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Abstract

Predicting the future from a sequence of video frames has been recently a sought
after yet challenging task in the field of computer vision and machine learning.
Although there have been efforts for tracking using motion trajectories and flow
features, the complex problem of generating unseen frames has not been studied
extensively. In this paper, we deal with this problem using convolutional models
within a multi-stage Generative Adversarial Networks (GAN) framework. The
proposed method uses two stages of GANs to generate crisp and clear set of
future frames. Although GANs have been used in the past for predicting the
future, none of the works consider the relation between subsequent frames in
the temporal dimension. Our main contribution lies in formulating two objective
functions based on the Normalized Cross Correlation (NCC) and the Pairwise
Contrastive Divergence (PCD) for solving this problem. This method, coupled
with the traditional L1 loss, has been experimented with three real-world video
datasets viz. Sports-1M, UCF-101 and the KITTI. Performance analysis reveals
superior results over the recent state-of-the-art methods.

1 Introduction

Video frame prediction has recently been a popular problem in computer vision as it caters to a wide
range of applications including self-driving cars, surveillance, robotics and in-painting. However, the
challenge lies in the fact that, real-world scenes tend to be complex, and predicting the future events
requires modeling of complicated internal representations of the ongoing events. Past approaches
on video frame prediction include the use of recurrent neural architectures [19], Long Short Term
Memory [8] networks [22] and action conditional deep networks [17]. Recently, the work of [14]
modeled the frame prediction problem in the framework of Generative Adversarial Networks (GAN).
Generative models, as introduced by Goodfellow et. al., [5] try to generate images from random noise
by simultaneously training a generator (G) and a discriminator network (D) in a process similar to a
zero-sum game. Mathieu et. al. [14] shows the effectiveness of this adversarial training in the domain
of frame prediction using a combination of two objective functions (along with the basic adversarial
loss) employed on a multi-scale generator network. This idea stems from the fact that the original
L2-loss tends to produce blurry frames. This was overcome by the use of Gradient Difference Loss
(GDL) [14], which showed significant improvement over the past approaches when compared using
similarity and sharpness measures. However, this approach, although producing satisfying results for
the first few predicted frames, tends to generate blurry results for predictions far away (∼6) in the
future.
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Figure 1: The proposed multi-stage GAN framework. The stage-1 generator network produces a
low-resolution version of predicted frames which are then fed to the stage-2 generator. Discriminators
at both the stages predict 0 or 1 for each predicted frame to denote its origin: synthetic or original.

In this paper, we aim to get over this hurdle of blurry predictions by considering an additional
constraint between consecutive frames in the temporal dimension. We propose two objective functions:
(a) Normalized Cross-Correlation Loss (NCCL) and (b) Pairwise Contrastive Divergence Loss
(PCDL) for effectively capturing the inter-frame relationships in the GAN framework. NCCL
maximizes the cross-correlation between neighborhood patches from consecutive frames, whereas,
PCDL applies a penalty when subsequent generated frames are predicted wrongly by the discriminator
network (D), thereby separating them far apart in the feature space. Performance analysis over three
real world video datasets shows the effectiveness of the proposed loss functions in predicting future
frames of a video.

The rest of the paper is organized as follows: section 2 describes the multi-stage generative adversarial
architecture; sections 3 - 6 introduce the different loss functions employed: the adversarial loss (AL)
and most importantly NCCL and PCDL. We show the results of our experiments on Sports-1M [10],
UCF-101 [21] and KITTI [4] and compare them with state-of-the-art techniques in section 7. Finally,
we conclude our paper highlighting the key points and future direction of research in section 8.

2 Multi-stage Generative Adversarial Model

Generative Adversarial Networks (GAN) [5] are composed of two networks: (a) the Generator (G)
and (b) the Discriminator (D). The generator G tries to generate realistic images by learning to
model the true data distribution pdata and thereby trying to make the task of differentiating between
original and generated images by the discriminator difficult. The discriminator D, in the other hand,
is optimized to distinguish between the synthetic and the real images. In essence, this procedure of
alternate learning is similar to the process of two player min-max games [5]. Overall, the GANs
minimize the following objective function:

min
G

max
D

v(D,G) = Ex∼pdata
[log(D(x))] + Ez∼pz [log(1−D(G(z)))] (1)

where, x is a real image from the true distribution pdata and z is a vector sampled from the distribution
pz , usually to be uniform or Gaussian. The adversarial loss employed in this paper is a variant of that
in equation 1, as the input to our network is a sequence of frames of a video, instead of a vector z.

