On Blackbox Backpropagation and Jacobian Sensing

Krzysztof Choromanski Vikas Sindhwani
Google Brain Google Brain
New York, NY 10011 New York, NY 10011
kchorolgoogle.com sindhwani@google.com
Abstract

From a small number of calls to a given “blackbox" on random input perturbations,
we show how to efficiently recover its unknown Jacobian, or estimate the left action
of its Jacobian on a given vector. Our methods are based on a novel combination of
compressed sensing and graph coloring techniques, and provably exploit structural
prior knowledge about the Jacobian such as sparsity and symmetry while being
noise robust. We demonstrate efficient backpropagation through noisy blackbox
layers in a deep neural net, improved data-efficiency in the task of linearizing the
dynamics of a rigid body system, and the generic ability to handle a rich class of
input-output dependency structures in Jacobian estimation problems.

1 Introduction

Automatic Differentiation (AD) [1}[17] techniques are at the heart of several “end-to-end" machine
learning frameworks such as TensorFlow [5] and Torch [2]]. Such frameworks are organized around
a library of primitive operators which are differentiable vector-valued functions of data inputs and
model parameters. A composition of these primitives defines a computation graph - a directed acyclic
graph whose nodes are operators and whose edges represent dataflows, typically culminating in the
evaluation of a scalar-valued loss function. For reverse mode automatic differentiation (backpropaga-
tion) to work, each operator needs to be paired with a gradient routine which maps gradients of the
loss function with respect to the outputs of the operator, to gradients with respect to its inputs. In
this paper, we are concerned with extending the automatic differentiation paradigm to computation
graphs where some nodes are "blackboxes" [12]], that is, opaque pieces of code implemented outside
the AD framework providing access to an operator only via expensive and potentially noisy function
evaluation, with no associated gradient routine available. A useful mental model of this setting is
shown below where f3 is a blackbox.

f —»@\
fs |—>(xs y—| fs ()
f: —»@/

Blackboxes, of course, are pervasive - as legacy or proprietary codes or executables, numerical
optimization routines, physics engines (e.g, Bullet [3]] and MujoCo [4])), or even wrappers interfacing
with a mechanical system as is typically the case in reinforcement learning, robotics and process
control applications.

The unknown Jacobian of a blackbox is the central object of study in this paper. Recall that the
Jacobian V f(xg) of a differentiable vector-valued map f : R™ — R™ at an input xo € R" is the

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

m X n matrix of partial derivatives, defined by,

Afi
8.Ij

[Vf(x0)lij = 5 (x0)

The rows of the Jacobian are gradient vectors of the m component functions f = (f1 ... f,,) and the
columns are indexed by the n-dimensional inputs x = (1 . ..x,). Through Taylor approximation,
the Jacobian characterizes the rate of change in f at a step € (0 < € < 1) along any direction d € R"
in the neighborhood of x¢ as follows,

Vi xo)d [0+ ed) — Fxo)]. n

Viewed as a linear operator over perturbation directions d € R”, differences of the form
% [f(x+ ed) — f(x)] may be interpreted as noisy measurements (“sensing" [10} [11} [T3]]) of the
Jacobian based on function evaluation. The measurement error grows with the step size € and the
degree of nonlineary in f in the vicinity of xy. Additional measurement noise may well be introduced
by unknown error-inducing elements inside the blackbox.

From as few perturbations and measurements as possible, we are concerned with approximately
recovering either the full Jacobian, or approximating the action of the franspose of the Jacobian on a
given vector in the context of enabling backpropagation through blackbox nodes. To elaborate on
the latter setting, let y = f(x) represent forward evaluation of an operator, and let p = % be the
gradient of a loss function /() flowing in from the “top" during the reverse sweep. We are interested
in approximating % = [Vf(x)]Tp, i.e. the action of the transpose of the Jacobian on p. Note that
due to linearity of the derivative, this is the same as estimating the gradient of the scalar-valued
. o T 1 . .
function g(x) = p* f(x) based on scalar measurements of the form ¢ (g9(x + ed) — g(x)), which is
a special case of the tools developed in this paper.

