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Abstract

Maximum A posteriori Probability (MAP) inference in graphical models amounts
to solving a graph-structured combinatorial optimization problem. Popular infer-
ence algorithms such as belief propagation (BP) and generalized belief propagation
(GBP) are intimately related to linear programming (LP) relaxation within the
Sherali-Adams hierarchy. Despite the popularity of these algorithms, it is well
understood that the Sum-of-Squares (SOS) hierarchy based on semidefinite pro-
gramming (SDP) can provide superior guarantees. Unfortunately, SOS relaxations
for a graph with n vertices require solving an SDP with n

⇥(d) variables where
d is the degree in the hierarchy. In practice, for d � 4, this approach does not
scale beyond a few tens of variables. In this paper, we propose binary SDP relax-
ations for MAP inference using the SOS hierarchy with two innovations focused
on computational efficiency. Firstly, in analogy to BP and its variants, we only
introduce decision variables corresponding to contiguous regions in the graphical
model. Secondly, we solve the resulting SDP using a non-convex Burer-Monteiro
style method, and develop a sequential rounding procedure. We demonstrate that
the resulting algorithm can solve problems with tens of thousands of variables
within minutes, and outperforms BP and GBP on practical problems such as image
denoising and Ising spin glasses. Finally, for specific graph types, we establish a
sufficient condition for the tightness of the proposed partial SOS relaxation.

1 Introduction
Graphical models provide a powerful framework for analyzing systems comprised by a large number
of interacting variables. Inference in graphical models is crucial in scientific methodology with
countless applications in a variety of fields including causal inference, computer vision, statistical
physics, information theory, and genome research [WJ08, KF09, MM09].

In this paper, we propose a class of inference algorithms for pairwise undirected graphical models.
Such models are fully specified by assigning: (i) a finite domain X for the variables; (ii) a finite
graph G = (V,E) for V = [n] ⌘ {1, . . . , n} capturing the interactions of the basic variables;
(iii) a collection of functions ✓ = ({✓

v
i }i2V , {✓

e
ij}(i,j)2E) that quantify the vertex potentials and

interactions between the variables; whereby for each vertex i 2 V we have ✓
v
i : X ! R and for each

edge (i, j) 2 E, we have ✓
e
ij : X ⇥ X ! R (an arbitrary ordering is fixed on the pair of vertices

{i, j}). These parameters can be used to form a probability distribution on X
V for the random vector

x = (x1, x2, ..., xn) 2 X
V by letting,

p(x|✓) =
1

Z(✓)
e
U(x;✓)

, U(x;✓) =
X

(i,j)2E

✓
e
ij(xi, xj) +

X

i2V

✓
v
i (xi) , (1.1)

where Z(✓) is the normalization constant commonly referred to as the partition function. While such
models can encode a rich class of multivariate probability distributions, basic inference tasks are
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intractable except for very special graph structures such as trees or small treewidth graphs [CD+06].
In this paper, we will focus on MAP estimation, which amounts to solving the combinatorial
optimization problem

x̂(✓) ⌘ arg max
x2XV

U(x;✓). (1.2)

Intractability plagues other classes of graphical models as well (e.g. Bayesian networks, factor
graphs), and has motivated the development of a wide array of heuristics. One of the simplest such
heuristics is the loopy belief propagation (BP) [WJ08, KF09, MM09]. In its max-product version
(that is well-suited for MAP estimation), BP is intimately related to the linear programming (LP)
relaxation of the combinatorial problem maxx2XV U(x;✓). Denoting the decision variables by
b = ({bi}i2V , {bij}(i,j)2E), LP relaxation form of BP can be written as

maximize
b

X

(i,j)2E

X

xi,xj2X
✓ij(xi, xj)bij(xi, xj) +

X

i2V

X

xi2X
✓i(xi)bi(xi) , (1.3)

subject to
X

xj2X
bij(xi, xj) = bi(xi) 8(i, j) 2 E , (1.4)

bi 2 �X 8i 2 V, bij 2 �X⇥X 8(i, j) 2 E , (1.5)
where �S denotes the simplex of probability distributions over set S. The decision variables are
referred to as ‘beliefs’, and their feasible set is a relaxation of the polytope of marginals of distributions.
The beliefs satisfy the constraints on marginals involving at most two variables connected by an edge.

