) as a tuning curve, although unlike traditional tuning curves, which describe
firing rate as a function of some externally (observable) stimulus parameter, here h(x) describes
firing rate as a function of the (unobserved) latent vector x. Previous work has modeled h with a
parametric nonlinear function such as a deep neural network [9, 10]. Here we develop a nonparametric
approach using a Gaussian process prior over the log of h. The logarithm assures that spike rates are
non-negative.

Let fi(x) = log hi(x) denote the log tuning curve for the i’th neuron in our population, which we
model with a GP,

fi(x) ∼ GP (0, kx) , (3)
where kx is a (spatial) covariance function that governs smoothness of the function over its P -
dimensional input space. For simplicity, we use the common Gaussian or radial basis function (RBF)
covariance function: kx(x,x′) = ρ exp

(
−||x− x′||22/2δ2

)
, where x and x′ are arbitrary points in

latent space, ρ is the marginal variance and δ is the length scale. The tuning curve for neuron i is then
given by hi(x) = exp(fi(x)).

Let fi ∈ RT×1 denote a vector with the t’th element equal to fi(xt). From the definition of a GP, fi
has a multivariate normal distribution given latent vectors at all time bins x1:T = {xt}Tt=1,

fi|x1:T ∼ N (0,Kx) (4)
with a T × T covariance matrix Kx generated by evaluating the covariance function kx at all pairs of
latent vectors in x1:T . Stacking fi for N neurons, we will formulate a matrix F ∈ RN×T with f>i on
the i’th row. The element on the i’th row and the t’th column is fi,t = fi(xt).

Poisson spiking
Lastly, we assume Poisson spiking given the latent firing rates. We assume that spike rates are in
units of spikes per time bin. Let λi,t = exp(fi,t) = exp(fi(xt)) denote the spike rate of neuron i at
time t. The spike-count of neuron i at t given the log tuning curve fi and latent vector xt is Poisson
distributed as

yi,t|fi,xt ∼ Poiss(exp(fi(xt))). (5)
In summary, our model is as a doubly nonlinear Gaussian process latent variable model with Poisson
observations (P-GPLVM). One GP is used to model the nonlinear evolution of the latent dynamic
x, while a second GP is used to generate the log of the tuning curve f as a nonlinear function of x,
which is then mapped to a tuning curve h via a nonlinear link function, e.g. exponential function.
Fig. 1 provides a schematic of the model.
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3 Inference using the decoupled Laplace approximation
For our inference procedure, we estimate the log of the tuning curve, f , as opposed to attempting
to infer the tuning curve h directly. Once f is estimated, h can be obtained by exponentiating f .
Given the model outlined above, the joint distribution over the observed data and all latent variables
is written as,

p(Y,F,X,θ) = p(Y|F)p(F|X, ρ, δ)p(X|r, l) =

N∏
i=1

T∏
t=1

p(yi,t|fi,t)
N∏
i=1

p(fi|X, ρ, δ)
P∏

j=1

p(xj |r, l), (6)

where θ = {ρ, δ, r, l} is the hyperparameter set, references to which will now be suppressed for
simplification. This is a Gaussian process latent variable model (GPLVM) with Poisson observations
and a GP prior, and our goal is to now estimate both F and X. A standard Bayesian treatment of the
GPLVM requires the computation of the log marginal likelihood associated with the joint distribution
(Eq.6). Both F and X must be marginalized out,

log p(Y) = log

∫ ∫
p(Y,F,X)dXdF = log

∫
p(Y|F)

∫
p(F|X)p(X)dX dF. (7)

However, propagating the prior density p(X) through the nonlinear mapping makes this inference
difficult. The nested integral in (Eq. 7) contains X in a complex nonlinear manner, making analytical
integration over X infeasible. To overcome these difficulties, we can use a straightforward MAP
training procedure where the latent variables F and X are selected according to

FMAP,XMAP = argmaxF,X p(Y|F)p(F|X)p(X). (8)

Note that point estimates of the hyperparameters θ can also be found by maximizing the same
objective function. As discussed above, learning X remains a challenge due to the interplay of the
latent variables, i.e. the dependency of F on X. For our MAP training procedure, fixing one latent
variable while optimizing for the other in a coordinate descent approach is highly inefficient since the
strong interplay of variables often means getting trapped in bad local optima. In variational GPLVM
[18], the authors introduced a non-standard variational inference framework for approximately
integrating out the latent variables X then subsequently training a GPLVM by maximizing an analytic
lower bound on the exact marginal likelihood. An advantage of the variational framework is the
introduction of auxiliary variables which weaken the strong dependency between X and F. However,
the variational approximation is only applicable to Gaussian observations; with Poisson observations,
the integral over F remains intractable. In the following, we will propose using variations of the
Laplace approximation for inference.