The more general problem of full Jacobian estimation arises in many derivative-free optimization
settings [12} |8]. Problems in optimal control and reinforcement learning [[18} 21} [20]] are prominent
examples, where the dynamics of a nonlinear system (e.g., a robot agent) needs to be linearized along
a trajectory of states and control inputs reducing the problem to a sequence of time-varying Linear
Quadratic Regulator (LQR) subproblems [21]. The blackbox in this case is either a physics simulator
or actual hardware. The choice of perturbation directions and the collection of measurements then
becomes intimately tied to the agent’s strategy for exploration and experience gathering.

Finite differencing, where the perturbation directions d are the n standard basis vectors, is a default
approach for Jacobian estimation. However, it requires n function evaluations which may be
prohibitively expensive for large n. Another natural approach, when the number of measurements,
say k, is smaller than n, is to estimate the Jacobian via linear regression,

k
: . i
argmin Y _ [|Jd’ — = [f(xo + ed’) — f(x0)] |15 + A|T|[3,
JecRmxn =1 €
where an [5 regularizer is added to handle the underdetermined setting and || - || stands for the

Frobenius norm. This approach assumes that the error distribution is Gaussian and in its basic
form, does not exploit additional Jacobian structure, e.g., symmetry and sparsity, to improve data
efficiency. For example, if backpropagation needs to be enabled for a noiseless blackbox with
identical input-output dimensions whose unknown Jacobian happens to be symmetric, then just
one function evaluation suffices since V f(x0)"p = V f(x0)p ~ 1 (f(x0 + ep) — f(x0)). Figure
1 shows the histogram of the Jacobian of the dynamics of a Humanoid walker with respect to its
18-dimensional state variables and 6 dimensional control inputs. It can be seen that the Jacobian
is well approximated by a sparse matrix. In a complex dynamical system comprising of many
subsystems, most state or control variables only have local influence on the instantaneous evolution
of the overall state. Figure 1 also shows the example of a manipulator; the Jacobian of a 5 planar
link system has sparse and symmetric blocks (highlighted by blue and red bounding boxes) as a
consequence of the form of the equations of motion of a kinematic tree of rigid bodies. Clearly, one
can hope that incorporating this kind of prior knowledge in the Jacobian estimation process will
improve data efficiency in “model-free” trajectory optimization applications.

Technical Preview, Contributions and Outline: We highlight the following contributions:

21052 55e4

Figure 1: Structured Jacobians in Continuous Control Problems

e In §Z} We start by asking how many blackbox calls are required to estimate a sparse Jacobian with
known sparsity pattern. We recall results from automatic differentiation [[14, |17, 23| literature that
relates this problem to graph coloring [[19} 26] where the chromatic number of a certain graph that
encodes input-output dependencies dictates the sample complexity. We believe that this connection
is not particularly well known in the deep learning community, though coloring approaches only
apply to noiseless structure-aware cases.

e In §3} We present a Jacobian recovery algorithm, rainbow, that uses a novel probabilistic
graph coloring subroutine to reduce the effective number of variables, leading to a compressed
convex optimization problem whose solution yields an approximate Jacobian. The approximation

J of the true Jacobian J is such that |J — J|z < E(n), where the measurement error vector
n € R satisfies: |n|lcc = o(E(n)). Our algorithm requires only O(min(A, B)) calls to the

/ m weak .
blackbox, where A = djt logz(E?TL:)L)’ B = mp(J, Gyveak) 1og2(%), dint 1S a measure

of intrinsic dimensionality of a convex set C > J encoding prior knowledge about the Jacobian
(elaborated below) and p(J, GY¥¢*k) < n is a parameter encoding combinatorial properties possibly

known in advance (encoded by the introduced later the so-called weak-intersection graph GY'$*%)
of the sparsity pattern in the Jacobian (see: §3.4.1]for an explicit definition); we will refer to
p(J, GYVe2K) as the chromatic character of J.

e We demonstrate our tools with the following experiments: (1) Training a convolutional neural
network in the presence of a blackbox node, (2) Estimating structured Jacobians from few calls
to a blackbox with different kinds of local and global dependency structures between inputs and
outputs, and (3) Estimating structured Jacobians of the dynamics of a 50-link manipulator, with
a small number of measurements while exploiting sparsity and partial symmetry via priors in [,

regression.