As convolutions account only for short-range relationships, pooling layers are used to garner in-
formation from wider range. But, this process generates low resolution images. To overcome this,
Mathieu et. al. [14] uses a multi-scale generator network, equivalent to the reconstruction process
of a Laplacian pyramid [18], coupled with discriminator networks to produce high-quality output
frames of size 32× 32. There are two shortcomings of this approach:

2



a. Generating image output at higher dimensions viz. (128× 128) or (256× 256), requires
multiple use of upsampling operations applied on the output of the generators. In our
proposed model, this upsampling is handled by the generator networks itself implicitly
through the use of consecutive unpooling operations, thereby generating predicted frames at
much higher resolution in lesser number of scales.

b. As the generator network parameters are not learned with respect to any objective function
which captures the temporal relationship effectively, the output becomes blurry after ∼ 4
frames.

To overcome the first issue, we propose a multi-stage (2-stage) generative adversarial network
(MS-GAN).

2.1 Stage-1

Generating the output frame(s) directly often produces blurry outcomes. Instead, we simplify the
process by first generating crude, low-resolution version of the frame(s) to be predicted. The stage-1
generator (G1) consists of a series of convolutional layers coupled with unpooling layers [25] which
upsample the frames. We used ReLU non-linearity in all but the last layer, in which case, hyperbolic
tangent (tanh) was used following the scheme of [18]. The inputs to G1 are m number of consecutive
frames of dimension W0 ×H0, whereas the outputs are n predicted frames of size W1 ×H1, where,
W1 =W0 × 2 and H1 = H0 × 2. These outputs, stacked with the upsampled version of the original
input frames, produce the input of dimension (m+n)×W1×H1 for the stage-1 discriminator (D1).
D1 applies a chain of convolutional layers followed by multiple fully-connected layers to finally
produce an output vector of dimension (m+ n), consisting of 0’s and 1’s.

One of the key differences of our proposed GAN framework with the conventional one [5]is that, the
discriminator network produces decision output for multiple frames, instead of a single 0/1 outcome.
This is exploited by one of the proposed objective functions, the PCDL, which is described later in
section 4.

2.2 Stage-2

The second stage network closely resembles the stage-1 architecture, differing only in the input and
output dimensions. The input to the stage-2 generator (G2) is formed by stacking the predicted
frames and the upsampled inputs of G1, thereby having dimension of (m + n) ×W1 ×H1. The
output of G2 are n predicted high-resolution frames of size W2 ×H2, where, W2 = W1 × 4 and
H2 = H1× 4. The stage-2 discriminator (D2), works in a similar fashion as D1, producing an output
vector of length (m+ n).

Effectively, the multi-stage model can be represented by the following recursive equations:

Ŷk =

{
Gk(Ŷk−1, Xk−1), for k ≥ 2

Gk(Xk−1) for k = 1
(2)

where, Ŷk is the set of predicted frames and Xk are the input frames at the kth stage of the generator
network Gk.

2.3 Training the multi-stage GAN

The training procedure of the multi-stage GAN model follows that of the original generative adversar-
ial networks with minor variations. The training of the discriminator and the generator are described
as follows:

Training of the discriminator Considering the input to the discriminator (D) as X (series of
m frames) and the target output to be Y (series of n frames), D is trained to distinguish between
synthetic and original inputs by classifying (X,Y ) into class 1 and (X,G(X)) into class 0. Hence,
for each of the k stages, we train D with target ~1 (Vector of 1’s with dimension m) for (X,Y ) and
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target ~0 (Vector of 0’s with dimension n) for (X,G(X)). The loss function for training D is:

LDadv =
Nstages∑
k=1

Lbce(Dk(Xk, Yk),~1) + Lbce(Dk(Xk, Gk(Xk)),~0) (3)

where, Lbce, the binary cross-entropy loss is defined as:

Lbce(A,A
′) = −

|A|∑
i=1

A
′ilog(Ai) + (1−A

′i)log(1−Ai), Ai ∈ {0, 1}, A
′i ∈ [0, 1] (4)

where, A and A′ are the target and discriminator outputs respectively.

