
Decomposition-Invariant Conditional Gradient for
General Polytopes with Line Search

Mohammad Ali Bashiri Xinhua Zhang
Department of Computer Science, University of Illinois at Chicago

Chicago, Illinois 60607
{mbashi4,zhangx}@uic.edu

Abstract

Frank-Wolfe (FW) algorithms with linear convergence rates have recently achieved
great efficiency in many applications. Garber and Meshi (2016) designed a new
decomposition-invariant pairwise FW variant with favorable dependency on the
domain geometry. Unfortunately it applies only to a restricted class of polytopes
and cannot achieve theoretical and practical efficiency at the same time. In this
paper, we show that by employing an away-step update, similar rates can be
generalized to arbitrary polytopes with strong empirical performance. A new
“condition number” of the domain is introduced which allows leveraging the sparsity
of the solution. We applied the method to a reformulation of SVM, and the linear
convergence rate depends, for the first time, on the number of support vectors.

1 Introduction

The Frank-Wolfe algorithm [FW, 1] has recently gained revived popularity in constrained convex
optimization, in part because linear optimization on many feasible domains of interest admits efficient
computational solutions [2]. It has been well known that FW achieves O(1/ε) rate for smooth convex
optimization on a compact domain [1, 3, 4]. Recently a number of works have focused on linearly
converging FW variants under various assumptions.

In the context of convex feasibility problem, [5] showed linear rates for FW where the condition
number depends on the distance of the optimum to the relative boundary [6]. Similar dependency
was derived in the local linear rate on polytopes using the away-step [6, 7]. With a different analysis
approach, [8–10] derived linear rates when the Robinson’s condition is satisfied at the optimal solution
[11], but it was not made clear how the rate depends on the dimension and other problem parameters.

To avoid the dependency on the location of the optimum, [12] proposed a variant of FW whose
rate depends on some geometric parameters of the feasible domain (a polytope). In a similar flavor,
[13, 14] analyzed four versions of FW including away-steps [6], and their affine-invariant rates depend
on the pyramidal width (Pw) of the polytope, which is hard to compute and can still be ill-conditioned.
Moreover, [15] recently gave a duality-based analysis for non-strongly convex functions. Some lower
bounds on the dependency of problem parameters for linear rates of FW are given in [12, 16].

To get around the lower bound, one may tailor FW to specific objectives and domains (e.g. spectra-
hedron in [17]). [18] specialized the pairwise FW (PFW) to simplex-like polytopes (SLPs) whose
vertices are binary, and is defined by equality constraints and xi ≥ 0. The advantages include: a) the
convergence rate depends linearly on the cardinality of the optimal solution and the domain diameter
square (D2), which can be much better than the pyramidal width; b) it is decomposition-invariant,
meaning that it does not maintain a pool of atoms accumulated and the away-step is performed on the
face that the current iterate lies on. This results in considerable savings in computation and storage.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

PFW-1 [18] PFW-2 [18] LJ [13] AFW-1 AFW-2
(SLP) general general (SLP) general

Unit cube [0, 1]n ns × n2 ns n2s

Pk = {x ∈ [0, 1]n :1>x = k} ks × n (k = 1) ks k2s

Qk = {x ∈ [0, 1]n :1>x ≤ k} × × k · Pw−2 × k2 min(sk, n)

arbitrary polytope in Rn × × D2 · Pw−2 × D2nHs

Table 1: Comparison of related methods. These numbers need to be multiplied with κ log 1
ε to get the

convergence rates, where κ is the condition number of the objective, D is the diameter of the domain,
s is the cardinality of the optimum, and Pw is the pyradimal width.. Our method is AFW. × means
inapplicable or no rate known. PFW-1 [18] and AFW-1 apply only to SLP, hence not covering Qk
(k≥2). [13] showed the pyramidal width for Pk only with k=1.

However, [18] suffers from multiple inherent restrictions. First it applies only to SLPs, which although
encompass useful sets such as k-simplex Pk, do not cover its convex hull with the origin (Qk):

Pk = {x ∈ [0, 1]n : 1>x = k}, Qk = {x ∈ [0, 1]n : 1>x ≤ k}, where k ∈ {1, . . . , n}.
Here 1 = (1, . . . , 1)>. Extending its analysis to general polytopes is not promising because it relies
fundamentally on the integrality of the vertices. Second, its rate is derived from a delicately designed
sequence of step size (PFW-1), which exhibits no empirical competency. In fact, the experiments in
[18] resorted to line search (PFW-2). However no rate was proved for it. As shown in [13], dimension
friendly bounds are intrinsically hard for PFW, and they settled for the factorial of the vertex number.

The goal of this paper is to address these two issues while at the same time retaining the computational
efficiency of decomposition invariance. Our contributions are four folds. First we generalize the
dimension friendly linear rates to arbitrary polytopes, and this is achieved by replacing the pairwise
PFW in [18] with the away-step FW (AFW, §2), and setting the step sizes by line search instead of a
pre-defined schedule. This allows us to avoid “swapping atoms” in PFW, and the resulting method
(AFW-2) delivers not only strong empirical performance (§5) but also strong theoretical guarantees
(§3.5), improving upon PFW-1 and PFW-2 which are strong in either theory or practice, but not both.

Second, a new condition numberHs is introduced in §3.1 to characterize the dimension dependency of
AFW-2. Compared with pyramidal width, it not only provides a more explicit form for computation,
but also leverages the cardinality (s) of the optimal solution. This may lead to much smaller constants
considering the likely sparsity of the solution. Since pyramidal width is hard to compute [13], we
leave the thorough comparison for future work, but they are comparable on simple polytopes. The
decomposition invariance of AFW-2 also makes each step much more efficient than [13].