The convex set C mentioned above can be defined in many different ways depending on prior
knowledge about the Jacobian (e.g., lower and upper bounds on certain entries, sparsity with unknown
pattern, symmetric block structure, etc).

As we show in the experimental section, our approach can be applied also for non-smooth problems
where Jacobian is not well-defined. Note that in this setting one can think about a nonsmooth function
as a noisy version of its smooth approximation and a Jacobian of a function smoothing (such as
Gaussian smoothing) is a subject of interest.

Notation: D = [dy...dg] € R™** will denote the matrix of perturbation directions, with the

corresponding measurement matrix R = [r1...1;] € R™** where r; = 1 [f(x + ed;) — f(x)].

2 The Link between Jacobian Estimation and Graph Coloring

Suppose the Jacobian is known to be a diagonal matrix. Then finite differencing where perturbation
directions are the n standard basis elements is utterly wasteful; it is easy to see that a single
perturbation direction d = [1,1...1]% suffices in identifying all diagonal elements. The goal of this
section is to explain the connection between Jacobian recovery and graph coloring problems that
substantially generalizes this observation.

First we introduce graph theory terminology. The undirected graph is denoted as G(V, E'), where V
and F stand for the sets of vertices and edges respectively. For v,w € V we say that v is adjacent
to w if there is an edge between v and w. The degree deg(v) of v € V is the number of vertices
adjacent to it. The maximum degree in G(V, E) will be denoted as A(G). A stable set in G is the

=

Figure 2: On the left: Sparse Jacobian for a function f(a, b, c,d, e, f, g, h) with n = m = 8, where
blue entries indicate nonzero values. In the middle: coloring of columns. A fixed color corresponds
to a stable set in Gi,g. On the right: corresponding intersection graph Gipg.

subset S C V, where no two vertices are adjacent. The chromatic number x(G) of G is the minimum
number of sets in the partitioning of V' into stable sets. Equivalently, it is the smallest number of
colors used in a valid vertex-coloring of the graph, where a valid coloring is one in which adjacent
vertices are assigned different colors.

Denote by J* = [J!, ..., J"] € R™*" a Jacobian matrix evaluated at point x € R"™, where J¢* € R™
denotes the i-th column. Assume that J%s are not known, but the sparsity structure, i.e. the location
of zero entries in J is given. Let A; = {k : J}. # 0} C {0,...,m — 1} be the indices of the
non-zero elements of J*. The intersection graph, denoted by Gy, is a graph whose vertex set is
V = {z1...2,} and z; is adjacent to x; if the sets A; and A; intersect. In other words, there
exists an output of the blackbox that depends both on z; and x; (see Figure |2|for an illustration).
Now suppose k colors are used in a valid coloring of Gi,. The key fact that relates the Jacobian
recovery problem to graph coloring is the following observation. If one constructs vectors d € R”
for¢ = 1, ..., k in such a way that dj = 1if z; is colored by the it" color and is 0 otherwise, then

k computations of the finite difference M for0 < e < land ¢ = 1,..., k suffice to
accurately approximate the Jacobian matrix (assuming no blackbox noise). The immediate corollary
is the following lemma.

Lemma 2.1 ([14]]). The number of calls k to a blackbox vector-valued function f needed to compute
an approximate Jacobian via finite difference technique in the noiseless setting satisfies k < x(Gint),
where Gy is the corresponding intersection graph.

