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Abstract

There is significant recent interest to parallelize deep learning algorithms in order
to handle the enormous growth in data and model sizes. While most advances
focus on model parallelization and engaging multiple computing agents via using
a central parameter server, aspect of data parallelization along with decentralized
computation has not been explored sufficiently. In this context, this paper presents
a new consensus-based distributed SGD (CDSGD) (and its momentum variant,
CDMSGD) algorithm for collaborative deep learning over fixed topology networks
that enables data parallelization as well as decentralized computation. Such a frame-
work can be extremely useful for learning agents with access to only local/private
data in a communication constrained environment. We analyze the convergence
properties of the proposed algorithm with strongly convex and nonconvex objective
functions with fixed and diminishing step sizes using concepts of Lyapunov func-
tion construction. We demonstrate the efficacy of our algorithms in comparison
with the baseline centralized SGD and the recently proposed federated averaging
algorithm (that also enables data parallelism) based on benchmark datasets such as
MNIST, CIFAR-10 and CIFAR-100.

1 Introduction

In this paper, we address the scalability of optimization algorithms for deep learning in a distributed
setting. Scaling up deep learning [1] is becoming increasingly crucial for large-scale applications
where the sizes of both the available data as well as the models are massive [2]. Among various
algorithmic advances, many recent attempts have been made to parallelize stochastic gradient descent
(SGD) based learning schemes across multiple computing agents. An early approach called Downpour
SGD [3], developed within Google’s disbelief software framework, primarily focuses on model
parallelization (i.e., splitting the model across the agents). A different approach known as elastic
averaging SGD (EASGD) [4] attempts to improve perform multiple SGDs in parallel; this method
uses a central parameter server that helps in assimilating parameter updates from the computing
agents. However, none of the above approaches concretely address the issue of data parallelization,
which is an important issue for several learning scenarios: for example, data parallelization enables
privacy-preserving learning in scenarios such as distributed learning with a network of mobile and
Internet-of-Things (IoT) devices. A recent scheme called Federated Averaging SGD [5] attempts
such a data parallelization in the context of deep learning with significant success; however, they still
use a central parameter server.

In contrast, deep learning with decentralized computation can be achieved via gossip SGD algo-
rithms [6, 7], where agents communicate probabilistically without the aid of a parameter server.
However, decentralized computation in the sense of gossip SGD is not feasible in many real life
applications. For instance, consider a large (wide-area) sensor network [8, 9] or multi-agent robotic
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Table 1: Comparisons between different optimization approaches
Method f ∇f Step Size Con.Rate D.P. D.C. C.C.T.

SGD Str-con Lip. Con. O(γk) No No No
Downpour SGD [3] Nonconvex Lip. Con.&Ada. N/A Yes No No

EASGD [4] Str-con Lip. Con. O(γk) No No No

Gossip SGD [7] Str-con Lip.&Bou. Con. O(γk) No Yes No
Str-con Lip.&Bou. Dim. O( 1

k )
FedAvg [5] Nonconvex Lip. Con. N/A Yes No No

CDSGD [This paper]

Str-con Lip.&Bou. Con. O(γk)

Yes Yes YesStr-con Lip.&Bou. Dim. O( 1
kε )

Nonconvex Lip.&Bou. Con. N/A
Nonconvex Lip.&Bou. Dim. N/A

Con.Rate: convergence rate, Str-con: strongly convex. Lip.&Bou.: Lipschitz continuous and
bounded. Con.: constant and Con.&Ada.: constant&adagrad. Dim.: diminishing. γ ∈ (0, 1) is a
positive constant. ε ∈ (0.5, 1] is a positive constant. D.P.: data parallelism. D.C.: decentralized
computation. C.C.T.: constrained communication topology.

network that aims to learn a model of the environment in a collaborative manner [10, 11]. For such
cases, it may be infeasible for arbitrary pairs of agents to communicate on-demand; typically, agents
are only able to communicate with their respective neighbors in a communication network in a fixed
(or evolving) topology.