Third, when the domain is indeed an SLP, we provide a step size schedule (AFW-1, §3.4) yielding the
same rate as PFW-1. This is in fact nontrivial because the price for replacing PFW by AFW is the
much increased hardness in maintaining the integrality of iterates. The current iterate is scaled in
AFW, while PFW simply adds (scaled) new atoms (which on the other hand complicates the analysis
for line search [13]). Our solution relies on first running a constant number of FW-steps.

Finally we applied AFW to a relaxed-convex hull reformulation of binary kernel SVM with bias (§4),
obtaining O(nκ(#SV)3 log 1

ε) computational complexity for AFW-1 and O(nκ(#SV)4 log 1
ε) for

AFW-2. Here κ is the condition number of the objective, n is the number of training examples, and
#SV is the number of support vectors in the optimal solution. This is much better than the best known
result of O(n3κ log 1

ε) based on sequential minimal optimization [SMO, 19, 20], because #SV is
typically much smaller than n. To the best of our knowledge, this is the first linear convergence rate
for hinge-loss SVMs with bias where the rate leverages dual sparsity.

A brief comparison of our method (AFW) with [18] and [13] is given in Table 1. AFW-1 matches
the superior rates of PFW-1 on SLPs, and AFW-2 is more general and its rate is slightly worse than
AFW-1 on SLPs. PFW-2 has no rates available, and pyramidal width is hard to compute in general.

2 Preliminaries and Algorithms
Our goal is to solve minx∈P f(x), whereP is a polytope and f is both strongly convex and smooth. A
function f : P → R is α-strongly convex if f(y) ≥ f(x)+〈y − x,∇f(x)〉+ α

2 ‖y − x‖2 , ∀x,y ∈

2

Algorithm 1: Decomposition-invariant Away-step Frank-Wolfe (AFW)
1 Initialize x1 by an arbitrary vertex of P . Set q0 = 1.
2 for t = 1, 2, . . . do
3 Choose the FW-direction via v+

t ← arg minv∈P 〈v,∇f(xt)〉, and set dFW
t ← v+

t − xt.
4 Choose the away-direction v−t by calling the away-oracle in (3), and set dA

t ← xt − v−t .
5 if

〈
dFW
t ,−∇f(xt)

〉
≥
〈
dA
t ,−∇f(xt)

〉
then dt ←dFW

t , else dt ←dA
t . . Choose a direction

6 Choose the step size ηt by using one of the following two options:
7 Option 1: Pre-defined step size: . This is for SLP only. Need input arguments n0, γt.
8 if t ≤ n0 then
9 Set qt = t, ηt = 1

t , and revert dt = dFW
t . . Perform FW-step for the first n0 steps

10 else
11 Find the smallest integer s ≥ 0 such that qt defined as follows satisfies qt ≥ d1/γte:12

qt ←

2sqt−1 + 1 if line 5 adopts the FW-step

2sqt−1 − 1 if line 5 adopts the away-step
, and ηt ← q−1

t . (2)

13 Option 2: Line search: ηt ← arg min
η≥0

f(xt + ηdt), s.t. xt + ηdt∈P . . General purpose

14 xt+1 ← xt + ηtdt. Return xt if
〈
−∇f(xt),d

FW
t

〉
≤ ε.

Algorithm 2: Decomposition-invariant Pairwise Frank-Wolfe (PFW) (exactly the same as [18])

1 ... as in Algorithm 1, except replacing a) line 5 by dt = dPFW
t := v+

t − v−t , and b) line 8-11 by
Option 1: Pre-defined step size: Find the smallest integer s ≥ 0 such that 2sqt−1 ≥ 1/γt.

Set qt ← 2sqt−1 and ηt ← q−1
t .. This option is for SLP only.

P . In this paper, all norms are Euclidean, and we write vectors in bold lowercase letters. f is β-
smooth if f(y)≤f(x) + 〈y − x,∇f(x)〉+ β

2 ‖y−x‖
2
,∀ x,y∈P . Denote the condition number as

κ = β/α, and the diameter of the domain P as D. We require D <∞, i.e. the domain is bounded.

Let [m] := {1, . . . ,m}. In general, a polytope P can be defined as

P = {x ∈ Rn : 〈ak,x〉 ≤ bk, ∀ k ∈ [m], Cx = d}. (1)

Here {ak} is a set of “directions” and is finite (m <∞) and bk cannot be reduced without changingP .
Although the equality constraints can be equivalently written as two linear inequalities, we separate
them out to improve the bounds below. Denoting A = (a1, . . . ,am)> and b = (b1, . . . , bm)>, we
can simplify the representation into P = {x ∈ Rn : Ax ≤ b, Cx = d}.
In the sequel, we will find highly efficient solvers for a special class of polytope that was also studied
by [18]. We call a potytope as a simplex-like polytope (SLP), if all vertices are binary (i.e. the set of
extreme points ext(P) are contained in {0, 1}n), and the only inequality constraints are x ∈ [0, 1]n.1

Our decomposition-invariant Frank-Wolfe (FW) method with away-step is shown in Algorithm 1.
There are two different schemes of choosing the step size: one with fixed step size (AFW-1) and one
with line search (AFW-2). Compared with [13], AFW-2 enjoys decomposition invariance. Like [13],
we also present a pairwise version in Algorithm 2 (PFW), which is exactly the method given in [18].