Training of the generator We perform an optimization step on the generator network (G), keeping
the weights of D fixed, by feeding a set of consecutive frames X sampled from the training data with
target Y (set of ground-truth output frames) and minimize the following adversarial loss:

LGadv(X) =

Nstages∑
k=1

Lbce(Dk(Xk, Gk(Xk)),~1) (5)

By minimizing the above two loss criteria (eqns. 3, 5), G makes the discriminator believe that,
the source of the generated frames is the input data space itself. Although this process of alternate
optimization of D and G is reasonably well designed formulation, in practical purposes, this produces
an unstable system where G generates samples that consecutively move far away from the original
input space and in consequence D distinguishes them easily. To overcome this instability inherent in
the GAN principle and the issue of producing blurry frames defined in section 2, we formulate a pair
of objective criteria: (a) Normalized Cross Correlation Loss (NCCL) and (b)Pairwise Contrastive
Divergence Loss (PCDL), to be used along with the established adversarial loss (refer eqns. 3 and 5).

3 Normalized Cross-Correlation Loss (NCCL)

The main advantage of video over image data is the fact that, it offers a far richer space of data
distribution by adding the temporal dimension along with the spatial one. Convolutional Neural
Networks (CNN) can only capture short-range relationships, a small part of the vast available
information, from the input video data, that too in the spatial domain. Although this can be somewhat
alleviated by the use of 3D convolutions [9], that increases the number of learn-able parameters
immensely. Normalized cross-correlation has been used since long time in the field of video analytics
[1, 2, 16, 13, 23] to model the spatial and temporal relationships present in the data.

Normalized cross correlation (NCC) measures the similarity of two image patches as a function of
the displacement of one relative to the other. This can be mathematically defined as:

NCC(f, g) =
∑
x,y

(f(x, y)− µf )(g(x, y)− µg)
σfσg

(6)

where, f(x, y) is a sub-image, g(x, y) is the template to be matched, µf , µg denotes the mean of
the sub-image and the template respectively and σf , σg denotes the standard deviation of f and g
respectively.

In the domain of video frame(s) prediction, we incorporate the NCC by first extracting small non-
overlapping square patches of size h× h (1 < h ≤ 4), denoted by a 3-tuple Pt{x, y, h}, where, x
and y are the co-ordinates of the top-left pixel of a particular patch, from the predicted frame at time t
and then calculating the cross-correlation score with the patch extracted from the ground truth frame
at time (t− 1), represented by P̂t−1{x− 2, y − 2, h+ 4}.
In simpler terms, we estimate the cross-correlation score between a small portion of the current
predicted frame and the local neighborhood of that in the previous ground-truth frame. We assume
that, the motion features present in the entire scene (frame) be effectively approximated by adjacent
spatial blocks of lower resolution,using small local neighborhoods in the temporal dimension. This
stems from the fact that, unless the video contains significant jitter or unexpected random events like
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Algorithm 1: Normalized cross-correlation score for estimating similarity between a set of predicted
frame(s) and a set of ground-truth frame(s).
Input: Ground-truth frames (GT ), Predicted frames (PRED)
Output: Cross-correlation score (ScoreNCC)
// h = height and width of an image patch
// H = height and width of the predicted frames
// t = current time
// T = Number of frames predicted
Initialize: ScoreNCC = 0;
for t = 1 to T do

for i = 0 to H , i← i+ h do
for j = 0 to H , j ← j + h do

Pt ← extract_patch(PREDt, i, j, h);
/* Extracts a patch from the predicted frame at time t of dimension

h× h starting from the top-left pixel index (i, j) */

P̂t−1 ← extract_patch(GTt−1, i− 2, j − 2, h+ 4);
/* Extracts a patch from the ground-truth frame at time (t− 1) of

dimension (h+ 4)× (h+ 4) starting from the top-left pixel index
(i− 2, j − 2) */

µPt ← avg(Pt);
µP̂t−1

← avg(P̂t−1);
σPt
← standard_deviation(Pt);