Loopy belief propagation is successful on some applications, e.g. sparse locally tree-like graphs
that arise, for instance, decoding modern error correcting codes [RU08] or in random constraint
satisfaction problems [MM09]. However, in more structured instances – arising for example in
computer vision – BP can be substantially improved by accounting for local dependencies within
subsets of more than two variables. This is achieved by generalized belief propagation (GBP)
[YFW05] where the decision variables are beliefs bR that are defined on subsets of vertices (a
‘region’) R ✓ [n], and that represent the marginal distributions of the variables in that region. The
basic constraint on the beliefs is the linear marginalization constraint:

P
xR\S

bR(xR) = bS(xS),
holding whenever S ✓ R. Hence GBP itself is closely related to LP relaxation of the polytope
of marginals of probability distributions. The relaxation becomes tighter as larger regions are
incorporated. In a prototypical application, G is a two-dimensional grid, and regions are squares
induced by four contiguous vertices (plaquettes), see Figure 1, left frame. Alternatively in the right
frame of the same figure, the regions correspond to triangles.

The LP relaxations that correspond to GBP are closely related to the Sherali-Adams hierarchy
[SA90]. Similar to GBP, the variables within this hierarchy are beliefs over subsets of variables
bR = (bR(xR))xR2XR which are consistent under marginalization:

P
xR\S

bR(xR) = bS(xS).
However, these two approaches differ in an important point: Sherali-Adams hierarchy uses beliefs
over all subsets of |R|  d variables, where d is the degree in the hierarchy; this leads to an LP of size
⇥(n

d
). In contrast, GBP only retains regions that are contiguous in G. If G has maximum degree k,

this produces an LP of size O(nk
d
), a reduction which is significant for large-scale problems.

Given the broad empirical success of GBP, it is natural to develop better methods for inference in
graphical models using tighter convex relaxations. Within combinatorial optimization, it is well
understood that the semidefinite programming (SDP) relaxations provide superior approximation
guarantees with respect to LP [GW95]. Nevertheless, SDP has found limited applications in inference
tasks for graphical models for at least two reasons. A structural reason: standard SDP relaxations (e.g.
[GW95]) do not account exactly for correlations between neighboring vertices in the graph which is
essential for structured graphical models. As a consequence, BP or GBP often outperforms basic
SDPs. A computational reason: basic SDP relaxations involve ⇥(n

2
) decision variables, and generic

interior point solvers do not scale well for the large-scale applications. An exception is [WJ04] which
employs the simplest SDP relaxation (degree 2 Sum-Of-Squares, see below) in conjunction with a
relaxation of the entropy and interior point methods – higher order relaxations are briefly discussed
without implementation as the resulting program suffers from the aforementioned limitations.

In this paper, we revisit MAP inference in graphical models via SDPs, and propose an approach that
carries over the favorable performance guarantees of SDPs into inference tasks. For simplicity, we
focus on models with binary variables, but we believe that many of the ideas developed here can be
naturally extended to other finite domains. We present the following contributions:
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Figure 1: A two dimensional grid, and two typical choices for regions for GBP and PSOS.
Left: Regions are plaquettes comprising four vertices. Right: Regions are triangles.

Partial Sum-Of-Squares relaxations. We use SDP hierarchies, specifically the Sum-Of-Squares
(SOS) hierarchy [Sho87, Las01, Par03] to formulate tighter SDP relaxations for binary MAP inference
that account exactly for the joint distributions of small subsets of variables xR, for R ✓ V . However,
SOS introduces decision variables for all subsets R ✓ V with |R|  d/2 (d is a fixed even integer),
and hence scales poorly for large-scale inference problems. We propose a similar modification as in
GBP. Instead of accounting for all subsets R with |R|  d/2, we only introduce decision variables to
represent a certain family of such subsets (regions) of vertices in G. The resulting SDP has (for d and
the maximum degree of G bounded) only O(n

2
) decision variables which is suitable for practical

implementations. We refer to these relaxations as Partial Sum-Of-Squares (PSOS), cf. Section 2.

Theoretical analysis. In Section 2.1, we prove that suitable PSOS relaxations are tight for certain
classes of graphs, including planar graphs, with ✓

v
= 0. While this falls short of explaining the

empirical results (which uses simpler relaxations, and ✓
v
6= 0), it points in the right direction.

