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Abstract

Singular values of a data in a matrix form provide insights on the structure of
the data, the effective dimensionality, and the choice of hyper-parameters on
higher-level data analysis tools. However, in many practical applications such
as collaborative filtering and network analysis, we only get a partial observation.
Under such scenarios, we consider the fundamental problem of recovering various
spectral properties of the underlying matrix from a sampling of its entries. We
propose a framework of first estimating the Schatten k-norms of a matrix for
several values of k, and using these as surrogates for estimating spectral properties
of interest, such as the spectrum itself or the rank. This paper focuses on the
technical challenges in accurately estimating the Schatten norms from a sampling
of a matrix. We introduce a novel unbiased estimator based on counting small
structures in a graph and provide guarantees that match its empirical performances.
Our theoretical analysis shows that Schatten norms can be recovered accurately
from strictly smaller number of samples compared to what is needed to recover the
underlying low-rank matrix. Numerical experiments suggest that we significantly
improve upon a competing approach of using matrix completion methods.

1 Introduction

Computing and analyzing the set of singular values of a data in a matrix form, which is called the
spectrum, provide insights into the geometry and topology of the data. Such a spectral analysis
is routinely a first step in general data analysis with the goal of checking if there exists a lower
dimensional subspace explaining the important aspects of the data, which itself might be high
dimensional. Concretely, it is a first step in dimensionality reduction methods such as principal
component analysis or canonical correlation analysis.

However, spectral analysis becomes challenging in practical scenarios where the data is only partially
observed. We commonly observe pairwise relations of randomly chosen pairs: each user only rates a
few movies in recommendation systems, and each player/team only plays against a few opponents in
sports. In other applications, we have more structured samples. For example, in a network analysis
we might be interested in the spectrum of the adjacency matrix of a large network, but only get
to see the connections within a small subset of nodes. Whatever the sampling pattern is, typical
number of paired relations we observe is significantly smaller than the dimension of the data matrix.
We study all such variations in sampling patterns for partially observed data matrices, and ask the
following fundamental question: can we estimate spectral properties of a data matrix from partial
observations? We build on the fact that several spectral properties of interest, such as the spectrum
itself or the rank, can be estimated accurately via first estimating the Schatten k-norms of a matrix
and then aggregating those norms to estimate the spectral properties. In this paper, we focus on the

challenging task of estimating the Schatten k-norms defined as | M ||, = (Z?:I oi(M)F)1/*, where

o1(M) > --- > a4(M) are singular values of the data matrix M € R%*?, Once we obtain accurate
estimates of Schatten k-norms, these estimates, as well as corresponding performance guarantees,
can readily be translated into accurate estimates of the spectral properties of interest.
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1.1 Setup

We want to estimate the Schatten k-norm of a positive semidefinite matrix M € R?*¢ from a
subset of its entries. The restriction to positive semidefinite matrices is for notational convenience,
and our analyses, the estimator, and the efficient algorithms naturally generalize to any non-square
matrices. Namely, we can extend our framework to bipartite graphs and estimate Schatten k-norm
of any matrix for any even k. Let {2 denote the set of indices of samples we are given and let
Pa(M) = {(4,7, Mij) }i,j)eq denote the samples. With a slight abuse of notation, we used Pq (M)
to also denote the d x d sampled matrix:

Pa(M)i; = { 0 otherwise ,

and it should be clear from the context which one we refer to. Although we propose a framework that
generally applies to any probabilistic sampling, it is necessary to propose specific sampling scenarios
to provide tight analyses on the performance. Hence, we focus on Erdos-Rényi sampling.

There is an extensive line of research in low-rank matrix completion problems [3, 11], which addresses
a fundamental question of how many samples are required to complete a matrix (i.e. estimate all
the missing entries) from a small subset of sampled entries. It is typically assumed that each entry
of the matrix is sampled independently with a probability p € (0, 1]. We refer to this scenario as
Erdos-Rényi sampling, as the resulting pattern of the samples encoded as a graph is distributed as an
Erdos-Rényi random graph. The spectral properties of such an sampled matrix have been well studied
in the literature [7, 1, 6, 11, 14]. In particular, it is known that the original matrix is close in spectral
norm to the sampled one where the missing entries are filled in with zeros and properly rescaled under
certain incoherence assumptions. This suggests using the singular values of (d?/|Q|)P (M) directly
for estimating the Schatten norms. However, in the sub-linear regime in which the number of samples
|©2] = d?p is comparable to or significantly smaller than the degrees of freedom in representing
a symmetric rank-r matrix, which is dr — r2, the spectrum of the sampled matrix is significantly
different from the spectrum of the original matrix as shown in Figure 1. We need to design novel
estimators that are more sample efficient in the sub-linear regime where d%p < dr.
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Figure 1: Histogram of (positive) singular values of M with rank » = 100 (in yellow), and singular
values of the sampled matrix (in black).