The efficiency of line search in step 13 of Algorithm 1 depends on the polytope. Although in
general one needs a problem-specific procedure to compute the maximal step size, we will show in
experiments some examples where such procedures with high computational efficiency are available.

The idea of AFW is to compute a) the FW-direction in the conventional FW sense (call it FW-oracle),
and b) the away-direction (call it away-oracle). Then pick the one that gives the steeper descent and
take a step along it. Our away-oracle adopts the decomposition-invariant approach in [18], which
differs from [13] by saving the cost of maintaining a pool of atoms. To this end, our search space in
the away-oracle is restricted to the vertices that satisfy all the inequality constraints by equality if the

1Although [18] does not allow for x ≤ 1 constraints, we can add a slack variable yi: yi + xi = 1, yi ≥ 0.

3

current xt does so:

v−t := arg maxv 〈v,∇f(xt)〉 , s.t. Av≤ b, Cv=d, and 〈ai,xt〉 = bi ⇒ 〈ai,v〉 = bi ∀i. (3)

Besides saving the space of atoms, this also dispenses with computing the inner product between
the gradient and all existing atoms. Same as [18], it presumes efficient solutions to the away-oracle,
which may preclude its applicability to problems where only the FW-oracle is efficiently solvable.
We will show some examples that admit efficient away-oracle.

Before moving on to the analysis, we here make a new, albeit quick, observation that this selection
scheme is in fact decomposing xt implicitly. Specifically, it tries all possible decompositions of xt,
and for each of them it finds the best away-direction in the traditional sense. Then it picks the best of
the best over all proper convex decompositions of xt.
Property 1. Denote S(x) := {S ⊆ P : x is a proper convex combination of all elements in S},
where proper means that all elements in S have a strictly positive weight. Then the away-step in (3)
is exactly equivalent to maxS∈S(xt) maxv∈S 〈v,∇f(xt)〉 . See the proof in Appendix A.

3 Analysis

We aim to analyze the rate by which the primal gap ht := f(xt) − f(x∗) decays. Here x∗ is the
minimizer of f , and we assume it can be written as the convex combination of s vertices of P .

3.1 A New Geometric “Condition Number” of a Polytope

Underlying the analysis of linear convergence for FW-style algorithms is the following inequality
that involves a geometric ”condition number” Hs of the polytope: (v+

t and v−t are the FW and
away-directions) √

2Hsht/α
〈
v+
t − v−t ,∇f(xt)

〉
≤ 〈x∗ − xt,∇f(xt)〉 . (4)

In Theorem 3 of [13], this Hs is essentially the pyramidal width inverse. In Lemma 3 of [18], it is the
cardinality of the optimal solution, which, despite being better than the pyramidal width, is restricted
to SLPs. Our first key step here is to relax this restriction to arbitrary polytopes and define our Hs.

Let {ui} be the set of vertices of the polytope P , and this set must be finite. We do not assume ui is
binary. The following “margin” for each separating hyperplane directions ak will be important:

gk := max
i
〈ak,ui〉 − second max

i
〈ak,ui〉 ≥ 0. (5)

Here the second max is the second distinct max in {〈ak,ui〉 : i}. If 〈ak,ui〉 is invariant to i, then
this inequality 〈ak,x〉 ≤ bk is indeed an equality constraint (〈ak,x〉 = maxz∈P 〈ak, z〉) hence can
be moved to Cx = d. So w.l.o.g, we assume gk > 0. Now we state the generalized result.
Lemma 1. Let P be defined as in (1). Suppose x can be written as some convex combination of s
number of vertices of P: x =

∑s
i=1 γiui, where γi ≥ 0, 1>γ = 1. Then any y ∈ P can be written

as y=
∑s
i=1(γi−∆i)ui+(1>∆)z, such that z ∈ P , ∆i∈ [0, γi], and 1>∆ ≤

√
Hs ‖x− y‖ where

Hs := max
S⊆[m],|S|=s

n∑
j=1

(∑
k∈S

akj
gk

)2

. (6)

In addition, Equation (4) holds with this definition of Hs. Note our Hs is defined here, not in (4).

Some intuitive interpretations of Hs are in order. First the definition in (6) admits a much more
explicit characterization than pyramidal width. The maximization in (6) ranges over all possible
subsets of constraints with cardinality s, and can hence be much lower than if s = m (taking all
constraints). Recall that pyramidal width is oblivious to, hence not benefiting from, the sparsity of
the optimal solution. More comparisons are hard to make because [13] only provided an existential
proof of pyramidal width, along with its value for simplex and hypercube only.2

However, Hs is clearly not intrinsic of the polytope. For example, by definition Hs = n for Q2.
By contrast, we can introduce a slack variable y to Q2, leading to a polytope over [x; y] (vertical

2[21] showed pyramidal width is equivalent to a more interpretable quantity called ”facial distance”, and
they derived its value for more examples. But the evaluation of its value remains challenging in general.

4

concatenation), with x ≥ 0, y ≥ 0, y + 1>x = 2. The augmented polytope enjoys Hs = s.
Nevertheless, adding slack variables increases the diameter of the space and the vertices may no
longer be binary. It also incurs more computation.