σP̂t−1
← standard_deviation(P̂t−1);

ScoreNCC ← ScoreNCC +max
(
0,
∑
x,y

(Pt(x,y)−µPt )(P̂t−1(x,y)−µP̂t−1
)

σPtσ ˆPt−1

)
;

end
end
ScoreNCC ← ScoreNCC/bH/hc2 ; // Average over all the patches

end
ScoreNCC ← ScoreNCC/(T−1); // Average over all the frames

scene change, the motion features remain smooth over time. The step-by-step process for finding the
cross-correlation score by matching local patches of predicted and ground truth frames is described
in algorithm 1.

The idea of calculating the NCC score is modeled into an objective function for the generator network
G, where it tries to maximize the score over a batch of inputs. In essence, this objective function
models the temporal data distribution by smoothing the local motion features generated by the
convolutional model. This loss function, LNCCL, is defined as:

LNCCL(Y, Ŷ ) = −ScoreNCC(Y, Ŷ ) (7)

where, Y and Ŷ are the ground truth and predicted frames and ScoreNCC is the average normalized
cross-correlation score over all the frames, obtained using the method as described in algorithm 1.
The generator tries to minimize LNCCL along with the adversarial loss defined in section 2.

We also propose a variant of this objective function, termed as Smoothed Normalized Cross-
Correlation Loss (SNCCL), where the patch similarity finding logic of NCCL is extended by
convolving with Gaussian filters to suppress transient (sudden) motion patterns. A detailed dis-
cussion of this algorithm is given in sec. A of the supplementary document.

4 Pairwise Contrastive Divergence Loss (PCDL)

As discussed in sec. 3, the proposed method captures motion features that vary slowly over time. The
NCCL criteria aims to achieve this using local similarity measures. To complement this in a global
scale, we use the idea of pairwise contrastive divergence over the input frames. The idea of exploiting
this temporal coherence for learning motion features has been studied in the recent past [6, 7, 15].
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By assuming that, motion features vary slowly over time, we describe Ŷt and Ŷt+1 as a temporal
pair, where, Ŷi and Ŷt+1 are the predicted frames at time t and (t+ 1) respectively, if the outputs of
the discriminator network D for both these frames are 1. With this notation, we model the slowness
principle of the motion features using an objective function as:

LPCDL(Ŷ , ~p) =
T−1∑
i=0

Dδ(Ŷi, Ŷi+1, pi × pi+1)

=

T−1∑
i=0

pi × pi+1 × d(Ŷi, Ŷi+1) + (1− pi × pi+1)×max(0, δ − d(Ŷi, Ŷi+1))

(8)

where, T is the time-duration of the frames predicted, pi is the output decision (pi ∈ {0, 1}) of the
discriminator, d(x, y) is a distance measure (L2 in this paper) and δ is a positive margin. Equation
8 in simpler terms, minimizes the distance between frames that have been predicted correctly and
encourages the distance in the negative case, up-to a margin δ.

5 Higher Order Pairwise Contrastive Divergence Loss

The Pairwise Contrastive Divergence Loss (PCDL) discussed in the previous section takes into
account (dis)similarities between two consecutive frames to bring them further (or closer) in the
spatio-temporal feature space. This idea can be extended for higher order situations involving three
or more consecutive frames. For n = 3, where n is the number of consecutive frames considered,
PCDL can be defined as:

L3−PCDL =

T−2∑
i=0

Dδ(|Ŷi − Ŷi+1|, |Ŷi+1 − Ŷi+2|, pi,i+1,i+2)

=

T−2∑
i=0

pi,i+1,i+2 × d(|Ŷi − Ŷi+1|, |Ŷi+1 − Ŷi+2|)

+ (1− pi,i+1,i+2)×max(0, δ − d(|(Ŷi − Ŷi+1)|, |(Ŷi+1 − Ŷi+2)|))

(9)

where, pi,i+1,i+2 = 1 only if pi, pi+1 and pi+2- all are simultaneously 1, i.e., the discriminator is
very sure about the predicted frames, that they are from the original data distribution. All the other
symbols bear standard representations defined in the paper.