Thus, blackboxes whose unknown Jacobian happens to be associated with intersection graphs of
low chromatic number admit accurate Jacobian estimation with few function calls. Rich classes of
graphs have low chromatic number. If the maximum degree A(Gipt) of Ging is small then x (Ging) is
also small, because of the well known fact that x(Gint) < A(Gint) + 1. For instance if every input
x; influences at most k outputs f; and every output f; depends on at most [variables x;, then one
can notice that A(Giys) < kl and thus x(Gint) < kI + 1. When the maximum degree is small, an
efficient coloring can be easily found by the greedy procedure that colors vertices one by one and
assigns to the newly seen vertex the smallest color that has not been used to color all its already seen
neighbors ([[14]). This procedure cannot be applied if there exist vertices of high degree. That is the
case for instance if there exist few global variables influence a large number of outputs f;. In the
subsequent sections we will present an algorithm that does not need to rely on the small value of
A(C;int)-

Graph coloring for Jacobian estimation has two disadvantages even if we assume that good quality
coloring of the intersection graph can be found efficiently (optimal graph coloring is in general NP
hard). It assumes that the sparsity structure of the Jacobian, i.e. the set of entries that are zero is given,
and that all the measurements are accurate, i.e. there is no noise. We relax these limitations next.

3 Sensing and Recovery of Structured Jacobians

Our algorithm receives as input two potential sources of prior knowledge about the blackbox:

e sparsity pattern of the Jacobian in the form of a supergraph of the true intersection graph, which we

call the weak intersection graph denoted as Givfl‘éak. The knowledge of the sparsity pattern may be

imprecise in the sense that we can overestimate the set of outputs an input can influence. Note that
any stable set of G\°2¥ is a stable set in Giy, and thus we have: x(Gine) < x(GYe2%). A complete

int int

weak intersection graph corresponds to the setting where no prior knowledge about the sparsity
pattern is available while GYY$** = G, reflects the setting with exact knowledge.

e aconvex set C encoding additional information about the local and global behavior of the blackbox.
For example, if output components f; are Lipschitz continuous with the Lipschitz constant L;: the
magnitude of the Jacobian entries can be bounded row-wise with L;,7 = 1...m. The Jacobian
may additionally have sparse blocks, which may be expressed as a bound on the elementwise [y
norm over the entries of the block; it may also have symmetric and/or low-rank blocks [[6] (the
latter may be expressed as a bound on the nuclear norm of the block). A measure of the effective
degrees of freedom due to such constraints directly shows up in our theoretical results on Jacobian

recovery (§3.4).

Direct domain knowledge, or a few expensive finite-difference calls may be used in the first few
iterations to collect input-independent structural information about the Jacobian, e.g., to observe the
typical degree of sparsity, whether a symmetry or sparsity pattern holds across iterations etc.

Our algorithm, called rainbow, consists of three steps:

e Color: Efficient coloring of GY¢*k for reducing the dimensionality of the problem, where each

variable in the compressed problem corresponds to a subset of variables in the original problem.
This phases explores strictly combinatorial structural properties of J (§3.1).

e Optimize: Solving a compressed convex optimization problem to minimize (or find a feasible)
l, reconstruction. This phase can utilize additional structural knowledge via the convex set C
((§3-3)) defined earlier.

e Reconstruct: Mapping the auxiliary variables from the solution to the above convex problem
back to the original variables to reconstruct J.

Next we discuss all these steps.

3.1 Combinatorial Variable Compression via Graph Coloring: GreedyColoring

Consider the following coloring algorithm for reducing the effective number of input variables. Order
the vertices x4, ..., x, of Givﬁletak randomly. Initialize the list of stable sets I covering {1, ..., 2, }
as I = (). Process vertices one after another and add a vertex x; to the first set from I that does
not contain vertices adjacent to z;. If no such a set exists, add the singleton set {x;} to I. After
processing all the vertices, each stable set from I gets assigned a different color. We denote by
color(4) the color assigned to vertex z; and by [the total number of colors. To boost the probability
of finding a good coloring, one can repeat the procedure above for a few random permutations and

choose the one that corresponds to the smallest .