Second, gk may approach 0 (tending Hs to infinity) when more linear constraints are introduced and
vertices get closer neighbors. Hs is infinity if the domain is not a polytope, requiring an uncountable
number of supporting hyperplanes. Third, due to the square in (6), Hs grows more rapidly as one
variable participates in a larger number of constraints, than as a constraint involves a larger number
of variables. When all gk = 1 and all akj are nonnegative, Hs grows with the magnitude of akj .
However this is not necessarily the case when akj elements have mixed sign. Finally, Hs is relative
to the affine subspace that P lies in, and is independent of linear equality constraints.

The proof of Lemma 1 utlizes the fact that the lowest value of 1>∆ is the optimal objective value of
min∆,z 1>∆, s.t. 0 ≤ ∆ ≤ γ, y = x− (u1, . . . ,us)∆ + (1>∆)z, z ∈ P, (7)

where the inequalities are both elementwise. To ensure z ∈ P , we require Az ≤ b, i.e.
(b1> −AU)∆ ≥ A(y − x), where U = (u1, . . . ,us). (8)

The rest of the proof utilizes the optimality conditions of ∆, and is relegated to Appendix A.
Compared with Lemma 2 of [18], our Lemma 1 does not require ext(P) to be binary, and allows
arbitrary inequality constraints rather than only x ≥ 0. NoteHs depends on b indirectly, and employs
a more explicit form for computation than pyramidal width. Obviously Hs is non-decreasing in s.
Example 1. To get some idea, consider the k-simplex Pk or more general polytopes {x ∈ [0, 1]n :
Cx = d}. In this case, the inequality constraints are exclusively xi ∈ [0, 1], meaning ak = ±ek for
all k ∈ [2n] in (1). Here ek stands for a canonical vector of straight 0 except a single 1 in the k-th
coordinate. Obviously all gk = 1. Therefore by Lemma 1, one can derive Hs = s, ∀ s ≤ n.
Example 2. To include inequality, let us consider Qk, the convex hull of a k-simplex. Lemma 1
implies its Hs = n+ 3s− 3, independent of k. One might hope to get better Hs when k = 1, since
the constraint x ≤ 1 can be dropped in this case. Unfortunately, still Hs = n.
Remark 1. The L0 norm of the optimal x can be connected with s simply by Caratheodory’s theorem.
Obviously s = ‖x‖0 (L0 norm) for P1 andQ1. In general, an x in P may be decomposed in multiple
ways, and Lemma 1 immediately applies to the lowest (best) possible value of s (which we will refer
to as the cardinality of x following [18]). For example, the smallest s for any x ∈ Pk (or Qk) must
be at most ‖x‖0 + 1, because x must be in the convex hull of V := {y ∈ {0, 1}n : 1>y = k, xi =
0⇒ yi = 0 ∀ i}. Clearly its affine hull has dimension ‖x‖0, and V is a subset of ext(Pk) = ext(Qk).

3.2 Tightness of Hs under a Given Representation of the Polytope

We show some important examples that demonstrate the tightness of Lemma 1 with respect to the
dimensionality (n) and the cardinality of x (s). Note the tightness is in the sense of satisfying the
conditions in Lemma 1, not in the rate of convergence for the optimization algorithm.
Example 3. ConsiderQ2. u1 = e1 is a vertex and let x = u1 (hence s = 1) and y = (1, ε, . . . , ε)>,
where ε > 0 is a small scalar. So in the necessary condition (8), the row corresponding to 1>x ≤ 2
becomes ∆1 ≥ (n− 1)ε =

√
n− 1 · ‖x− y‖ . By Lemma 1, Hs = n which is almost n− 1.

Example 4. Let us see another example that is not simplex-like. Let ak = −ek + en+1 + en+2

for k ∈ [n]. Let A = (a1, . . . ,an)> = (−I,1,1) where I is the identity matrix. Define P as
P =

{
x ∈ [0, 1]n+2 : Ax ≤ 1

}
, i.e. b = 1. Since A is totally unimodular, all the vertices of P must

be binary. Let us consider x =
∑n
i=1 iεei + ren+1 + (1 − rε)en+2, where r = n(n + 1)/2 and

ε > 0 is a small positive constant. x can be represented as the convex combination of n+ 1 vertices

x =
∑n

i=1
iεui + (1− rε)un+1, where ui = ei + en+1 for i ≤ n, and un+1 = en+2. (9)

With U = (u1, . . . ,un+1), we have b1> −AU = (I,0). Let y = x+ εen+1, which is clearly in P .
Then (8) becomes ∆ ≥ ε1, and so 1>∆ ≥

√
n2 ‖y − x‖. Applying Lemma 1 with s = n+ 1 and

gk = 1 for all k, we get Hs = 2n2 + n− 1, which is of the same order of magnitude as n2.

3.3 Analysis for Pairwise Frank-Wolfe (PFW-1) on SLPs

Equipped with Lemma 1, we can now extend the analysis in [18] to SLPs where the constraint of
x ≤ 1 can be explicitly accommodated without having to introduce a slack variable which increases
the diameter D and costs more computations.

5

Theorem 1. Applying PFW-1 to SLP, all iterates must be feasible and ht ≤ βD2

2 (1− c1)t−1 if we
set γt = c

1/2
1 (1−c1)

t−1
2 , where c1 = α

16βHsD2 . The proof just replaces all card(x∗) in [18] with Hs.

Slight effort is needed to guarantee the feasibility and we show it as Lemma 6 in Appendix A.