This version of the objective function, in essence shrinks the distance between the predicted frames
occurring sequentially in a temporal neighborhood, thereby increasing their similarity and maintaining
the temporal coherency.

6 Combined Loss

Finally, we combine the objective functions given in eqns. 5 - 8 along with the general L1-loss with
different weights as:

LCombined =λadvLGadv(X) + λL1LL1(X,Y ) + λNCCLLNCCL(Y, Ŷ )

+ λPCDLLPCDL(Ŷ , ~p) + λPCDLL3−PCDL(Ŷ , ~p)
(10)

All the weights viz. λL1, λNCCL, λPCDL and λ3−PCDL have been set as 0.25, while λadv equals
0.01. This overall loss is minimized during the training stage of the multi-stage GAN using Adam
optimizer [11].

We also evaluate our models by incorporating another loss function described in section A of the
supplementary document, the Smoothed Normalized Cross-Correlation Loss (SNCCL). The weight
for SNCCL, λSNCCL equals 0.33 while λ3−PCDL and λPCDL is kept at 0.16.

7 Experiments

Performance analysis with experiments of our proposed prediction model for video frame(s) have
been done on video clips from Sports-1M [10], UCF-101 [21] and KITTI [4] datasets. The input-
output configuration used for training the system is as follows: input: 4 frames and output: 4 frames.
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We compare our results with recent state-of-the-art methods using two popular metrics: (a) Peak
Signal to Noise Ratio (PSNR) and (b) Structural Similarity Index Measure (SSIM) [24].

7.1 Datasets

Sports-1M A large collection of sports videos collected from YouTube spread over 487 classes.
The main reason for choosing this dataset is the amount of movement in the frames. Being a collection
of sports videos, this has sufficient amount of motion present in most of the frames, making it an
efficient dataset for training the prediction model. Only this dataset has been used for training all
throughout our experimental studies.

UCF-101 This dataset contains 13320 annotated videos belonging to 101 classes having 180
frames/video on average. The frames in this video do not contain as much movement as the Sports-
1m and hence this is used only for testing purpose.

KITTI This consists of high-resolution video data from different road conditions. We have taken
raw data from two categories: (a) city and (b) road.

7.2 Architecture of the network

Table 1: Network architecture details; G and D represents the generator and discriminator networks
respectively. U denotes an unpooling operation which upsamples an input by a factor of 2.

Network Stage-1 (G) Stage-2 (G) Stage-1 (D) Stage-2 (D)
Number of fea-
ture maps

64, 128, 256U, 128,
64

64, 128U, 256,
512U, 256, 128,
64

64, 128, 256 128, 256, 512,
256, 128

Kernel sizes 5, 3, 3, 3, 5 5, 5, 5, 5, 5, 5, 5 3, 5, 5 7, 5, 5, 5, 5
Fully connected N/A N/A 1024, 512 1024, 512

The architecture details for the generator (G) and discriminator (D) networks used for experimental
studies are shown in table 1. All the convolutional layers except the terminal one in both stages of G
are followed by ReLU non-linearity. The last layer is tied with tanh activation function. In both the
stages of G, we use unpooling layers to upsample the image into higher resolution in magnitude of 2
in both dimensions (height and width). The learning rate is set to 0.003 for G, which is gradually
decreased to 0.0004 over time. The discriminator (D) uses ReLU non-linearities and is trained with a
learning rate of 0.03. We use mini-batches of 8 clips for training the overall network.

7.3 Evaluation metric for prediction

Assessment of the quality of the predicted frames is done by two methods: (a) Peak Signal to Noise
Ratio (PSNR) and (b) Structural Similarity Index Measure (SSIM). PSNR measures the quality of
the reconstruction process through the calculation of Mean-squared error between the original and
the reconstructed signal in logarithmic decibel scale [1]. SSIM is also an image similarity measure
where, one of the images being compared is assumed to be of perfect quality [24].

As the frames in videos are composed of foreground and background, and in most cases the back-
ground is static (not the case in the KITTI dataset, as it has videos taken from camera mounted on
a moving car), we extract random sequences of 32 × 32 patches from the frames with significant
motion. Calculation of motion is done using the optical flow method of Brox et. al. [3].