Contribution: This paper introduces a new class of approaches for deep learning that enables both
data parallelization and decentralized computation. Specifically, we propose consensus-based dis-
tributed SGD (CDSGD) and consensus-based distributed momentum SGD (CDMSGD) algorithms for
collaborative deep learning that, for the first time, satisfies all three requirements: data parallelization,
decentralized computation, and constrained communication over fixed topology networks. Moreover,
while most existing studies solely rely on empirical evidence from simulations, we present rigorous
convergence analysis for both (strongly) convex and non-convex objective functions, with both fixed
and diminishing step sizes using a Lyapunov function construction approach. Our analysis reveals
several advantages of our method: we match the best existing rates of convergence in the centralized
setting, while simultaneously supporting data parallelism as well as constrained communication
topologies; to our knowledge, this is the first approach that achieves all three desirable properties; see
Table 1 for a detailed comparison.

Finally, we validate our algorithms’ performance on benchmark datasets, such as MNIST, CIFAR-10,
and CIFAR-100. Apart from centralized SGD as a baseline, we also compare performance with
that of Federated Averaging SGD as it also enables data parallelization. Empirical evidence (for a
given number of agents and other hyperparametric conditions) suggests that while our method is
slightly slower, we can achieve higher accuracy compared to the best available algorithm (Federated
Averaging (FedAvg)). Empirically, the proposed framework in this work is suitable for situations
without central parameter servers, but also robust to a central parameter server failture situation.

Related work: Apart from the algorithms mentioned above, a few other related works exist, including
a distributed system called Adam for large deep neural network (DNN) models [12] and a distributed
methodology by Strom [13] for DNN training by controlling the rate of weight-update to reduce the
amount of communication. Natural Gradient Stochastic Gradient Descent (NG-SGD) based on model
averaging [14] and staleness-aware async-SGD [15] have also been developed for distributed deep
learning. A method called CentralVR [16] was proposed for reducing the variance and conducting
parallel execution with linear convergence rate. Moreover, a decentralized algorithm based on
gossip protocol called the multi-step dual accelerated (MSDA) [17] was developed for solving
deterministically smooth and strongly convex distributed optimization problems in networks with a
provable optimal linear convergence rate. A new class of decentralized primal-dual methods [18]
was also proposed recently in order to improve inter-node communication efficiency for distributed
convex optimization problems. To minimize a finite sum of nonconvex functions over a network, the
authors in [19] proposed a zeroth-order distributed algorithm (ZENITH) that was globally convergent
with a sublinear rate. From the perspective of distributed optimization, the proposed algorithms
have similarities with the approaches of [20, 21]. However, we distinguish our work due to the
collaborative learning aspect with data parallelization and extension to the stochastic setting and
nonconvex objective functions. In [20] the authors only considered convex objective functions in a
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deterministic setting, while the authors in [21] presented results for non-convex optimization problems
in a deterministic setting. Our proof techniques are different from those in [20, 21] with the choice
of Lyapunov function, as well as the notion of stochastic Lyapunov gradient. More importantly, we
provide an extensive and thorough suite of numerical comparisons with both centralized methods and
distributed methods on benchmark datasets.

The rest of the paper is organized as follows. While section 2 formulates the distributed, unconstrained
stochastic optimization problem, section 3 presents the CDSGD algorithm and the Lyapunov stochas-
tic gradient required for analysis presented in section 4. Validation experiments and performance
comparison results are described in section 5. The paper is summarized, concluded in section 6
along with future research directions. Detailed proofs of analytical results, extensions (e.g., effect of
diminishing step size) and additional experiments are included in the supplementary section 7.

2 Formulation

We consider the standard (unconstrained) empirical risk minimization problem typically used in
machine learning problems (such as deep learning):

min
1

n

n∑
i=1

f i(x), (1)

where x ∈ Rd denotes the parameter of interest and f : Rd → R is a given loss function, and f i
is the function value corresponding to a data point i. In this paper, we are interested in learning
problems where the computational agents exhibit data parallelism, i.e., they only have access to
their own respective training datasets. However, we assume that the agents can communicate over
a static undirected graph G = (V, E), where V is a vertex set (with nodes corresponding to agents)
and E is an edge set. With N agents, we have V = {1, 2, ..., N} and E ⊆ V × V . If (j, l) ∈ E ,
then Agent j can communicate with Agent l. The neighborhood of agent j ∈ V is defined as:
Nb(j) , {l ∈ V : (j, l) ∈ E or j = l}. Throughout this paper we assume that the graph G is
connected. Let Dj , j = 1, . . . , n denote the subset of the training data (comprising nj samples)
corresponding to the jth agents such that