Optimization algorithm and rounding. Despite the simplification afforded by PSOS, interior-point
solvers still scale poorly to large instances. In order to overcome this problem, we adopt a non-convex
approach proposed by Burer and Monteiro [BM03]. We constrain the rank of the SDP matrix in
PSOS to be at most r, and solve the resulting non-convex problem using a trust-region coordinate
ascent method, cf. Section 3.1. Further, we develop a rounding procedure called Confidence Lift and
Project (CLAP) which iteratively uses PSOS relaxations to obtain an integer solution, cf. Section 3.2.

Numerical experiments. In Section 4, we present numerical experiments with PSOS by solving
problems of size up to 10, 000 within several minutes. While additional work is required to scale
this approach to massive sizes, we view this as an exciting proof-of-concept. To the best of our
knowledge, no earlier attempt was successful in scaling higher order SOS relaxations beyond tens
of dimensions. More specifically, we carry out experiments with two-dimensional grids – an image
denoising problem, and Ising spin glasses. We demonstrate through extensive numerical studies that
PSOS significantly outperforms BP and GBP in the inference tasks we consider.

2 Partial Sum-Of-Squares Relaxations
For concreteness, throughout the paper we focus on pairwise models with binary variables. We do not
expect fundamental problems extending the same approach to other domains. For binary variables
x = (x1, x2, ..., xn), MAP estimation amounts to solving the following optimization problem

maximize
x

X

(i,j)2E

✓
e
ijxixj +

X

i2V

✓
v
i xi , (INT)

subject to xi 2 {+1,�1} , 8i 2 V ,

where ✓
e
= (✓

e
ij)1i,jn and ✓

v
= (✓

v
i )1in are the parameters of the graphical model.

For the reader’s convenience, we recall a few basic facts about SOS relaxations, referring to [BS16]
for further details. For an even integer d, SOS(d) is an SDP relaxation of INT with decision variable
X :

�[n]
d

�
! R where

�[n]
d

�
denotes the set of subsets S ✓ [n] of size |S|  d; it is given as

maximize
X

X

(i,j)2E

✓
e
ijX({i, j}) +

X

i2V

✓
v
i X({i}) , (SOS)

subject to X(;) = 1, M(X)< 0 .

The moment matrix M(X) is indexed by sets S, T ✓ [n], |S|, |T |  d/2, and has entries M(X)S,T =

X(S4T ) with4 denoting the symmetric difference of two sets. Note that M(X)S,S = X(;) = 1.
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Figure 2: Effect of the rank constraint r on n = 400 square lattice (20⇥ 20): Left plot shows the
change in the value of objective at each iteration. Right plot shows the duality gap of the Lagrangian.

We can equivalently represent M(X) as a Gram matrix by letting M(X)S,T = h�S ,�T i for a
collection of vectors �S 2 Rr indexed by S 2

� [n]
d/2

�
. The case r =

��� [n]
d/2

��� can represent any
semidefinite matrix; however, in what follows it is convenient from a computational perspective to
consider smaller choices of r. The constraint M(X)S,S = 1 is equivalent to k�Sk = 1, and the
condition M(X)S,T = X(S4T ) can be equivalently written as

h�S1 ,�T1i = h�S2 ,�T2i , 8S14T1 = S24T2. (2.1)

In the case d = 2, SOS(2) recovers the classical Goemans-Williamson SDP relaxation [GW95].

In the following, we consider the simplest higher-order SDP, namely SOS(4) for which the general
constraints in Eq. (2.1) can be listed explicitly. Fixing a region R ✓ V , and defining the Gram vectors
�;, (�i)i2V , (�ij){i,j}✓V , we list the constraints that involve vectors �S for S ✓ R and |S| = 1, 2:

k�ik = 1 8i 2 S [ {;}, (Sphere�i )
h�i,�ji = h�ij ,�;i 8i, j 2 S, (Undirected i� j)
h�i,�iji = h�j ,�;i 8i, j 2 S, (Directed i! j)
h�i,�jki = h�k,�iji 8i, j, k 2 S, (V-shaped i

jV
k)

h�ij ,�jki = h�ik,�;i 8i, j, k 2 S, (Triangle
i

j4k)

h�ij ,�kli = h�ik,�jli 8i, j, k, l 2 S. (Loop i
k⇤j

l )

Given an assignment of the Gram vectors � = (�;, (�i)i2V , (�ij){i,j}✓V ), we denote by �|R its
restriction to R, namely �|R = (�;, (�i)i2R, (�ij){i,j}✓R). We denote by ⌦(R), the set of vectors
�|R that satisfy the above constraints. With these notations, the SOS(4) SDP can be written as

maximize
�

X

(i,j)2E

✓
e
ijh�i,�ji+

X

i2V

✓
v
i h�i,�;i , (SOS(4))

subject to � 2 ⌦(V ) .