3.1 Standard Laplace approximation
We first use Laplace’s method to find a Gaussian approximation q(F|Y,X) to the true posterior
p(F|Y,X), then do MAP estimation for X only. We employ the Laplace approximation for each fi
individually. Doing a second order Taylor expansion of log p(fi|yi,X) around the maximum of the
posterior, we obtain a Gaussian approximation

q(fi|yi,X) = N (f̂i, A
−1), (9)

where f̂i = argmaxfi p(fi|yi,X) and A = −∇∇ log p(fi|yi,X)|fi=f̂i
is the Hessian of the neg-

ative log posterior at that point. By Bayes’ rule, the posterior over fi is given by p(fi|yi,X) =
p(yi|fi)p(fi|X)/p(yi|X), but since p(yi|X) is independent of fi, we need only consider the unnor-
malized posterior, defined as Ψ(fi), when maximizing w.r.t. fi. Taking the logarithm gives

Ψ(fi) = log p(yi|fi) + log p(fi|X) = log p(yi|fi)−
1

2
f>i K

−1
x fi −

1

2
log |Kx|+ const. (10)

Differentiating (Eq. 10) w.r.t. fi we obtain

∇Ψ(fi) = ∇ log p(yi|fi)−K−1x fi (11)

∇∇Ψ(fi) = ∇∇ log p(yi|fi)−K−1x = −Wi −K−1x , (12)

where Wi = −∇∇ log p(yi|fi). The approximated log conditional likelihood on X (see Sec. 3.4.4
in [17]) can then be written as

log q(yi|X) = log p(yi|f̂i)−
1

2
f̂>i K

−1
x f̂i −

1

2
log |IT +KxWi|. (13)
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We can then estimate X as

XMAP = argmaxX

N∑
i=1

q(yi|X)p(X). (14)

When using standard LA, the gradient of log q(yi|X) w.r.t. X should be calculated for a given
posterior mode f̂i. Note that not only is the covariance matrix Kx an explicit function of X, but also
f̂i and Wi are also implicitly functions of X — when X changes, the optimum of the posterior f̂i
changes as well. Therefore, log q(yi|X) contains an implicit function of X which does not allow for
a straightforward closed-form gradient expression. Calculating numerical gradients instead yields a
very inefficient implementation empirically.

3.2 Third-derivative Laplace approximation
One method to derive this gradient explicitly is described in [17] (see Sec. 5.5.1). We adapt their
procedure to our setting to make the implicit dependency of f̂i and Wi on X explicit. To solve (Eq.
14), we need to determine the partial derivative of our approximated log conditional likelihood (Eq.
13) w.r.t. X, given as

∂ log q(yi|X)

∂X
=
∂ log q(yi|X)

∂X

∣∣∣∣
explicit

+
T∑

t=1

∂ log q(yi|X)

∂f̂i,t

∂f̂i,t
∂X

(15)

by the chain rule. When evaluating the second term, we use the fact that f̂i is the posterior maximum,
so ∂Ψ(fi)/∂fi = 0 at fi = f̂i, where Ψ(fi) is defined in (Eq. 11). Thus the implicit derivatives of the
first two terms in (Eq. 13) vanish, leaving only

∂ log q(yi|X)

∂f̂i,t
= −1

2
tr

(
(K−1x +Wi)

−1 ∂Wi

∂f̂i,t

)
= −1

2

[
(K−1x +Wi)

−1]
tt

∂3

∂f̂3i,t
log p(yi|f̂i). (16)

To evaluate ∂f̂i,t/∂X, we differentiate the self-consistent equation f̂i = Kx∇ log p(yi|f̂i) (setting
(Eq. 11) to be 0 at f̂i) to obtain

∂ f̂i
∂X

=
∂Kx

∂X
∇ log p(yi|f̂i) +Kx

∇ log p(yi|f̂i)
∂ f̂i

∂ f̂i
∂X

= (IT +KxWi)
−1 ∂Kx

∂X
∇ log p(yi|f̂i), (17)

where we use the chain rule ∂
∂X = ∂ f̂i

∂X ·
∂
∂ f̂i

and ∂∇ log p(yi|f̂i)/∂ f̂i = −Wi from (Eq. 12). The
desired implicit derivative is obtained by multiplying (Eq. 16) and (Eq. 17) to formulate the second
term in (Eq. 15).