∑N
j=1 nj = n. With this setup, we have the following

simplification of Eq. 1:

min
1

n

N∑
j=1

∑
i∈Dj

f i(x) =
N

n

N∑
j=1

∑
i∈Dj

f ij(x), (2)

where, fj(x) = 1
N f(x) is the objective function specific to Agent j. This formulation enables us to

state the optimization problem in a distributed manner, where f(x) =
∑N
j=1 fj(x). 1 Furthermore,

the problem (1) can be reformulated as

min
N

n
1TF(x) :=

N

n

N∑
j=1

∑
i∈Dj

f ij(x
j) (3a)

s.t. xj = xl ∀(j, l) ∈ E , (3b)

where x := (x1, x2, . . . , xN )T ∈ RN×d and F(x) can be written as

F(x) =

[ ∑
i∈D1

f i1(x1),
∑
i∈D2

f i2(x2), . . . ,
∑
i∈DN

f iN (xN )

]T
(4)

Note that with d > 1, the parameter set x as well as the gradient ∇F(x) correspond to matrix
variables. However, for simplicity in presenting our analysis, we set d = 1 in this paper, which
corresponds to the case where x and∇F(x) are vectors.

1Note that in our formulation, we are assuming that every agent has the same local objective function while
in general distributed optimization problems they can be different.
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We now introduce several key definitions and assumptions that characterize the objective functions
and the agent interaction matrix.

Definition 1. A function f : Rd → R is H-strongly convex, if for all x, y ∈ Rd, we have f(y) ≥
f(x) +∇f(x)T (y − x) + H

2 ‖y − x‖
2.

Definition 2. A function f : Rd → R is γ-smooth if for all x, y ∈ Rd, we have f(y) ≤ f(x) +
∇f(x)T (y − x) + γ

2 ‖y − x‖
2.

As a consequence of Definition 2, we can conclude that∇f is Lipschitz continuous, i.e., ‖∇f(y)−
∇f(x)‖ ≤ γ‖y − x‖ [22].

Definition 3. A function c is said to be coercive if it satisfies: c(x)→∞ when‖x‖ → ∞.

Assumption 1. The objective functions fj : Rd → R are assumed to satisfy the following conditions:
a) Each fj is γj-smooth; b) each fj is proper (not everywhere infinite) and coercive; and c) each fj
is Lj-Lipschitz continuous, i.e., |fj(y)− fj(x)| < Lj‖y − x‖ ∀x, y ∈ Rd.

As a consequence of Assumption 1, we can conclude that
∑N
j=1 fj(x

j) possesses Lipschitz continu-
ous gradient with parameter γm := maxjγj . Similarly, each fj is strongly convex with Hj such that∑N
j=1 fj(x

j) is strongly convex with Hm = minjHj .

Regarding the communication network, we use Π to denote the agent interaction matrix, where the
element πjl signifies the link weight between agents j and l.

Assumption 2. a) If (j, l) /∈ E , then πjl = 0; b) ΠT = Π; c) null{I − Π} = span{1}; and d)
I � Π � −I .

The main outcome of Assumption 2 is that the probability transition matrix is doubly stochastic
and that we have λ1(Π) = 1 > λ2(Π) ≥ · · · ≥ λN (Π) ≥ 0, where λz(Π) denotes the z-th largest
eigenvalue of Π.

3 Proposed Algorithm

3.1 Consensus Distributed SGD

For solving stochastic optimization problems, SGD and its variants have been commonly used to
centralized and distributed problem formulations. Therefore, the following algorithm is proposed
based on SGD and the concept of consensus to solve the problem laid out in Eq. 2,

xjk+1 =
∑

l∈Nb(j)

πjlx
l
k − αgj(x

j
k) (5)

where Nb(j) indicates the neighborhood of agent j, α is the step size, gj(x
j
k) is stochastic gradient

of fj at xjk, which corresponds to a minibatch of sampled data points at the kth epoch. More
formally, gj(x

j
k) = 1

b′

∑
q′∈D′ ∇f

q′

j (xjk), where b′ is the size of the minibatch D′ randomly selected
from the data subset Dj . While the pseudo-code of CDSGD is shown below in Algorithm 1,
momentum versions of CDSGD based on Polyak momentum [23] and Nesterov momentum [24] are
also presented in the supplementary section 7. In experiments, Nesterov momentum is used as it has
been shown in the traditional SGD implementations that the Nesterov variant outperforms the Polyak
momentum. Note, that mini-batch implementations of these algorithms are straightforward, hence,
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are not discussed here in detail, and that the convergence analysis of momentum variants is out of
scope in this paper and will be presented in our future work.