A specific Partial SOS (PSOS) relaxation is defined by a collection of regions R =

{R1, R2, . . . , Rm}, Ri ✓ V . We will require R to be a covering, i.e. [mi=1Ri = V and for
each (i, j) 2 E there exists ` 2 [m] such that {i, j} ✓ R`. Given such a covering, the PSOS(4)
relaxation is

maximize
�

X

(i,j)2E

✓
e
ijh�i,�ji+

X

i2V

✓
v
i h�i,�;i ,

subject to �|Ri 2 ⌦(Ri) 8i 2 {1, 2, . . . ,m} .

(PSOS(4))

Notice that variables �ij only enter the above program if {i, j} ✓ R` for some `. As a consequence,
the dimension of the above optimization problem is O(r

Pm
`=1 |R`|

2
), which is O(nr) if the regions

have bounded size; this will be the case in our implementation. Of course, the specific choice of
regions R is crucial for the quality of this relaxation. A natural heuristic is to choose each region R`

to be a subset of contiguous vertices in G, which is generally the case for GBP algorithms.
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Algorithm 1: Partial-SOS
Input :G = (V,E), ✓e 2 Rn⇥n, ✓v 2 Rn, � 2 Rr⇥(1+|V |+|E|), Reliables = ;
Actives = V [ E \ Reliables, and �=1,
while � > tol do

� = 0

for s 2 Actives do
if s 2 V then /* s 2 V is a vertex */

cs =
P

t2@s ✓
e
st�t + ✓

v
s�;

else /* s = (s1, s2) 2 E is an edge */

cs = ✓
e
s1s2�; + ✓

v
s1�s2 + ✓

v
s2�s1

Form matrix As, vector bs, and the corresponding Lagrange multipliers �s (see text).
�new

s  � argmax

k�k=1

�
hcs,�i+

⇢
2kAs� � bs + �sk

2
 

/* sub-problem */

� � �+ k�new
s � �sk

2
+ kAs�s � bsk2

�s  � �new
s /* update variables */

�s  � �s +As�s � bs

2.1 Tightness guarantees
Solving exactly INT is NP-hard even if G is a three-dimensional grid [Bar82]. Therefore, we do
not expect PSOS(4) to be tight for general graphs G. On the other hand, in our experiments (cf.
Section 4), PSOS(4) systematically achieves the exact maximum of INT for two-dimensional grids
with random edge and vertex parameters (✓eij)(i,j)2E , (✓vi )i2V . This finding is quite surprising and
calls for a theoretical explanation. While full understanding remains an open problem, we present
here partial results in that direction.

Recall that a cycle in G is a sequence of distinct vertices (i1, . . . , i`) such that, for each j 2 [`] ⌘

{1, 2, . . . , `}, (ij , ij+1) 2 E (where `+ 1 is identified with 1). The cycle is chordless if there is no
j, k 2 [`], with j � k 6= ±1 mod ` such that (ij , ik) 2 E. We say that a collection of regions R
on graph G is circular if for each chordless cycle in G there exists a region in R 2 R such that all
vertices of the cycle belong to R. We also need the following straightforward notion of contractibility.
A contraction of G is a new graph obtained by identifying two vertices connected by an edge in G.
G is contractible to H if there exists a sequence of contractions transforming G into H .

The following theorem is a direct consequence of a result of Barahona and Mahjoub [BM86] (see
Supplement for a proof).

Theorem 1. Consider the problem INT with ✓
v
= 0. If G is not contractible to K5 (the complete

graph over 5 vertices), then PSOS(4) with a circular covering R is tight.