When P is not an SLP or general inequality constraints are present, we resort to line search (PFW-2),
which is more efficient than PFW-1 in practice. However, the analysis becomes challenging [13, 18],
because it is difficult to bound the number of steps where the step size is clamped due to the feasibility
constraint (the swap step in [13]). So [13] appealed to a bound that is the factorial of the number of
vertices. Fortunately, we will show below that by switching to AFW, the line search version achieves
linear rates with improved dimension dependency for general polytopes, and the pre-defined step
version preserves the strong rates of PFW-1 on SLPs. These are all facilitated by the Hs in Lemma 1.

3.4 Analysis for Away-step Frank-Wolfe with Pre-defined Step Size (AFW-1) on SLPs

We first show that AFW-1 achieves the same rate of convergence as PFW-1 on SLPs. Although this
does not appear surprising and the proof architecture is similar to [18], we stress that the step size
needs delicate modifications because the descent direction dt in PFW does not rescale xt, while
AFW does. Our key novelty is to first run a constant number of FW-steps (O(1

t) rate), and start
accepting away-steps when the step size is small enough to ensure feasibility and linear convergence.

We first establish the feasibility of iterates under the pre-defined step sizes. Proofs are in Appendix A.
Lemma 2 (Feasibility of iterates for AFW-1). Suppose P is an SLP and the reference step sizes
{γt}t≥n0

are contained in [0, 1]. Then the iterates generated by AFW-1 are always feasible.

Choosing the step size. Key to the AFW-1 algorithm is the delicately chosen sequence of step
sizes. For AFW-1, define (logarithms are natural basis)

γt =
M1

θM2

√
c0(1− c1)(t−1)/2, where M1 =

√
α

8Hs
, M2 =

βD2

2
, θ = 52 (10)

c1 =
M2

1

M2

θ − 4

4θ2
<

1

200
, n0 =

⌈
1

c1

⌉
, c0 =

3M2 log n0

n0
(1− c1)1−n0 . (11)

Lemma 3. In AFW-1, we have ht ≤ 3
tM2 log t for all t ∈ [2, n0]. Obviously n0 ≥ 200 by (11).

This result is similar to Theorem 1 in [4]. However, their step size is 2/(t+ 2) leading to a 2
t+2M2

rate of convergence. Such a step size will break the integrality of the iterates, and hence we adjusted
the step size, at the cost of a log t term in the rates which can be easily handled in the sequel.

The condition number c1 gets better (bigger) when: the strongly convex parameter α is larger, the
smoothness constant β is smaller, the diameter D of the domain is smaller, and Hs is smaller.
Lemma 4. For all t ≥ n0, AFW-1 satisfies a) γt ≤ 1, b) γ−1

t+1 − γ
−1
t ≥ 1, and c) ηt ∈ [1

4γt, γt].
By Lemma 2 and Lemma 4a, we know that the iterates generated by AFW-1 are all feasible.
Theorem 2. Applying AFW-1 to SLP, the gap decays as ht ≤ c0(1− c1)t−1 for all t ≥ n0.

Proof. By Lemma 3, hn0
≤3M2

n0
log n0 = c0(1− c1)n0−1. Let the result hold for some t ≥ n0. Then

ht+1 ≤ ht + ηt 〈dt,∇f(xt)〉+
β

2
η2
tD

2 (smoothness of f) (12)

≤ ht +
ηt
2

〈
v+
t − v−t ,∇f(xt)

〉
+
β

2
η2
tD

2 (by step 5 of Algorithm 1) (13)

≤ ht −
ηt
2

√
α

2Hs

√
ht +

β

2
η2
tD

2 (by (4) and the fact 〈x∗ − xt,∇f(xt)〉 ≤ −ht) (14)

≤ ht −
1

4
M1γth

1/2
t +

β

2
γ2
tD

2 (Lemma 4c and the defn. of M1) (15)

= ht −
M2

1

4θM2

√
c0(1− c1)(t−1)/2h

1/2
t +

M2
1

θ2M2
c0(1− c1)t−1 (by defn. of γt) (16)

≤ c0(1− c1)t−1

(
1− M2

1

4θM2
+

M2
1

θ2M2

)
= c0(1− c1)t (by defn. of c1). (17)

6

Here the inequality in step (17) is by treating (16) as a quadratic of h1/2
t and applying the induction

assumption on ht. The last step completes the induction: the conclusion also holds for step t+ 1.

3.5 Analysis for Away-step Frank-Wolfe with Line Search (AFW-2)

We finally analyze AFW-2 on general polytopes with line search. Noting that f(xt+ηdt)−f(x∗) ≤
(14) (with ηt in (14) replaced by η), we minimize both sides over η : xt + ηdt ∈ P . If none of the
inequality constraints are satisfied as equality at the optimal ηt of line search, then we call it a good
step and in this case

ht+1 ≤
(

1− α

256βD2Hs

)
ht, (Eq 14 in η is minimized at η∗t :=

1

βD2
M1h

1/2
t). (18)

The only task left is to bound the number of bad steps (i.e. ηt clamped by its upper bound). In [13]
where the set of atoms is maintained, it is easily shown that up to step t there can be only at most t/2
bad steps, and so the overall rate of convergence is slowed down by at most a factor of two. This
favorable result no longer holds in our decomposition-invariant AFW. However, thanks to the special
property of AFW, it is still not hard to bound the number of bad steps between two good steps.