Algorithm 1: CDSGD
Input : m, α, N
Initialize: xj0, (j = 1, 2, . . . , N )
Distribute the training dataset to N agents.
for each agent do

for k = 0 : m do
Randomly shuffle the corresponding data subset Dj (without replacement)
wjk+1 =

∑
l∈Nb(j) πjlx

l
k

xjk+1 = wjk+1 − αgj(x
j
k)

end
end

3.2 Tools for convergence analysis
We now analyze the convergence properties of the iterates {xjk} generated by Algorithm 1. The
following section summarizes some key intermediate concepts required to establish our main results.

First, we construct an appropriate Lyapunov function that will enable us to establish convergence.
Observe that the update law in Alg. 1 can be expressed as:

xk+1 = Πxk − αg(xk), (6)

where
g(xk) = [g1(x1

k)g2(x2
k)...gN (xNk )]T

Denoting wk = Πxk, the update law can be re-written as xk+1 = wk − αg(xk). Moreover,
xk+1 = xk − xk + wk − αg(xk). Rearranging the last equality yields the following relation:

xk+1 = xk − α(g(xk) + α−1(xk −wk)) = xk − α(g(xk) + α−1(I −Π)xk) (7)

where the last term in Eq. 7 is the Stochastic Lyapunov Gradient. From Eq. 7, we observe that
the “effective" gradient step is given by g(xk) + α−1(I − Π)xk. Rewriting ∇J i(xk) = g(xk) +
α−1(I −Π)xk, the updates of CDSGD can be expressed as:

xk+1 = xk − α∇J i(xk). (8)

The above expression naturally motivates the following Lyapunov function candidate:

V (x, α) :=
N

n
1TF(x) +

1

2α
‖x‖2I−Π (9)

where ‖ · ‖I−Π denotes the norm with respect to the PSD matrix I − Π. Since
∑N
j=1 fj(x

j) has a
γm-Lipschitz continuous gradient,∇V (x) also is a Lipschitz continuous gradient with parameter:

γ̂ := γm + α−1λmax(I −Π) = γm + α−1(1− λN (Π)).

Similarly, as
∑N
j=1 fj(x

j) is Hm-strongly convex, then V (x) is strongly convex with parameter:

Ĥ := Hm + (2α)−1λmin(I −Π) = Hm + (2α)−1(1− λ2(Π)).

Based on Definition 1, V has a unique minimizer, denoted by x∗ with V ∗ = V (x∗). Correspondingly,
using strong convexity of V , we can obtain the relation:

2Ĥ(V (x)− V ∗) ≤ ‖∇V (x)‖2 for all x ∈ RN . (10)

From strong convexity and the Lipschitz continuous property of ∇fj , the constants Hm and γm
further satisfy Hm ≤ γm and hence, Ĥ ≤ γ̂.

Next, we introduce two key lemmas that will help establish our main theoretical guarantees. Due to
space limitations, all proofs are deferred to the supplementary material in Section 7.
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Lemma 1. Under Assumptions 1 and 2, the iterates of CDSGD satisfy ∀k ∈ N:

E[V (xk+1)]− V (xk) ≤ −α∇V (xk)TE[∇J i(xk)] +
γ̂

2
α2E[‖∇J i(xk)‖2] (11)

At a high level, since E[∇J i(xk)] is the unbiased estimate of ∇V (xk), using the updates ∇J i(xk)
will lead to sufficient decrease in the Lyapunov function. However, unbiasedness is not enough, and
we also need to control higher order moments of∇J i(xk) to ensure convergence. Specifically, we
consider the variance of∇J i(xk):

V ar[∇J i(xk)] := E[‖∇J i(xk)‖2]− ‖E[∇J i(xk)]‖2 (12)

To bound the variance of∇J i(xk), we use a standard assumption presented in [25] in the context of
(centralized) deep learning. Such an assumption aims at providing an upper bound for the “gradient
noise" caused by the randomness in the minibatch selection at each iteration.