The assumption that ✓v = 0 can be made without loss of generality (see Supplement for the reduction
from the general case). Furthermore, INT can be solved in polynomial time if G is planar, and ✓

v
= 0

[Bar82]. Note however, the reduction from ✓
v
6= 0 to ✓

v
= 0 can transform a planar graph to a

non-planar graph. This theorem implies that (full) SOS(4) is also tight if G is not contractible to K5.
Notice that planar graphs are not contractible to K5, and we recover the fact that INT can be solved
in polynomial time if ✓v = 0. This result falls short of explaining the empirical findings in Section 4,
for at least two reasons. Firstly the reduction to ✓

v
= 0 induces K5 subhomomorphisms for grids.

Second, the collection of regions R described in the previous section does not include all chordless
cycles. Theoretically understanding the empirical performance of PSOS(4) as stated remains open.
However, similar cycle constraints have proved useful in analyzing LP relaxations [WRS16].

3 Optimization Algorithm and Rounding
3.1 Solving PSOS(4) via Trust-Region Coordinate Ascent

We will approximately solve PSOS(4) while keeping r = O(1). Earlier work implies that (under
suitable genericity condition on the SDP) there exists an optimal solution with rank

p
2 # constraints

[Pat98]. Recent work [BVB16] shows that for r >
p
2 # constraints, the non-convex optimization

problem has no non-global local maxima. For SOS(2), [MM+17] proves that setting r = O(1)

is sufficient for achieving O(1/r) relative error from the global maximum for specific choices of
potentials ✓e, ✓v. We find that there is little or no improvement beyond r = 10 (cf. Figure 2).
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Algorithm 2: CLAP: Confidence Lift And Project

Input :G = (V,E), ✓e 2 Rn⇥n, ✓v 2 Rn, regions R = {R1, ..., Rm}

Initialize variable matrix � 2 Rr⇥(1+|V |+|E|) and set Reliables = ;.
while Reliables 6= V [ E do

Run Partial-SOS on inputs G = (V,E), ✓e, ✓v, �, Reliables /* lift procedure */

Promotions = ; and Confidence = 0.9

while Confidence > 0 and Promotions 6= ; do
for s 2 V [ E \ Reliables do /* find promotions */

if |h�;,�si| > Confidence then
�s = sign(h�;,�si) · �; /* project procedure */

Promotions � Promotions [ {sc}

if Promotions = ; then /* decrease confidence level */

Confidence � Confidence� 0.1

Reliables � Reliables [ Promotions /* update Reliables */

Output :(h�i,�;i)i2V 2 {�1,+1}
n

We will assume that R = (R1, . . . , Rm) is a covering of G (in the sense introduced in the previous
section), and –without loss of generality– we will assume that the edge set is

E =
�
(i, j) 2 V ⇥ V : 9` 2 [m] such that {i, j} ✓ R`

 
. (3.1)

In other words, E is the maximal set of edges that is compatible with R being a covering. This can
always be achieved by adding new edges (i, j) to the original edge set with ✓

e
ij = 0. Hence, the

decision variables �s are indexed by s 2 S = {;}[V [E. Apart from the norm constraints, all other
consistency constraints take the form h�s,�ri = h�t,�pi for some 4-tuple of indices (s, r, t, p). We
denote the set of all such 4-tuples by C, and construct the augmented Lagrangian of PSOS(4) as

L(�,�) =
X

i2V

✓
v
i h�i,�;i+

X

(i,j)2E

✓
e
ijh�i,�ji+

⇢

2

X

(s,r,t,p)2C

⇣
h�s,�ri � h�t,�pi+ �s,r,t,p

⌘2
.

At each step, our algorithm execute two operations: (i) maximize the cost function with respect to one
of the vectors �s; (ii) perform one step of gradient descent with respect to the corresponding subset
of Lagrangian parameters, to be denoted by �s. More precisely, fixing s 2 S \ {;} (by rotational
invariance, it is not necessary to update �;), we note that �s appears in the constraints linearly (or
it does not appear). Hence, we can write these constraints in the form As�s = bs where As, bs
depend on (�r)r 6=s but not on �s. We stack the corresponding Lagrangian parameters in a vector �s;
therefore the Lagrangian term involving �s reads (⇢/2)kAs�s � bs + �sk

2. On the other hand, the
graphical model contribution is that the first two terms in L(�,�) are linear in �s, and hence they
can be written as hcs,�si. Summarizing, we have