1.2 Summary of the approach and preview of results

We propose using an alternative expression of the Schatten k£-norm for positive semidefinite matrices
as the trace of the k-th power of M, i.e. (||M]|[x)* = Tr(M*). This sum of the entries along the
diagonal of M* is the sum of total weights of all the closed walks of length k. Consider the entries
of M as weights on a complete graph K; over d nodes (with self-loops). A closed walk of length

k is defined as a sequence of nodes w = (wy,ws, ..., wkt1) With wy = wy11, where we allow
repeated nodes and repeated edges. The weight of a closed walk w = (wy, . . ., wg, wy) is defined as
wy (w) = Hle My, 0, ,» which is the product of the weights along the walk. It follows that

1Ml = > wur(w) . (1)

w: all length k closed walks

Following the notations from enumeration of small simple cycles in a graph by [2], we partition
this summation into those with the same pattern H that we call a k-cyclic pseudograph. Let



Cy = (Vi, Ey) denote the undirected simple cycle graph with k nodes, e.g. As in Figure 2 is Cs.
We expand the standard notion of simple k-cyclic graphs to include multiedges and loops, hence the
name pseudograph.

Definition 1 We define an unlabelled and undirected pseudograph H = (V, Ey) to be a k-cyclic
pseudograph for k > 3 if there exists an onto node-mapping from Cy, = (Vi, Ey), ie. f : Vi, — Vg,
and a one-to-one edge-mapping g : E), — Fg suchthat g(e) = (f(u.), f(ve)) forall e = (ue,v.) €
Ej.. We use H, to denote the set of all k-cyclic pseudographs. We use ¢(H ) to the number of different
node mappings f from C}, to a k-cyclic pseudograph H.
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Figure 2: The 3-cyclic pseudographs Hs = { A1, A, As}.

In the above example, each member of Hs3 is a distinct pattern that can be mapped from C5. For
Ay, it is clear that there is only one mapping from Cj3 to Ay (i.e. ¢(A;) = 1). For As, one can map
any of the three nodes to the left-node of As, hence ¢(As) = 3. For A3, any of the three nodes can
be mapped to the bottom-left-node of A3 and also one can map the rest of the nodes clockwise or
counter-clockwise, resulting in ¢(A3z) = 6. For k < 7, all the k-cyclic pseudo graphs are given in the
Appendix E (See Figures 8-13).

Each closed walk w of length k is associated with one of the graphs in Hy, as there is a unique H
that the walk is an Eulerian cycle of (under a one-to-one mapping of the nodes). We denote this
graph by H(w) € Hj. Considering the weight of a walk wj, (w), there are multiple distinct walks
with the same weight. For example, a length-3 walk w = (v, v2,v9,v1) has H(w) = A, and there
are 3 walks with the same weight w(w) = (M, ,)* My, i.€. (v1,v2,v2,v1), (v2, V2, v1,v2), and
(vg, v1, 2, v2). This multiplicity of the weight depends only on the structure H (w) of a walk, and it
is exactly ¢(H (w)) the number of mappings from C}, to H (w) in Definition 1. The total sum of the
weights of closed walks of length k can be partitioned into their respective pattern, which will make
computation of such terms more efficient (see Section 2) and also de-biasing straight forward (see
Equation (3)):

IMIE = Y wu(H)e(H), )
HeH

where with a slight abuse of a notation, we let wy;(H) for H € Hj be the sum of all distinct
weights of walks w with H(w) = H, and ¢(H) is the multiplicity of each distinct weight. This is an
alternative tool for computing the Schatten norm without explicitly computing the o;(M)’s.

Given only the access to a subset of sampled entries, one might be tempted to apply the
above formula to the sampled matrix with an appropriate scaling, i.e. ||(d?/|Q|)Po(M)|F =
(d?/1Q|) Y ten, Wro)(H) c(H), to estimate | M||¥. However, this is significantly biased. To
eliminate the bias, we propose rescaling each term in (1) by the inverse of the probability of sampling
that particular walk w (i.e. the probability that all edges in w are sampled). A crucial observation is
that, for any sampling model that is invariant under a relabelling of the nodes, this probability only
depends on the pattern H (w). In particular, this is true for Erdos-Rényi sampling. Based on this
observation, we introduce a novel estimator that de-biases each group separately:

6u(Pa(M)) = 3 @w%wmc(m, 3)
HeH

where p(H) is the probability the pattern H is sampled. It immediately follows that this estimator is

unbiased, i.e. Eq [@k (Pa(M))] = || M||¥, where the randomness is in 2. However, computing this
estimate can be challenging. Naive enumeration over all closed walks of length % takes time scaling
as O(d AF~1), where A is the maximum degree of the graph. Except for extremely sparse graphs,
this is impractical. Inspired by the work of [2] in counting short cycles in a graph, we introduce a
novel and efficient method for computing the proposed estimate for small values of k.