Assumption 3. a) There exist scalars ζ2 ≥ ζ1 > 0 such that ∇V (xk)TE[∇J i(xk)] ≥
ζ1‖∇V (xk)‖2 and ‖E[∇J i(xk)]‖ ≤ ζ2‖∇V (xk)‖ for all k ∈ N; b) There exist scalars Q ≥ 0 and
QV ≥ 0 such that V ar[∇J i(xk)] ≤ Q+QV ‖∇V (xk)‖2 for all k ∈ N.

Remark 1. While Assumption 3(a) guarantees the sufficient descent of V in the direction of
−∇J i(xk), Assumption 3(b) states that the variance of ∇J i(xk) is bounded above by the sec-
ond moment of ∇V (xk). The constant Q can be considered to represent the second moment of the
“gradient noise" in∇J i(xk). Therefore, the second moment of ∇J i(xk) can be bounded above as
E[‖∇J i(xk)‖2] ≤ Q+Qm‖∇V (xk)‖2, where Qm := QV + ζ2

2 ≥ ζ2
1 > 0.

Lemma 2. Under Assumptions 1, 2, and 3, the iterates of CDSGD satisfy ∀k ∈ N:

E[V (xk+1)]− V (xk) ≤ −(ζ1 −
γ̂

2
αQm)α‖∇V (xk)‖2 +

γ̂

2
α2Q . (13)

In Lemma 2, the first term is strictly negative if the step size satisfies the following necessary
condition:

0 < α ≤ 2ζ1
γ̂Qm

(14)

However, in latter analysis, when such a condition is substituted into the convergence analysis, it may
produce a larger upper bound. For obtaining a tight upper bound, we impose a sufficient condition
for the rest of analysis as follows:

0 < α ≤ ζ1
γ̂Qm

(15)

As γ̂ is a function of α, the above inequality can be rewritten as 0 < α ≤ ζ1−(1−λN (Π))Qm
γmQm

.

4 Main Results
We now present our main theoretical results establishing the convergence of CDSGD. First, we show
that for most generic loss functions (whether convex or not), CDSGD achieves consensus across
different agents in the graph, provided the step size (which is fixed across iterations) does not exceed
a natural upper bound.

Proposition 1. (Consensus with fixed step size) Under Assumptions 1 and 2, the iterates of CDSGD
(Algorithm 1) satisfy ∀k ∈ N:

E[‖xjk − sk‖] ≤
αL

1− λ2(Π)
(16)

where α satisfies 0 < α ≤ ζ1−(1−λN (Π))Qm
γmQm

and L is an upper bound of E[‖g(xk)‖],∀k ∈ N
(defined properly and discussed in Lemma 4 in the supplementary section 7) and sk = 1

N

∑N
j=1 x

j
k

represents the average parameter estimate.

The proof of this proposition can be adapted from [26, Lemma 1].

Next, we show that for strongly convex loss functions, CDSGD converges linearly to a neighborhood
of the global optimum.
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Theorem 1. (Convergence of CDSGD with fixed step size, strongly convex case) Under Assump-
tions 1, 2 and 3, the iterates of CDSGD satisfy the following inequality ∀k ∈ N:

E[V (xk)− V ∗] ≤ (1− αĤζ1)k−1(V (x1)− V ∗) +
α2γ̂Q

2

k−1∑
l=0

(1− αĤζ1)l

= (1− (αHm + 1− λ2(Π))ζ1)k−1(V (x1)− V ∗)

+
(α2γm + α(1− λN (Π)))Q

2

k−1∑
l=0

(1− (αHm + 1− λ2(Π))ζ1)l

(17)

when the step size satisfies 0 < α ≤ ζ1−(1−λN (Π))Qm
γmQm

.

A detailed proof is presented in the supplementary section 7. We observe from Theorem 1 that
the sequence of Lyapunov function values {V (xk)} converges linearly to a neighborhood of the
optimal value, i.e., limk→∞ E[V (xk)− V ∗] ≤ αγ̂Q

2Ĥζ1
= (αγm+1−λN (Π))Q

2(Hm+α−1(1−λ2(Π))ζ1
. We also observe that

the term on the right hand side decreases with the spectral gap of the agent interaction matrix Π,
i.e., 1 − λ2(Π), which suggests an interesting relation between convergence and topology of the
graph. Moreover, we observe that the upper bound is proportional to the step size parameter α, and
smaller step sizes lead to smaller radii of convergence. (However, choosing a very small step-size
may negatively affect the convergence rate of the algorithm). Finally, if the gradient in this context is
not stochastic (i.e., the parameter Q = 0), then linear convergence to the optimal value is achieved,
which matches known rates of convergence with (centralized) gradient descent under strong convexity
and smoothness assumptions.
Remark 2. Since E[Nn 1

TF(xk)] ≤ E[V (xk)] and N
n 1

TF(x∗) = V ∗, the sequence of objective
function values are themselves upper bounded as follows: E[Nn 1

TF(xk)−Nn 1
TF(x∗)] ≤ E[V (xk)−

V ∗]. Therefore, using Theorem 1 we can establish analogous convergence rates in terms of the true
objective function values {Nn 1

TF(xk)} as well.