7.4 Comparison

We compare the results on videos from UCF-101, using the model trained on the Sports-1M dataset.
Table 2 demonstrates the superiority of our method over the most recent work [14]. We followed
similar choice of test set videos as in [14] to make a fair comparison. One of the impressive facts
in our model is that, it can produce acceptably good predictions even in the 4th frame, which is a
significant result considering that [14] uses separate smaller multi-scale models for achieving this
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Figure 2: Qualitative results of using the proposed framework for predicting frames in UCF-101 with
the three rows representing (a) Ground-truth, (b) Adv + L1 and (c) Combined (section 6) respectively.
’T’ denotes the time-step. Figures in insets show zoomed-in patches for better visibility of areas
involving motion (Best viewed in color).

feat. Also note that, even though the metrics for the first predicted frame do not differ by a large
margin compared to the results from [14] for higher frames, the values decrease much slowly for the
models trained with the proposed objective functions (rows 8-10 of table 2). The main reason for this
phenomenon in our proposed method is the incorporation of the temporal relations in the objective
functions, rather than learning only in the spatial domain.

Similar trend was also found in case of the KITTI dataset. We could not find any prior work in
the literature reporting findings on the KITTI dataset and hence compared only with several of our
proposed models. In all the cases, the performance gain with the inclusion of NCCL and PCDL is
evident.

Finally, we show the prediction results obtained on both the UCF-101 and KITTI in figures 2 and 3.
It is evident from the sub-figures that, our proposed objective functions produce impressive quality
frames while the models trained with L1 loss tends to output blurry reconstruction. The supplementary
document contains visual results (shown in figures C.1-C.2) obtained in case of predicting frames
far-away from the current time-step (8 frames).

8 Conclusion

In this paper, we modified the Generative Adversarial Networks (GAN) framework with the use
of unpooling operations and introduced two objective functions based on the normalized cross-
correlation (NCCL) and the contrastive divergence estimate (PCDL), to design an efficient algorithm
for video frame(s) prediction. Studies show significant improvement of the proposed methods over the
recent published works. Our proposed objective functions can be used with more complex networks
involving 3D convolutions and recurrent neural networks. In the future, we aim to learn weights for
the cross-correlation such that it focuses adaptively on areas involving varying amount of motion.
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Table 2: Comparison of performance for different methods using PSNR/SSIM scores for the UCF-101
and KITTI datasets. The first five rows report the results from [14]. (*) indicates models fine tuned on
patches of size 64× 64 [14]. (-) denotes unavailability of data. GDL stands for Gradient Difference
Loss [14]. SNCCL is discussed in section A of the supplementary document. Best results in bold.

1st frame
prediction score

2nd frame
prediction score

4th frame
prediction score

Methods UCF KITTI UCF KITTI UCF KITTI
L1 28.7/0.88 - 23.8/0.83 - - -
GDL L1 29.4/0.90 - 24.9/0.84 - - -
GDL L1* 29.9/0.90 - 26.4/0.87 - - -
Adv + GDL fine-tuned* 32.0/0.92 - 28.9/0.89 - - -
Optical flow 31.6/0.93 - 28.2/0.90 - - -
Next-flow [20] 31.9/- - - - - -
Deep Voxel Flow [12] 35.8/0.96 - - - - -
Adv + NCCL + L1 35.4/0.94 37.1/0.91 33.9/0.92 35.4/0.90 28.7/0.75 27.8/0.75
Combined 37.3/0.95 39.7/0.93 35.7/0.92 37.1/0.91 30.2/0.76 29.6/0.76
Combined + SNCCL 38.2/0.95 40.2/0.94 36.8/0.93 37.7/0.91 30.9/0.77 30.4/0.77
Combined + SNCCL (full
frame)

37.3/0.94 39.4/0.94 35.1/0.91 36.4/0.91 29.5/0.75 29.1/0.76

Figure 3: Qualitative results of using the proposed framework for predicting frames in the KITTI
Dataset, for (a) L1, (b) NCCL (section 3), (c) Combined (section 6) and (d) ground-truth (Best viewed
in color).
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