Proposition 2 For a positive semidefinite matrix M and any sampling pattern €, the proposed
estimate Oy, (Po(M)) in (3) can be computed in time O(d®) for k € {3,4,5,6,7}, where ow < 2.373
is the exponent of matrix multiplication. For k = 1 or 2, ©,(Pqa(M)) can be computed in time O(d)
and O(d?), respectively.

This bound holds regardless of the degree, and the complexity can be even smaller for sparse graphs
as matrix multiplications are more efficient. We give a constructive proof by introducing a novel
algorithm achieving this complexity in Section 2. For £ > 8, our approach can potentially be extended,
but the complexity of the problem fundamentally changes as it is at least as hard as counting K4 in a
graph, for which the best known run time is O(d***!) for general graphs [12].

We make the following contributions in this paper:

e We introduce in (3) a novel unbiased estimator of the Schatten k-norm of a positive semidef-
inite matrix M, from a random sampling of its entries. In general, the complexity of
computing the estimate scales as O(dAF) where A is the maximum degree (number of
sampled entries in a column) in the sampled matrix. We introduce a novel efficient algorithm
for computing the estimate in (3) exactly for small £ < 7, which involves only matrix
operations. This algorithm is significantly more efficient and has run-time scaling as O(d®)
independent of the degree and for all £ < 7 (see Proposition 2) .

e Under the canonical Erdos-Rényi sampling, we show that the Schatten k-norm of an incoher-
ent rank-r matrix can be approximated within any constant multiplicative error, with number
of samples scaling as O(dr'~2/*) (see Theorem 1). In particular, this is strictly smaller
than the number of samples necessary to complete the matrix, which scales as O(dr log d).
Below this matrix completion threshold, numerical experiments confirm that the proposed
estimator significantly outperforms simple heuristics of using singular values of the sampled
matrices directly or applying state-of-the-art matrix completion methods (see Figure 4).

e Given estimation of first i Schatten norms, it is straight forward to estimate spectral
properties. We apply our Schatten norm estimates to the application of estimating the
generalized rank studied in [20] and estimating the spectrum studied in [13]. We provide
performance guarantees for both applications and provide experimental results suggesting
we improve upon other competing methods. Due to space limitations, these results are
included in Appendix B.

In the remainder, we provide an efficient implementation of the estimator (3) for small k in Section 2.
In Section 3, we provide a theoretical analysis of our estimator.

1.3 Related work

Several Schatten norm estimation problems under different resource constrained scenarios have been
studied. However, those approaches assume specific noisy observations which allow them to use
the relation E[[| f(M)gl|3] = 3=, f(o:(M))? which holds for a standard i.i.d. Gaussian g ~ N(0,1)
and any polynomial function f(-). This makes the estimation significantly easier than our setting, and
none of those algorithms can be applied under our random sampling model. In particular, counting
small structure for de-biasing is not required. [20, 8] and [9] propose multiplying Gaussian random
vectors to the data matrix, in order to reduce communication and/or computation. [13] proposes an
interesting estimator for the spectrum of the covariance matrix from samples of random a vector. [15]
propose similar estimators for Schatten norms from random linear projections of a data matrix, and
[16] study the problem for sparse data matrices in a streaming model.

One of our contribution is that we propose an efficient algorithm for computing the weighted counts of
small structures in Section 2, which can significantly improve upon less sample-efficient counterpart
in, for example, [13]. Under the setting of [13] (and also [15]), the main idea of the estimator is that
the weight of each length-k cycle in the observed empirical covariance matrix (1/n) > | X; XTI
provides an unbiased estimator of |E[X XT]||¥. One prefers to sum over the weights of as many
cycles as computationally allowed in order to reduce the variance. As counting all cycles is in general
computationally hard, they propose counting only increasing cycles (which only accounts for only
1/k! fraction of all the cycles), which can be computed in time O(d®). If one has an efficient method
to count all the (weighted) cycles, then the variance of the estimator could potentially decrease by
an order of k!. For k < 7, our proposed algorithm in Section 2 provides exactly such an estimator.