First we notice that such clamping never happens for FW-steps, because η∗t ≤ 1 and for FW-steps,
xt + ηtdt ∈ P implicitly enforces ηt ≤ 1 only (after ηt ≥ 0 is imposed). For an away-step, if the
line search is blocked by some constraint, then at least one inequality constraint will turn into an
equality constraint if the next step is still away. Since AFW selects the away-direction by respecting
all equality constraints, the succession of away-steps (called an away epoch) must terminate when the
set of equalities define a singleton. For any index set of inequality constraints S ⊆ [m], let P(S) :=
{x ∈ P : 〈aj ,x〉 = bj , ∀ j ∈ S} be the set of points that satisfy these inequalities with equality. Let

n(P) := max {|S| : S ⊆ [m], |P(S)| = 1, |P(S′)| =∞ for all S′ (S} (19)

be the maxi-min number of constraints to define a singleton. Then obviously n(P) ≤ n, and so

Theorem 3. To find an ε accurate solution, AFW-2 requires at most O
(
nβD2Hs

α log 1
ε

)
steps.

Example 5. Suppose f(x) = 1
2 ‖x + 1‖2 with P = [0, 1]n. Clearly n(P) = n. Unfortunately

we can construct an initial x1 as a convex combination of only O(log n) vertices, but AFW-2 will
then run O(n) number of away-steps consecutively. Hence our above analysis on the max length of
away epoch seems tight, although having n consecutive away-steps between two good steps once is
different than this happening multiple times. See the construction of x1 in Appendix A.

Tighter bounds. By refining the analysis of the polytopes, we may improve upon the n(P) bound.
For example it is not hard to show that n(Pk) = n(Qk) = n. Let us consider the number of non-zeros
in the iterates xt. A bad step (which must be an away-step) will either a) set an entry to 1, which will
force the corresponding entry of v−t to be 1 in the future steps of the away epoch, hence can happen
at most k times; or b) set at least one nonzero entry of xt into 0, and will never switch a zero entry to
nonzero. But each FW-step may introduce at most k nonzeros. So the number of bad steps cannot be
over 2k times of that of FW-step, and the overall iteration complexity is at most O(kβD

2Hs

α log 1
ε).

We can now revisit Table 1 and observe the generality and efficiency of AFW-2. It is noteworthy that
on SLPs, we are not yet able to establish the same rate as AFW-1. We believe that the vertices being
binary is very special, making it hard to generalize the analysis.

4 Application to Kernel Binary SVM

As a concrete example, we apply AFW to the dual objective of a binary SVM with bias:

(SVM-Dual) min
x
f(x) := 1

2x
>Qx− 1

C1
>x, s.t. x ∈ [0, 1]n, y>x = 0. (20)

Here y = (y1, . . . , yn)> is the label vector with yi ∈ {−1, 1}, and Q is the signed kernel matrix
with Qij = yiyjk(xi,xj). Since the feasible region is an SLP with diameter O(

√
n), we can use

both AFW-1 and PFW-1 to solve it with O(#SV · nκ log 1
ε) iterations, where κ is the ratio between

the maximum and minimum eigenvalues of Q (assume Q is positive definite), and #SV stands for the
number of support vectors in the optimal solution.

7

Computational efficiency per iteration. The key technique for computational efficiency is to keep
updating the gradient∇f(x) over the iterations, exploiting the fact that v+

t and v−t might be sparse
and ∇f(x) = Qx− 1

C1 is affine in x. In particular, when AFW takes a FW-step in line 5, we have

Qdt = QdFW
t = Q(v+

t − xt) = −∇f(xt)− 1
C1 +Qv+

t . (21)

Similar update formulas can be shown for away-step dA
t and PFW-step dPFW

t . So if v+ (or v−t) has k
non-zeros, all these three updates can be performed in O(kn) time. Based on them, we can update
the gradient by ∇f(xt+1) = ∇f(xt) + ηtQdt. The FW-oracle and away-oracle cost O(n) time
given the gradient, and the line search has a closed form solution. See more details in Appendix B.

Major drawback. This approach unfortunately provides no control of the sparseness of v+
t and v−t .

As a result, each iteration may require evaluating the entire kernel matrix (O(n2) kernel evaluations),
leading to an overall computational cost O(#SV · n3κ log 1

ε) . This can be prohibitive.

4.1 Reformulation by Relaxed Convex Hull

To ensure the sparsity of each update, we reformulate the SVM dual objective (20) by using the
reduced convex hull (RC-Hull, [22]). Let P and N be the set of positive and negative examples, resp.

(RC-Margin) min
θ, ξ+∈R|P |, ξ−∈R|N|, α, β

1

K
(1>ξ+ + 1>ξ−) +

1

2
‖θ‖2 − α+ β,

s.t. A>θ − α1 + ξ+ ≥ 0, −B>θ + β1 + ξ− ≥ 0, ξ+ ≥ 0, ξ− ≥ 0.

(22)

(RC-Hull) min
u∈R|P |,v∈R|N|

1
2 ‖Au−Bv‖2 , s.t. u ∈ PK , v ∈ PK . (23)

HereA (orB) is a matrix whose i-th column is the (implicit) feature representation of the i-th positive
(or negative) example. RC-Margin resembles the primal SVM formulation, except that the bias term
is split into two terms α and β. RC-Hull is the dual problem of RC-Margin, and it has a very intuitive
geometric meaning. When K = 1, RC-Hull tries to find the distance between the convex hull of P
and N . When the integer K is greater than 1, then 1

KAu is a reduced convex hull of the positive
examples, and the objective finds the distance of the reduced convex hull of P and N .