3.2 Choice of Perturbation Directions

Each d’ € R™ is obtained from the randomly chosen vector d?, . € R!, that we call the core vector.
Entries of all core vectors are taken independently from the same distribution ¢ which is: Gaussian,
Poissonian or bounded and of nonzero variance (for the sake of readability, technical conditions
and extensions to this family of distributions is relegated to the Appendix). Directions may even be
chosen from columns of structured matrices, i.e., Circulant and Toeplitz [[7, 124, 22| [16]. Each d’is

defined as follows: d'(j) = d¢,_.(color()).

3.3 Recovery via Compressed Convex Optimization

Linear Programming: Assume that the /,-norm of the noise vector n € R™ is bounded by ¢ =
E(n), where E(+) encodes non-decreasing dependence on n. With the matrix of perturbation vectors
D € R™** and a matrix of the corresponding core vectors D¢ore € R!** in hand, we are looking for
the solution X € R™*! to the following problem:

[(XDecore — R)illp <€, i=1...k 2)

where subscript ¢ runs over columns, R € R™*F is the measurement matrix for the matrix of
perturbations D. For p € {1, oo}, this task can be cast as a Linear Programming (LP) problem. Note
that the smaller the number of colors, [, the smaller the size of the LP. If C is a polytope, it can be
included as additional linear constraints in the LP. After solving for X, we construct the Jacobian

approximation J as follows: ju,j = Xy, color(j)» Where color(j) is defined above.

We want to emphasize that a Linear Programming approach is just one instantiation of a more general
method we present here. Below we show another one based on ADMM for structured [regression.

ADMM Solvers for multiple structures: When the Jacobian is known to have multiple structures,
e.g., it is sparse and has symmetric blocks, it is natural to solve structured [, regression problems of
the form,

argmin Z || Deore — R)z”% +)\HXHlv
XeRmXleS ;T

where the convex constraint set S is the set of all matrices conforming to a symmetry pattern on
selected square blocks; an example is the Jacobian of the dynamics of a 5-link manipulator as shown
in Figure 1. A consensus ADMM [9] solver can easily be implemented for such problems involving
multiple structural priors and constraints admitting cheap proximal and projection operators. For the
specific case of the above problem, it runs the following iterations:

Solve for X1: X{ = [DeoreDlore + pI 7' (DR + p(X" — UT))
Xy = symmetrize[X — Us, S|

X = soft-threshold[1(Xi + X2 + Uy + Usz), Ap~]

U =U;+X;,-X, i=1,2

where X1, X4 are primal variables with associated dual variables U, Us, p is the ADMM step size
parameter, and X is the global consensus variable. The symmetrize(X,S) routine implements
exact projection onto symmetry constraints - it takes a square block X of X specified by the
constraint set S and symmetrizes it simply as % [X+XT] keeping other elements of X intact. The soft-
thresholding operator is defined by soft-threshold(X,\) = max(X—A\,0) —max(—X— A\, 0).
Note that for the first step [D .o D7, .. + pI] can be factorized upfront, even across multiple Jacobian
estimation problems since it is input-independent. Also, notice that if the perturbation directions
are structured, e.g., drawn from a Circulant or Toeplitz matrix, then the cost of this linear solve can
be further reduced usmg specialized solvers [[15]. As before, after solving for X, we construct the

Jacobian approximation J as follows: J wj = Xu,color(j)-

3.4 Theoretical Guarantees
3.4.1 Chromatic property of a graph

The probabilistic graph coloring algorithm GreedyColoring generates a coloring, where the number
of colors is close to the chromatic property A(G}%2) of the graph G2k (see: proof of Lemma

int int

in the Appendix). The chromatic property A(G) of a graph G is defined recursively as follows.

o A(Gy) =0, where Gy is an empty graph (V' = 0),

o for G # Gy, we have: A(G) = 1 + maxgcy A(G\S) where max is taken over all subsets
satisfying: |S| = |V| — [>_ oy 1+deg(v)] and G\S stands for the graph obtained from G be
deleting vertices from S.

Note that we are not aware of any closed-form expression for A(G). We observe that there exists a
subtle connection between the chromatic property of the graph A(G) and its chromatic number.