The above convergence result for CDSGD is limited to the case when the objective functions are
strongly convex. However, most practical deep learning systems (such as convolutional neural
network learning) involve optimizing over highly non-convex objective functions, which are much
harder to analyze. Nevertheless, we show that even under such situations, CDSGD exhibits a (weaker)
notion of convergence.
Theorem 2. (Convergence of CDSGD with fixed step size, nonconvex case) Under Assumptions 1, 2,
and 3, the iterates of CDSGD satisfy ∀m ∈ N:

E[

m∑
k=1

‖∇V (xk)‖2] ≤ γ̂mαQ

ζ1
+

2(V (x1)− Vinf)

ζ1α

=
(γmα+ 1− λN (Π))mQ

ζ1
+

2(V (x1)− Vinf)

ζ1α
.

(18)

when the step size satisfies 0 < α ≤ ζ1−(1−λN (Π))Qm
γmQm

.

Remark 3. Theorem 2 states that when in the absence of “gradient noise" (i.e., when Q = 0),
the quantity E[

∑m
k=1 ‖∇V (xk)‖2] remains finite. Therefore, necessarily {‖∇V (xk)‖} → 0 and

the estimates approach a stationary point. On the other hand, if the gradient calculations are
stochastic, then a similar claim cannot be made. However, for this case we have the upper bound
limm→∞ E[ 1

m

∑m
k=1 ‖∇V (xk)‖2] ≤ (γmα+1−λN (Π))Q

ζ1
. This tells us that while we cannot guarantee

convergence in terms of sequence of objective function values, we can still assert that the average
of the second moment of gradients is strictly bounded from above even for the case of nonconvex
objective functions.

Moreover, the upper bound cannot be solely controlled via the step-size parameter α (which is
different from what is implied in the strongly convex case by Theorem 1). In general, the upper bound
becomes tighter as λN (Π) increases; however, an increase in λN (Π) may result in a commensurate
increase in λ2(Π), leading to worse connectivity in the graph and adversely affecting consensus
among agents. Again, our upper bounds are reflective of interesting tradeoffs between consensus and
convergence in the gradients, and their dependence on graph topology.
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Figure 1: Average training (solid lines) and validation (dash lines) accuracy for (a) comparison of
CDSGD with centralized SGD and (b) CDMSGD with Federated average method

The above results are for fixed step size α, and we can prove complementary results for CDSGD even
for the (more prevalent) case of diminishing step size αk. These are presented in the supplementary
material due to space constraints.

5 Experimental Results
This section presents the experimental results using the benchmark image recognition dataset, CIFAR-
10. We use a deep convolutional nerual network (CNN) model (with 2 convolutional layers with 32
filters each followed by a max pooling layer, then 2 more convolutional layers with 64 filters each
followed by another max pooling layer and a dense layer with 512 units, ReLU activation is used in
convolutional layers) to validate the proposed algorithm. We use a fully connected topology with 5
agents and uniform agent interaction matrix except mentioned otherwise. A mini-batch size of 128
and a fixed step size of 0.01 are used in these experiments. The experiments are performed using Keras
and TensorFlow [27, 28] and the codes will be made publicly available soon. While we included the
training and validation accuracy plots for the different case studies here, the corresponding training
loss plots, results with other becnmark datasets such as MNIST and CIFAR-100 and decaying as well
as different fixed step sizes are presented in the supplementary section 7.