We can now estimate XMAP with (Eq. 14) using the explicit gradient expression in (Eq. 15). We
call this method third-derivative Laplace approximation (tLA), as it depends on the third derivative
of the data likelihood term (see [17] for further details). However, there is a big computational
drawback with tLA: for each step along the gradient we have just derived, the posterior mode f̂i
must be reevaluated. This method might lead to a fast convergence theoretically, but this nested
optimization makes for a very slow computation empirically.

3.3 Decoupled Laplace approximation
We propose a novel method to relax the Laplace approximation, which we refer to as the decoupled
Laplace approximation (dLA). Our relaxation not only decouples the strong dependency between X
and F, but also avoids the nested optimization of searching for the posterior mode of F within each
update of X. As in tLA, dLA also assumes f̂i to be a function of X. However, while tLA assumes f̂i
to be an implicit function of X, dLA constructs an explicit mapping between f̂i and X.

The standard Laplace approximation uses a Gaussian approximation for the posterior p(fi|yi,X) ∝
p(yi|fi)p(fi|X) where, in this paper, p(yi|fi) is a Poisson distribution and p(fi|X) is a multivariate
Gaussian distribution. We first do the same second order Taylor expansion of log p(fi|yi,X) around
the posterior maximum to find q(fi|yi,X) as in (Eq. 9). Now if we approximate the likelihood
distribution p(yi|fi) as a Gaussian distribution q(yi|fi) = N (m, S), we can derive its mean m and
covariance S. If p(fi|X) = N (0,Kx) and q(fi|yi,X) = N (f̂i, A

−1), the relationship between
two Gaussian distributions and their product allow us to solve for m and S from the relationship
N (f̂i, A

−1) ∝ N (m, S)N (0,Kx):
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Algorithm 1 Decoupled Laplace approximation at iteration k
Input: data observation yi, latent variable Xk−1 from iteration k − 1

1. Compute the new posterior mode f̂ki and the precision matrix Ak by solving (Eq. 10) to obtain
q(fi|yi,X

k−1) = N (f̂ki , A
k−1).

2. Derive mk and Sk (Eq. 18): Sk = (Ak −K−1x )−1, mk = SkAk f̂ki .
3. Fix mk and Sk and derive the new mean and covariance for q(fi|yi,X

k−1) as functions of X:
A(X) = Sk−1 +Kx(X)

−1, f̂i(X) = A(X)
−1
Sk−1mk = A(X)

−1
Ak f̂ki .

4. Since A = Wi +K−1x , we have Wi = Sk−1, and can obtain the new approximated conditional
distribution q(yi|X) (Eq. 13) with f̂i replaced by f̂i(X).

5. Solve Xk = argmaxX

∑N
i=1 q(yi|X)p(X).

Output: new latent variable Xk

A = S−1 +K−1x , f̂i = A−1S−1m =⇒ S = (A−K−1x )−1, m = SAf̂i. (18)

m and S represent the components of the posterior terms, f̂i and A, that come from the likelihood.
Now when estimating X, we fix these likelihood terms m and S, and completely relax the prior,
p(fi|X). We are still solving (Eq. 14) w.r.t. X, but now q(fi|yi,X) has both mean and covariance
approximated as explicit functions of X. Alg. 1 describes iteration k of the dLA algorithm, with which
we can now estimate XMAP. Step 3 indicates that the posterior maximum for the current iteration
f̂i(X) = A(X)

−1
Ak f̂ki is now explicitly updated as a function of X, avoiding the computationally

demanding nested optimization of tLA. Intuitively, dLA works by finding a Gaussian approximation
to the likelihood at f̂ki such that the approximated posterior of fi, q(fi|yi,X), is now a closed-form
Gaussian distribution with mean and covariance as functions of X, ultimately allowing for the explicit
calculation of q(yi|X).