Since the feasible region of RC-Hull is a simplex, dt in AFW and PFW have at most 2K and 4K
nonzeros respectively, and it costs O(nK) time to update the gradient (see Appendix B.1). Given
K, Appendix B.2 shows how to recover the corresponding C in (20), and to translate the optimal
solutions. Although solving RC-Hull requires the knowledge of K (which is unknown a priori if we
are only given C), in practice, it is equally justified to tune the value of K via model selection tools
in the first place, which is approximately tuning the number of support vectors.

4.2 Discussion and Comparison of Rates of Convergence

Clearly, the feasible region of RC-Hull is an SLP, allowing us to apply AFW-1 and PFW-1 with
optimal linear convergence: O(#SV · κK log 1

ε) ≤ O(κ(#SV)2 log 1
ε), because K = 1>u ≤ #SV.

So overall, the computational cost is O(nκ(#SV)3 log 1
ε).

[20] shows sequential minimal optimization (SMO) [19, 23] costs O(n3κ log 1
ε) computations. This

is greater than O(nκ(#SV)3 log 1
ε) when #SV ≤ n2/3. [24] requires O(κ2n ‖Q‖sp log 1

ε) iterations,
and each iteration costsO(n). SVRG [25], SAGA [26], SDCA [27] require losses to be decomposable
and smooth, which do not hold for hinge loss with a bias. SDCA can be extended to almost smooth
losses such as hinge loss, but still the dimension dependency is unclear and it cannot handle bias.

As a final remark, despite the superior rates of AFW-1 and PFW-1, their pre-defined step size makes
them impractical. With line search, AFW-2 is much more efficient in practice, and at the same time
provides theoretical guarantees of O(nκ(#SV)4log 1

ε) computational cost, just slightly worse by #SV
times. Such an advantage in both theory and practice by one method is not available in PFW [18].

5 Experiments and Future Work

In this section we compare the empirical performance of AFW-2 against related methods. We first
illustrate the performance on kernel binary SVM, then we investigate a problem whose domain is not
an SLP, and finally we demonstrate the scalability of AFW-2 on a large scale dataset.

8

0 50 100 150
Kernel evaluations / # of examples

101

102

103

104

Pr
im

al
 O

bj
ec

tiv
e

AFW-2
SMO

(a) Breast-cancer (K = 10)

0 20 40 60
Kernel evaluations / # of examples

103

104

105

106

Pr
im

al
 O

bj
ec

tiv
e

AFW-2
SMO

(b) a1a (K = 30)

0 300 600 900 1200
Kernel evaluations / # of examples

103

104

105

106

107

Pr
im

al
 O

bj
ec

tiv
e

AFW-2
SMO

(c) ijcnn1 (K = 20)

Figure 1: Comparison of SMO and AFW-2 on three different datasets

Binary SVM Our first comparison is on solving kernel binary SVMs with bias. Three datasets are
used. breast-cancer and a1a are obtained from the UCI repository [28] with n = 568 and 1, 605
training examples respectively, and ijcnn1 is from [29] with a subset of 5, 000 examples.

As a competitor, we adopted the well established Sequential Minimal Optimization (SMO) algorithm
[19]. The implementation updates all cached errors corresponding to each examples if any variable is
being updated at each step. Using these cached error, the algorithm heuristically picks the best subset
of variable to update at each iteration.

We first run AFW-2 on the RC-Hull objective in (23), with the value of K set to optimize the test
accuracy (K shown in Figure 1). After obtaining the optimal solution, we compute the equivalent C
value based on the conversion rule in Appendix B.2, and then run SMO on the dual objective (20).

0 20 40 60
steps

10-20

10-10

100

1010

G
ap

AFW-2
PFW-2

Figure 2: Least square w. Q375

250 500 750 1000
Kernel evaluations / # of examples

104

105

106

107

108

Pr
im

al
 O

bj
ec

tiv
e

AFW-2
SMO

Figure 3: Full ijcnn1

Figure 1 shows the decay of the primal SVM objective (hence
fluctuation) as a function of (the number of kernel evaluations
divided by n). This avoids the complication of CPU frequency
and kernel caching. Clearly, AFW-2 outperforms SMO on breast-
cancer and ijcnn1, and overtakes SMO on a1a after a few iterations.

PFW-1 and PFW-2 are also applicable to the RC-Hull formulation.
Although the rate of PFW-1 is better than AFW-2, it is much slower
in practice. Although empirically we observed that PFW-2 is similar
to our AFW-2, unfortunately PFW-2 has no theoretical guarantee.

General Polytope Our next comparison uses Qk as the domain.
Since it is not an SLP, neither PFW-1 nor PFW-2 provides a bound.
Here we aim to show that AFP-2 is not only advantageous in pro-
viding a good rate of convergence, it is also comparable to (or better
than) PFW-2 in terms of practical efficiency. Our objective is a least
square (akin to lasso):

minx f(x) = ‖Ax− b‖2, 0 ≤ x ≤ 1, 1>x ≤ 375.

Here A ∈ R100×1000, and both A and b were generated randomly.
Both the FW-oracle and away-oracle are simply based on sorting
the gradient. As shown in Figure 2, AFW-2 is indeed slightly faster than PFW-2.

Scalability To demonstrate the scalability of AFP-2, we plot its convergence curve (K = 100)
along with SMO on the full ijcnn1 dataset with 49, 990 examples. In Figure 3, AFW-2 starts with
a higher primal objective value, but after a while it outperforms SMO near the optimum. In this
problem, kernel evaluation is the major computational bottleneck, hence used as the horizontal axis.
This also helps avoiding the complication of CPU speed (e.g. when wall-clock time is used).