Lemma 3.1. The following is true for every graph G: x(G) < A(G).

The importance of the chromatic property lies in the fact that in practice for many graphs G (especially
sparse, but not necessarily of small maximum degree A(G)) the chromatic property is close to the
chromatic number. Thus, in practice, GreedyColoring finds a good quality coloring for a large class

of weak-intersection graphs Gf;‘iak efficiently utilizing partial knowledge about the sparsity structure.

The chromatic character of the Jacobian is defined as the chromatic property of its weak-intersection
graph A(GY¢2k) and thus does not depend only on the Jacobian J, but also on its “sparsity exposition"

given by G2 and will be referred to as p(J, Gi'¢2k).

int int

3.4.2 Accuracy of Jacobian Recovery with rainbow

We need the following notion of intrinsic dimensionality in R™*" as a metric space equipped with
| - || 7 norm.

Definition 3.2 (intrinsic dimensionality). For any point X € R™*™ and any r > 0, let B(X,r) =
{Y : || X = Y||r < r} denote the closed ball of radius r centered at X. The intrinsic dimensionality
of S C R™*"™ is the smallest integer d such that for any ball B(X,r) C R™*", the set B(X,r)N S

can be covered by 2% balls of radius 5

We are ready to state our main theoretical result.

Theorem 3.3. Consider the Jacobian matrix J € R™*™. Assume that max|J; ;| < C for some
ﬁxed C > 0andJ € C, where C C R™*"™ is a convex set defining certain structural properties of

J (for instance C may be the set of matrices with block sparsity and symmetry patterns). Assume
that the measurement error vector 1 € R™ satisfies: IMllcc = o(E(n)) for some function E(n).

Then the approximation J of J satisfying HJ J|F < E(n) can be found with probability p =

1-— W by applying rainbow algorithm with k = O(mln(A B)) calls to the f function, where
A = dint logQ(CEV(:S"), B = mp(J, G}eak) 10g2(#), ding Stands for the intrinsic

dimensionality of C and spoly(n) is a superpolynomial function of n.

The proof is given in the Appendix. The result above is a characterization of the number of blackbox
calls needed to recover the Jacobian, in terms of its intrinsic degrees of freedom, the dependency
structure in the inputs and outputs and the noise introduced by higher order nonlinear terms and other
sources of forward evaluation errors.

4 Experiments

4.1. Sparse Jacobian Recovery: We start with a controlled setting where we consider the vector-
valued function, f : R® — R™ of the following form:

flay,yxy) = (Z sin(z;), ..., Z sin(z;)), 3)
i€ES) €S,
where sets S; for i = 1,, m are chosen according to one of the following models. In the p-model

each entry ¢ € {1, ...,n} is added to each S; independently and with the same probability p. In the
a-model entry 7 is added to each §; independently at random with probability i ~¢. We consider a
Jacobian at point x € R™ drawn from the standard multivariate Gaussian distribution with entries
taken from A/(0, 1). Both the models enable us to precisely control the sparsity of the corresponding
Jacobian which has an explicit analytic form. Furthermore, the latter generates Jacobians where the
degrees of the corresponding intersection graphs have power-law type distribution with few “hubs"
very well connected to other nodes and many nodes of small degree. That corresponds to the setting,
where there exist few global variables that impact many output f;s, any many local variables that only
influence a few outputs. We run the LP variant of rainbow for the above models and summarize
the results in the table below.