L(�,�) =hcs,�si+ kAs�s � bs + �sk
2
+ eL

�
(�r)r 6=s,�

�
. (3.2)

It is straightforward to compute As, bs, cs; in particular, for (s, r, t, p) 2 C, the rows of As and bs
are indexed by r such that the vectors �r form the rows of As, and h�t,�pi form the corresponding
entry of bs. Further, if s is a vertex and @s are its neighbors, we set cs =

P
t2@s ✓

e
st�t + ✓

v
s�;

while if s = (s1, s2) is an edge, we set cs = ✓
e
s1s2�; + ✓

v
s1�s2 + ✓

v
s2�s1 . Note that we are using the

equivalent representations h�i,�ji = h�ij ,�;i, h�ij ,�ji = h�i,�;i, and h�ij ,�ii = h�j ,�;i.

Finally, we maximize Eq. (3.2) with respect to �s by a Moré-Sorenson style method [MS83].

3.2 Rounding via Confidence Lift and Project
After Algorithm 1 generates an approximate optimizer � for PSOS(4), we reduce its rank to produce
a solution of the original combinatorial optimization problem INT. To this end, we interpret h�i,�;i
as our belief about the value of xi in the optimal solution of INT, and h�ij ,�;i as our belief about
the value of xixj . This intuition can be formalized using the notion of pseudo-probability [BS16].
We then recursively round the variables about which we have strong beliefs; we fix rounded variables
in the next iteration, and solve the induced PSOS(4) on the remaining ones.
More precisely, we set a confidence threshold Confidence. For any variable �s such that |h�s,�;i| >
Confidence, we let xs = sign(h�s,�;i) and fix �s = xs �;. These variables �s are no longer
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Figure 3: Denoising a binary image by maximizing the objective function Eq. (4.1). Top row: i.i.d.
Bernoulli error with flip probability p = 0.2 with ✓0 = 1.26. Bottom row: blockwise noise where
each pixel is the center of a 3⇥ 3 error block independently with probability p = 0.006 and ✓0 = 1.

updated, and instead the reduced SDP is solved. If no variable satisfies the confidence condition, the
threshold is reduced until variables are found that satisfy it. After the first iteration, most variables
yield strong beliefs and are fixed; hence the consequent iterations have fewer variables and are faster.

4 Numerical Experiments
In this section, we validate the performance of the Partial SOS relaxation and the CLAP rounding
scheme on models defined on two-dimensional grids. Grid-like graphical models are common in a
variety of fields such as computer vision [SSZ02], and statistical physics [MM09]. In Section 4.1, we
study an image denoising example and in Section 4.2 we consider the Ising spin glass – a model in
statistical mechanics that has been used as a benchmark for inference in graphical models.
Our main objective is to demonstrate that Partial SOS can be used successfully on large-scale
graphical models, and is competitive with the following popular inference methods:
• Belief Propagation - Sum Product (BP-SP): Pearl’s belief propagation computes exact marginal

distributions on trees [Pea86]. Given a graph structured objective function U(x), we apply BP-SP
to the Gibbs-Boltzmann distribution p(x) = exp{U(x)}/Z using the standard sum-product update
rules with an inertia of 0.5 to help convergence [YFW05], and threshold the marginals at 0.5.

• Belief Propagation - Max Product (BP-MP): By replacing the marginal probabilities in the sum-
product updates with max-marginals, we obtain BP-MP, which can be used for exact inference
on trees [MM09]. For general graphs, BP-MP is closely related to an LP relaxation of the
combinatorial problem INT [YFW05, WF01]. Similar to BP-SP, we use an inertia of 0.5. Note
that the Max-Product updates can be equivalently written as Min-Sum updates [MM09].

• Generalized Belief Propagation (GBP): The decision variables in GBP are beliefs (joint prob-
ability distributions) over larger subsets of variables in the graph G, and they are updated in a
message passing fashion [YFW00, YFW05]. We use plaquettes in the grid (contiguous groups of
four vertices) as the largest regions, and apply message passing with inertia 0.1 [WF01].

• Partial SOS - Degree 2 (PSOS(2)): By defining regions as single vertices and enforcing only
the sphere constraints, we recover the classical Goemans-Williamson SDP relaxation [GW95].
Non-convex Burer-Monteiro approach is extremely efficient in this case [BM03]. We round the
SDP solution by x̂i = sign(h�i,�;i) which is closely related to the classical approach of [GW95].