6 Future work

We will extend the decomposition invariant method to gauge regularized problems [30–32], and
derive comparable linear convergence rates. Moreover, although it is hard to evaluate pyramidal
width, it will be valuable to compare it with Hs even in terms of upper/lower bounds.

Acknowledgements. We thank Dan Garber for very helpful discussions and clarifications on [18].
Mohammad Ali Bashiri is supported in part by NSF grant RI-1526379.

9

References

[1] M. Frank and P. Wolfe. An algorithm for quadratic programming. Naval Research Logistics
Quarterly, 3(1-2):95–110, 1956.

[2] Z. Harchaoui, M. Douze, M. Paulin, M. Dudik, and J. Malick. Large-scale image classification
with trace-norm regularization. In Proc. IEEE Conf. Computer Vision and Pattern Recognition.
2012.

[3] E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR Computational
Mathematics and Mathematical Physics, 6(5):787–823, 1966.

[4] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceedings
of International Conference on Machine Learning. 2013.

[5] A. Beck and M. Teboulle. A conditional gradient method with linear rate of convergence for
solving convex linear systems. Mathematical Methods of Operations Research, 59(2):235–247,
2004.

[6] J. GuéLat and P. Marcotte. Some comments on Wolfe’s ‘away step’. Mathematical Program-
ming, 35(1):110–119, 1986.

[7] P. Wolfe. Convergence theory in nonlinear programming. In Integer and Nonlinear Program-
ming. North-Holland, 1970.

[8] S. D. Ahipasaoglu, P. Sun, and M. J. Todd. Linear convergence of a modified Frank-Wolfe algo-
rithm for computing minimum-volume enclosing ellipsoids. Optimization Methods Software,
23(1):5–19, 2008.

[9] R. Ñanculef, E. Frandi, C. Sartori, and H. Allende. A novel Frank-Wolfe algorithm. analysis
and applications to large-scale svm training. Information Sciences, 285(C):66–99, 2014.

[10] P. Kumar and E. A. Yildirim. A linearly convergent linear-time first-order algorithm for support
vector classification with a core set result. INFORMS J. on Computing, 23(3):377–391, 2011.

[11] S. M. Robinson. Generalized equations and their solutions, part II: Applications to nonlinear
programming. Springer Berlin Heidelberg, 1982.

[12] D. Garber and E. Hazan. A linearly convergent variant of the conditional gradient algorithm
under strong convexity, with applications to online and stochastic optimization. SIAM Journal
on Optimization, 26(3):1493–1528, 2016.

[13] S. Lacoste-Julien and M. Jaggi. On the global linear convergence of Frank-Wolfe optimization
variants. In Neural Information Processing Systems. 2015.

[14] S. Lacoste-Julien and M. Jaggi. An affine invariant linear convergence analysis for Frank-Wolfe
algorithms. In NIPS 2013 Workshop on Greedy Algorithms, Frank-Wolfe and Friends. 2013.

[15] A. Beck and S. Shtern. Linearly convergent away-step conditional gradient for non-strongly
convex functions. Mathematical Programming, pp. 1–27, 2016.

[16] G. Lan. The complexity of large-scale convex programming under a linear optimization oracle.
Technical report, University of Florida, 2014.

[17] D. Garber. Faster projection-free convex optimization over the spectrahedron. In Neural
Information Processing Systems. 2016.

[18] D. Garber and O. Meshi. Linear-memory and decomposition-invariant linearly convergent
conditional gradient algorithm for structured polytopes. In Neural Information Processing
Systems. 2016.

[19] J. C. Platt. Sequential minimal optimization: A fast algorithm for training support vector
machines. Tech. Rep. MSR-TR-98-14, Microsoft Research, 1998.

[20] N. List and H. U. Simon. SVM-optimization and steepest-descent line search. In S. Dasgupta
and A. Klivans, eds., Proc. Annual Conf. Computational Learning Theory. Springer, 2009.

[21] J. Pena and D. Rodriguez.
[22] K. P. Bennett and E. J. Bredensteiner. Duality and geometry in SVM classifiers. In Proceedings

of International Conference on Machine Learning. 2000.

10

[23] S. S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with reduced
classifier complexity. Journal of Machine Learning Research, 7:1493–1515, 2006.

[24] Y. You, X. Lian, J. Liu, H.-F. Yu, I. S. Dhillon, J. Demmel, and C.-J. Hsieh. Asynchronous
parallel greedy coordinate descent. In Neural Information Processing Systems. 2016.

[25] R. Johnson and T. Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Neural Information Processing Systems. 2013.

[26] A. Defazio, F. Bach, and S. Lacoste-Julien. SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives. In Neural Information Processing
Systems. 2014.

[27] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for regularized loss
minimization. Journal of Machine Learning Research, 14:567–599, 2013.

[28] M. Lichman. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/
ml.

[29] D. Prokhorov. Ijcnn 2001 neural network competition. Slide presentation in IJCNN, 1:97, 2001.
[30] M. Jaggi and M. Sulovsky. A simple algorithm for nuclear norm regularized problems. In

Proceedings of International Conference on Machine Learning. 2010.
[31] X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training for matrix-norm regularization: A

boosting approach. In Neural Information Processing Systems. 2012.
[32] Z. Harchaoui, A. Juditsky, and A. Nemirovski. Conditional gradient algorithms for norm-

regularized smooth convex optimization. Mathematical Programming, 152:75–112, 2015.

11

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