4 Tuning curve estimation
Given the estimated X̂ and f̂ from the inference, we can now calculate the tuning curve h for each
neuron. Let x1:G = {xg}Gg=1 be a grid of G latent states, where xg ∈ RP×1. Correspondingly,
for each neuron, we have the log of the tuning curve vector evaluated on the grid of latent states,
fgrid ∈ RG×1, with the g’th element equal to f(xg). Similar to (Eq. 4), we can write down its
distribution as

fgrid|x1:G ∼ N (0,Kgrid) (19)
with a G×G covariance matrix Kgrid generated by evaluating the covariance function kx at all pairs
of vectors in x1:G. Therefore we can write a joint distribution for [f̂ , fgrid] as[

f̂

fgrid

]
∼ N

(
0,

[
Kx̂ kgrid

k>grid Kgrid

])
. (20)

Kx̂ ∈ RT×T is a covariance matrix with elements evaluated at all pairs of estimated latent vectors
x̂1:T = {x̂t}Tt=1 in X̂, and kgridt,g = kx(x̂t,xg). Thus we have the following posterior distribution
over fgrid:

fgrid|f̂ , x̂1:T ,x1:G ∼ N (µ(x1:G),Σ(x1:G)) (21)

µ(x1:G) = k>gridK
−1
x̂ f̂ , Σ(x1:G) = diag(Kgrid)− k>gridK

−1
x̂ kgrid

where diag(Kgrid) denotes a diagonal matrix constructed from the diagonal of Kgrid. Setting f̂grid =
µ(x1:G), the spike rate vector

λ̂grid = exp(f̂grid) (22)
describes the tuning curve h evaluated on the grid x1:G.

5 Experiments
5.1 Simulation data
We first examine performance using two simulated datasets generated with different kinds of tuning
curves, namely sinusoids and Gaussian bumps. We will compare our algorithm (P-GPLVM) with
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Figure 2: Results from the sinusoid and Gaussian bump simulated experiments. A) and C) are
estimated latent processes. B) and D) display the tuning curves estimated by different methods. E)
shows the R2 performances with error bars. F) shows the convergence R2 performances of three
different Laplace approximation inference methods with error bars. Error bars are plotted every 10
seconds.

PLDS, PfLDS, P-GPFA and GPLVM (see Table 1), using the tLA and dLA inference methods. We
also include an additional variant on the Laplace approximation, which we call the approximated
Laplace approximation (aLA), where we use only the explicit (first) term in (Eq. 15) to optimize over
X for multiple steps given a fixed f̂i. This allows for a coarse estimation for the gradient w.r.t. X for
a few steps in X before estimation is necessary, partially relaxing the nested optimization so as to
speed up the learning procedure.

For comparison between models in our simulated experiments, we compute the R-squared (R2)
values from the known latent processes and the estimated latent processes. In all simulation studies,
we generate 1 single trial per neuron with 20 simulated neurons and 100 time bins for a single
experiment. Each experiment is repeated 10 times and results are averaged across 10 repeats.

Sinusoid tuning curve: This simulation generates a "grid cell" type response. A grid cell is a type of
neuron that is activated when an animal occupies any point on a grid spanning the environment [19].
When an animal moves in a one-dimensional space (P = 1), grid cells exhibit oscillatory responses.
Motivated by the response properties of grid cells, the log firing rate of each neuron i is coupled to
the latent process through a sinusoid with a neuron-specific phase Φi and frequency ωi,

fi = sin(ωix+ Φi). (23)

We randomly generated Φi uniformly from the region [0, 2π] and ωi uniformly from [1.0, 4.0].

An example of the estimated latent processes versus the true latent process is presented in Fig. 2A. We
used least-square regression to learn an affine transformation from the latent space to the space of the
true locations. Only P-GPLVM finds the global optimum by fitting the valley around t = 70. Fig. 2B
displays the true tuning curves and the estimated tuning curves for neuron 4, 10, & 9 with PLDS,
PfLDS, P-GPFA and P-GPLVM-dLA. For PLDS, PfLDS and P-GPFA, we replace the estimated f̂
with the observed spike count y in (Eq. 21), and treat the posterior mean as the tuning curve on a
grid of latent representations. For P-GPLVM, the tuning curve is estimated via (Eq. 22). The R2

performance is shown in the first column of Fig. 2E.

Deterministic Gaussian bump tuning curve: For this simulation, each neuron’s tuning curve is
modeled as a unimodal Gaussian bump in a 2D space such that the log of the tuning curve, f , is a
deterministic Gaussian function of x. Fig. 2C shows an example of the estimated latent processes.
PLDS fits an overly smooth curve, while P-GPLVM can find the small wiggles that are missed by
other methods. Fig. 2D displays the 2D tuning curves for neuron 1, 4, & 12 estimated by PLDS,
PfLDS, P-GPFA and P-GPLVM-dLA. The R2 performance is shown in the second column of Fig. 2E.