model m | n sparsity | x/A o k rel.error
p=0.1 | 30 | 60 | 091277 | 0.33 0.07 | 15 | 0.0632
p=0.1 | 40 | 70 | 0.90142 | 0.35 0.07 | 20 | 0.0802
p=0.1] 50 [80 | 0.90425 | 0.32 0.07 | 30 | 0.0751
p=0.3 | 30 | 60 | 0.6866 0.6833 | 0.07 | 45 | 0.0993
p=0.3 | 40 | 70 | 0.7096 0.6857 | 0.07 | 60 | 0.0589
p=0.3 | 50 | 80 | 0.702 0.8625 | 0.07 | 70 | 0.1287
a=0.5 1|30 | 60 | 0.7927 0.3833 | 0.1 45 | 0.0351
a=0.5 1|40 | 70 | 0.78785 | 0.4285 | 0.1 60 | 0.0491
a=20.51]50 | 80 | 0.79225 | 0.475 0.1 70 | 0.0443
a=20.7 |30 | 60 | 0.85166 | 0.2777 | 0.1 40 | 0.0393
a=20.71]40 | 70 | 0.87357 | 0.2537 | 0.1 55 | 0.0398
a=0.7 |50 | 80 | 0.86975 | 0.275 0.1 65 | 0.0326

Above, we measure recovery error in terms of the relative Frobenius distance between estimated

Jacobian and true Jacobian, rel.error = HT\;[\IEF . The standard deviation of each entry of the

measurement noise vector is given by o. We report in particular the fraction of zero entries in
J (sparsity), the ratio of the number of colors found by our GreedyColoring algorithm and the

maximum degree of the graph (). We see that the coloring algorithm finds good quality coloring
even in the "power-law" type setting where maximum degree A(G) is large. The quality of the
coloring in turn leads to the reduction in the number of measurement vectors needed (k) to obtain an
accurate Jacobian approximation (i.e., relative error < 0.1).

4.2. Training Convolutional Neural Networks with Blackbox Nodes: We introduce a blackbox
layer between the convolutional layers and the fully connected layers of a standard MNIST convnet.
The blackbox node is a standard ReLLU layer that takes as input 32-dimensional vectors, 32 x 32-sized
weight matrix and a bias vector of length 32, and outputs a 32 dimensional representation. The
minibatch size is 16. We inject truncated Gaussian noise in the output of the layer and override its
default gradient operator in TensorFlow with our LP-based rainbow procedure. We use Gaussian
perturbation directions and sample measurements by forward evaluation calls to the TensorFlow
Op inside our custom blackbox gradient operator. In Fig. [3] we study the evolution of training and
validation error across SGD iterations. We see in Fig. 3] that even though for low noise regime the
standard linear regression and finite differencing methods work quite well, when noise magnitude
increases our blackbox backpropagation procedure rainbow-LP shows superior robustness - retain-
ing a capacity to learn while the other methods degrade in terms of validation error. The rightmost
subfigure reports validation error for our method with different numbers of Jacobian measurements at
a high noise level (in this case, the other methods fail to learn and are not plotted).

— Rainbow —Reinoow — +30 measurements
80 —— Linear regression | - 8 | ! ‘ ——Linear regression | —— 450 measurements
Finite differendng JJ‘ \‘ " ' | Finite differzncing \ +100 measurements
70 T Tersoflw | ot A ‘ |
WLl
iyl
o ‘
(- [d

Validation Error
Validation Error
Validation Crror

| I

ol
W il

mm,,[\w\‘\\\w\ " I “&'»JJM;U‘MMM ol

L b) o] - .

0 50 00 1% 200 250 300 350 0 50 100 150 200 250 300 350 0 50 100 150 200
Iteration Iteration Iteration (last 200)

(a) Standard deviation: 9e-5 (b) Standard deviation: 0.008 (c) Different numbers of measure-
ment vectors (std : 0.1)

Figure 3: TensorFlow CNN training with a "blackbox" layer with rainbow-LP method. On the
left: Comparison of rainbow-LP with finite differencing and linear regression methods for low
noise regime. In the middle: As before, but for more substantial noise magnitude. On the right:
rainbow-LP for even larger noise magnitude (std : 0.1) and different number of measurement vectors
used. In that setting other methods did not learn at all.