5.1 Performance comparison with benchmark methods
We begin with comparing the accuracy of CDSGD with that of the centralized SGD algorithm
as shown in Fig. 1(a). While the CDSGD convergence rate is significantly slower compared to
SGD as expected, it is observed that CDSGD can eventually achieve high accuracy, comparable
with centralized SGD. However, another interesting observation is that the generalization gap (the
difference between training and validation accuracy as defined in [29]) for the proposed CDSGD
algorithm is significantly smaller than that of SGD which is an useful property. We also compare both
CDSGD and CDMSGD with the Federated averaging SGD (FedAvg) algorithm which also performs
data parallelization (see Fig. 1(b)). For the sake of comparison, we use same number of agents and
choose E = 1 and C = 1 as the hyperparameters in the FedAvg algorithm as it is close to a fully
connected topology scenario as considered in the CDSGD and CDMSGD experiments. As CDSGD
is significantly slow, we mainly compare the CDMSGD with FedAvg which have similar convergence
rates (CDMSGD being slightly slower). The main observation is that CDMSGD performs better
than FedAvg at the steady state and can achieve centralized SGD level performance. It is important
to note that FedAvg does not perform decentralized computation. Essentially it runs a brute force
parameter averaging on a central parameter server at every epoch (i.e., consensus at every epoch)
and then broadcasts the updated parameters to the agents. Hence, it tends to be slightly faster than
CDMSGD which uses a truly decentralized computation over a network.

5.2 Effect of network size and topology
In this section, we investigate the effects of network size and topology on the performance of the
proposed algorithms. Figure 2(a) shows the change in training performance as the number of agents
grow from 2 to 8 and to 16. Although with increase in number of agents, the convergence rate slows
down, all networks are able to achieve similar accuracy levels. Finally, we investigate the impact of
network sparsity (as quantified by the second largest eigenvalue) on the learning performance. The
primary observation is convergence of average accuracy value happens faster for sparser networks

8



0 200 400 600 800 1000

Number of epochs
0.0

0.2

0.4

0.6

0.8

1.0

ac
cs

cifar10 experiment
2 Agents
8 Agents
16 Agents

(a)

0 200 400 600 800 1000

Number of e ochs
0.0

0.2

0.4

0.6

0.8

1.0

ac
cs

0.00

0.01

0.02

0.03

0.04

Va
ria

nc
e 
am

on
g 
ag
en
ts
 fo

r a
cc
scifar10 ex eriment

Fully Connected with λ2(()= 0
S arse To ology with λ2(()= 0.54
S arse To ology with λ2(()= 0.86

(b)
Figure 2: Average training (solid lines) and validation (dash lines) accuracy along with accuracy
variance over agents for CDMSGD algorithm with (a) varying network size and (b) varying network
topology

(higher second largest eigenvalue). This is similar to the trend observed for FedAvg algorithm
while reducing the Client fraction (C) which makes the (stochastic) agent interaction matrix sparser.
However, from the plot of the variance of accuracy values over agents (a smooth version using moving
average filter), it can be observed that the level of consensus is more stable for denser networks
compared to that for sparser networks. This is also expected as discussed in Proposition 1. Note,
with the availability of a central parameter server (as in federated averaging), sparser topology may
be useful for a faster convergence, however, consensus (hence, topology density) is critical for a
collaborative learning paradigm with decentralized computation.

6 Conclusion and Future Work

This paper addresses the collaborative deep learning (and many other machine learning) problem
in a completely distributed manner (i.e., with data parallelism and decentralized computation) over
networks with fixed topology. We establish a consensus based distributed SGD framework and
proposed associated learning algorithms that can prove to be extremely useful in practice. Using a
Lyapunov function construction approach, we show that the proposed CDSGD algorithm can achieve
linear convergence rate with sufficiently small fixed step size and sublinear convergence rate with
diminishing step size (see supplementary section 7 for details) for strongly convex and Lipschitz
differentiable objective functions. Moreover, decaying gradients can be observed for the nonconvex
objective functions using CDSGD. Relevant experimental results using benchmark datasets show that
CDSGD can achieve centralized SGD level accuracy with sufficient training epochs while maintaining
a significantly low generalization error. The momentum variant of the proposed algorithm, CDMSGD
can outperform recently proposed FedAvg algorithm which also uses data parallelism but does not
perform a decentralized computation, i.e., uses a central parameter server. The effects of network
size and topology are also explored experimentally which conforms to the analytical understandings.
While current and future research is focusing on extensive testing and validation of the proposed
framework especially for large networks, a few technical research directions include: (i) collaborative
learning with extreme non-IID data; (ii) collaborative learning over directed time-varying graphs; and
(iii) understanding the dependencies between learning rate and consensus.
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