Overall, P-GPFA has a quite unstable performance due to the ARD kernel function in the GP prior,
potentially encouraging a bias for smoothness even when the underlying latent process is actually
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Figure 3: Results from the hippocampal data of two rats. A) and B) are estimated latent processes
during a 1s recording period for two rats. C) and D) show R2 and PLL performance with error bars.
E) and F) display the true tuning curves and the tuning curves estimated by P-GPLVM-dLA.

quite non-smooth. PfLDS performs better than PLDS in the second case, but when the true latent
process is highly nonlinear (sinusoid) and the single-trial dataset is small, PfLDS losses its advantage
to stochastic optimization. GPLVM has a reasonably good performance with the nonlinearities, but is
worse than P-GPLVM which demonstrates the significance of using the Poisson observation model.
For P-GPLVM, the dLA inference algorithm performs best overall w.r.t. both convergence speed and
R2 (Fig. 2F).

5.2 Application to rat hippocampal neuron data
Next, we apply the proposed methods to extracellular recordings from the rodent hippocampus.
Neurons were recorded bilaterally from the pyramidal layer of CA3 and CA1 in two rats as they
performed a spatial alternation task on a W-shaped maze [20]. We confine our analyses to simultane-
ously recorded putative place cells during times of active navigation. Total number of simultaneously
recorded neurons ranged from 7-19 for rat 1 and 24-38 for rat 2. Individual trials of 50 seconds were
isolated from 15 minute recordings, and binned at a resolution of 100ms.

We used this hippocampal data to identify a 2D latent space using PLDS, PfLDS, P-GPFA, GPLVM
and P-GPLVMs (Fig. 3), and compared these to the true 2D location of the rodent. For visualization
purposes, we linearized the coordinates along the arms of the maze to obtain 1D representations.
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Fig. 3A & B present two segments of 1s recordings for the two animals. The P-GPLVM results are
smoother and recover short time-scale variations that PLDS ignores. The average R2 performance
for all methods for each rodent is shown in Fig. 3C & D where P-GPLVM-dLA consistently performs
the best.

We also assessed the model fitting quality by doing prediction on a held-out dataset. We split all
the time bins in each trial into training time bins (the first 90% time bins) and held-out time bins
(the last 10% time bins). We first estimated the parameters for the mapping function or the tuning
curve in each model using spike trains from all the neurons within training time bins. Then we fixed
the parameters and inferred the latent process using spike trains from 70% neurons within held-out
time bins. Finally, we calculated the predictive log likelihood (PLL) for the other 30% neurons
within held-out time bins given the inferred latent process. We subtracted the log-likelihood of the
population mean firing rate model (single spike rate) from the predictive log likelihood divided by
number of observations, shown in Fig. 3C & D. Both P-GPLVM-aLA and P-GPLVM-dLA perform
well. GPLVM has very negative PLL, omitted in the figures.

Fig. 3E & F present the tuning curves learned by P-GPLVM-dLA where each row corresponds to
a neuron. For our analysis we have the true locations xtrue, the estimated locations xP-GPLVM, a grid
of G locations x1:G distributed with a shape of the maze, the spike count observation yi, and the
estimated log of the tuning curves f̂i for each neuron i. The light gray dots in the first column of
Fig. 3E & F are the binned spike counts when mapping from the space of xtrue to the space of x1:G.
The second column contains the binned spike counts mapped from the space of xP-GPLVM to the space
of x1:G. The black curves in the first column are achieved by replacing x̂ and f̂ with xtrue and y
respectively using the predictive posterior in (Eq. 21) and (Eq. 22). The yellow curves in the second
column are the estimated tuning curves by using (Eq. 22) to get λ̂grid for each neuron. We can tell that
the estimated tuning curves closely match the true tuning curves from the observations, discovering
different responsive locations for different neurons as the rat moves.

6 Conclusion
We proposed a doubly nonlinear Gaussian process latent variable model for neural population spike
trains that can identify nonlinear low-dimensional structure underlying apparently high-dimensional
spike train data. We also introduced a novel decoupled Laplace approximation, a fast approximate
inference method that allows us to efficiently maximize marginal likelihood for the latent path
while integrating over tuning curves. We showed that this method outperforms previous Laplace-
approximation-based inference methods in both the speed of convergence and accuracy. We applied
the model to both simulated data and spike trains recorded from hippocampal place cells and showed
that it outperforms a variety of previous methods for latent structure discovery.
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