4.3. Jacobian of manipulator dynamics: We compute the
true Jacobian of a planar rigid-body model with 50 links near
an equilibrium point using MIT’s Drake planning and control
toolbox [25]. The first link is unactuated; the remaining s,

are all torque-actuated. The state vector comprises of 50 ., ™%

joint angles and associated joint velocities, and there are
49 control inputs to the actuators. The Jacobian has sparse - A
and symmetric blocks similar to Figure 1. We compare 750" '
linear regression with /5 regularization against the rainbow |- :

ADMM solver designed to exploit sparsity and symmetry, -

J—

. . . =4=[2 [ngar reqression N

in the setting where the number of measurements is much o [

smaller than the total number of input variables to the forward ':'ﬁiﬁ:ﬁi}:jﬁmﬁ:z ™
dynamics function (149). Results are shown in the adjacent 0~ [Zvhoor
Figure. The recovery is much more accurate in the presence L
of sparsity and symmetry priors. The results are similar if the #0f measurements

matrix of perturbation directions are chosen from a Circulant

martrix.

References

(1]
(2]
(3]
(4]
(]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]
[14]

[15]
[16]

(17]

(18]
(19]
[20]

[21]

(22]

(23]

[24]

[25]

[26]

http://www.autodiff.org.
http://torch.chl
http://www.bulletphysics.orgl
http://www.mujoco.org.

M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.orgq.

H. S. Abdel-Khali, P. Hovland, A. Lyons, T. E. Stover, and J. Utke. A low rank approach to automatic
differentiation. Advances in Automatic Differentiation, 2008.

W. U. Bajwa, J. D. Haupt, G. M. Raz, S. J. Wright, and R. D. Nowak. Toeplitz-structured compressed
sensing matrices. IEEE/SP Workshop on Statistical Signal Processing, 2007.

A. S. Bandeira, K. Scheinberg, and L. N. Vicente. Computation of sparse low degree interpolating
polynomials and their application to derivative-free optimization. Mathematical Programming, 134, 2012.

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3, 2011.

E. Candes and M. B. Wakin. An introduction to compressive sampling. /EEE Signal Processing Magazine,
25, 2008.

E.J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measure-
ments. Communications on Pure and Applied Mathematics, 59, 2006.

A. R. Conn, K. Scheinberg, and L. N. Vicente. Derivative Free Optimization. MOS-SIAM Series on
Optimization, 2009.

D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52, 2006.

A. H. Gebremedhin, F. Manne, and A. Pothen. What color is your jacobian? graph coloring for computing
derivatives. STAM Review, 47(4):629-705, 2005.

G. Golub and C. F. V. Loan. Matrix Computations. Johns Hopkins University Press (4rth edition), 2012.

R. M. Gray. Toeplitz and circulant matrices: A review. Foundations and Trends in Communications and
Information Theory, 2(3), 2006.

A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of Algorithmic Differenti-
ation. STAM, 2008.

D. H. Jacobson and D. Q. Mayne. Differential Dynamic Programming. Elsevier, 1970.
T. Jensen and B. Toft. Graph Coloring Problems. Wiley - Interscience, 1995.

S. Levine, C. Finn, T. Darrell, and P. Abbeel. End-to-end training of deep visuomotor policies. JMLR,
17(39), 2016.

W. Li and E. Todorov. Iterative linear quadratic regulator design for nonlinear biological movement
systems. International Conference on Informatics in Control, Automation and Robotics, 2004.

W. Lin, S. Morgan, J. Yang, and Y. Zhang. Practical compressive sensing with toeplitz and circulant
matrices. Proceedings of SPIE, the International Society for Optical Engineering, 2010.

G. N. Newsam and J. D. Ramsdell. Estimation of sparse jacobian matrices. SIAM Journal of Algebraic
Discrete Methods, 1983.

H. Rauhutk. Circulant and toeplitz matrices in compressed sensing. SPARS’09 - Signal Processing with
Adaptive Sparse Structured Representations, 2010.

R. Tedrake and the Drake Development Team. Drake: A planning, control, and analysis toolbox for
nonlinear dynamical systems, 2016.

B. Toft. Coloring, stable sets and perfect graphs. Handbook of Combinatorics, 1996.

http://www.autodiff.org
http://torch.ch
http://www.bulletphysics.org
http://www.mujoco.org
tensorflow.org