• Partial SOS - Degree 4 (PSOS(4)): This is the algorithm developed in the present paper. We
take the regions R` to be triangles, cf. Figure 1, right frame. In an

p
n ⇥
p
n grid, we have

2(
p
n� 1)

2 such regions resulting in O(n) constraints. In Figures 3 and 4, PSOS(4) refers to the
CLAP rounding scheme applied together with PSOS(4) in the lift procedure.

4.1 Image Denoising via Markov Random Fields
Given a

p
n ⇥
p
n binary image x0 2 {+1,�1}

n, we generate a corrupted version of the same
image y 2 {+1,�1}

n. We then try to denoise y by maximizing the following objective function:
U(x) =

X

(i,j)2E

xixj + ✓0

X

i2V

yixi , (4.1)
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Figure 4: Solving the MAP inference problem INT for Ising spin glasses on two-dimensional grids.
U and N represent uniform and normal distributions. Each bar contains 100 independent realizations.
We plot the ratio between the objective value achieved by that algorithm and the exact optimum for
n 2 {16, 25}, or the best value achieved by any of the 5 algorithms for n 2 {100, 400, 900}.

where the graph G is the
p
n ⇥
p
n grid, i.e., V = {i = (i1, i2) : i1, i2 2 {1, . . . ,

p
n}} and

E = {(i, j) : ki� jk1 = 1}. In applying Algorithm 1, we add diagonals to the grid (see right plot
in Figure 1) in order to satisfy the condition (3.1) with corresponding weight ✓eij = 0.

In Figure 3, we report the output of various algorithms for a 100 ⇥ 100 binary image. We are
not aware of any earlier implementation of SOS(4) beyond tens of variables, while PSOS(4) is
applied here to n = 10, 000 variables. Running times for CLAP rounding scheme (which requires
several runs of PSOS(4)) are of order an hour, and are reported in Figure 3. We consider two noise
models: i.i.d. Bernoulli noise and blockwise noise. The model parameter ✓0 is chosen in each
case as to approximately optimize the performances under BP denoising. In these (as well as in 4
other experiments of the same type reported in the supplement), PSOS(4) gives consistently the best
reconstruction (often tied with GBP), in reasonable time. Also, it consistently achieves the largest
value of the objective function among all algorithms.

4.2 Ising Spin Glass
The Ising spin glass (also known as Edwards-Anderson model [EA75]) is one of the most studied
models in statistical physics. It is given by an objective function of the form INT with G a d-
dimensional grid, and i.i.d. parameters {✓

e
ij}(i,j)2E , {✓vi }i2V . Following earlier work [YFW05],

we use Ising spin glasses as a testing ground for our algorithm. Denoting the uniform and normal
distributions by U and N respectively, we consider two-dimensional grids (i.e. d = 2), and the
following parameter distributions: (i) ✓

e
ij ⇠ U({+1,�1}) and ✓

v
i ⇠ U({+1,�1}), (ii) ✓eij ⇠

U({+1,�1}) and ✓
v
i ⇠ U({+1/2,�1/2}), (iii) ✓eij ⇠ N(0, 1) and ✓

v
i ⇠ N(0,�2

) with � = 0.1

(this is the setting considered in [YFW05]), and (iv) ✓
e
ij ⇠ N(0, 1) and ✓

v
i ⇠ N(0,�2

) with � = 1.
For each of these settings, we considered grids of size n 2 {16, 25, 100, 400, 900}.

In Figure 4, we report the results of 8 experiments as a box plot. We ran the five inference algorithms
described above on 100 realizations; a total of 800 experiments are reported in Figure 4. For each of
the realizations, we record the ratio of the achieved value of an algorithm to the exact maximum (for
n 2 {16, 25}), or to the best value achieved among these algorithms (for n 2 {100, 400, 900}). This
is because for lattices of size 16 and 25, we are able to run an exhaustive search to determine the true
maximizer of the integer program. Further details are reported in the supplement.

In every single instance of 800 experiments, PSOS(4) achieved the largest objective value, and

whenever this could be verified by exhaustive search (i.e. for n 2 {16, 25}) it achieved an exact

maximizer of the integer program.
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