We replace [13, Algorithm 1] with ours, and run the same experiment to showcase the improvement
in Figure 3, for dimension d = 2048 and various values of number of samples n comparing the
multiplicative error in estimating ||[E[X XT]||¥, for K = 7. With the same run-time, significant
gain is achieved by simply substituting our proposed algorithm for counting small structures, in
the sub-routine. In general, the efficient algorithm we propose might be of independent interest to
various applications, and can directly substitute (and significantly improve upon) other popular but
less efficient counterparts.
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Figure 3: By replacing [13, Algorithm 1] that only counts increasing cycles with our proposed
algorithm that counts all cycles, significant gain is acheived in estimating ||[E[X X T]||¥, for k = 7.

The main challenge under our sampling scenario is that existing counting methods like that of
[13] cannot be applied, regardless of how much computational power we have. Under the matrix
completion scenario, we need to (a) sum over all small structures H € H}, and not just Cy, as in [13];
and (b) for each structure we need to sum over all subgraphs with the same structure and not just
those walks whose labels form a monotonically increasing sequence as in [13].

2 Efficient Algorithm

In this section we give a constructive proof of Proposition 2. In computing the estimate in (3), ¢(H)
can be computed in time O(k!) and suppose p(H) has been computed (we will explain how to
compute p(H ) for Eros-Rényi sampling in Section 3). The bottleneck then is computing the weights
wp,(ar) (H) for each H € Hy. Let yar (H) = wy (H)ce(H). We give matrix multiplication based
equations to compute s (H ) for every H € Hy, for k € {3,4,5, 6, 7}. This establishes that v, (H),
and hence wy; (H ), can be computed in time O(d®), proving Proposition 2.

For any matrix A € R%*?, Jet diag(A) to be a diagonal matrix such that (diag(A));; = Ay, for
all i € [d] and (diag(A));; = 0, for all i # j € [d]. For a given matrix M € R%*?, define the
following: Oy, to be matrix of off-diagonal entries of M thatis Oyy = M — diag(M) and we let
Dy = diag(M). Let tr(A) denote trace of A, thatis tr(A) = >, ¢y A and let A+ B denote the
standard matrix multiplication of two matrices A and B to make it more explicit. Consider computing
vy (H) for H € Hg as labeled in Figure 2:

v (A1) = tr(Dy*DpyxDoyy) 4)
’}/M(AQ) = 3 tr(DM*OM*OM) (5)
’}/M(Ad) = tI“(OM*OM*O]w) (6)

The first weighted sum vy, (A7) is sum of all weights of walks of length 3 that consists of three
self-loops. One can show that v/ (A1) = >, cld] M3, which in our matrix operation notations is
(4). Similarly, yas(As3) is the sum of weights of length 3 walks with no self-loop, which leads to
(6). var(As) is the sum of weights of length 3 walks with a single self-loop, which leads to (5). The

factor 3 accounts for the fact that the self loop could have been placed at various positions.

Similarly, for each k-cyclic pseudographs in H;, for k& < 7, computing v, (H) involves a few matrix
operations with run-time O(d®). We provide the complete set of explicit expressions in Appendix F.
A MATLAB implementation of the estimator (3), that includes as its sub-routines the computation of
the weights of all k-cyclic pseudographs, is available for download at



https://github.com/khetan2/Schatten_norm_estimation. The explicit formulae in Ap-
pendix F together with the implementation in the above url might be of interest to other problems
involving counting small structures in graphs.

For k = 1, the estimator simplifies to O, (Po(M)) = (1/p) >; Pa(M);;, which can be computed

in time O(d). For k = 2, the estimator simplifies to O, (Po(M)) = (1/p) 3_; ; Pa(M)3;, which
can be computed in time O(|Q2]). However, for k& > 8, there exists walks over Ky, a clique over
4 nodes, that cannot be decomposed into simple computations involving matrix operations. The
best known algorithm for a simpler task of counting K4 has run-time scaling as O(d®*1), which is

fundamentally different.

Algorithm 1 Schatten k-norm estimator

Require: Po(M), k, Hy, p(H) forall H € H,
Ensure: Oy (Pq(M))
1: if £ < 7 then
2:  Foreach H € Hy, compute yp,ar)(H) using the formula from Eq. (4)-(6) for k = 3 and
Eq. (43) — (186) for k € {4,5,6, 7}
Ok(Pa(M)) < X pren, pum Yran (H)
else
O (Pa(M)) « Algorithm 2[Pq (M), k, Hy, p(H) for all H € Hy] [Appendix A]
end if
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3 Performance guarantees

Under the stylized but canonical Erdés-Rényi sampling, notice that the probability p(H) that we
observe all edges in a walk with pattern H is

p(H) = pm) (7)

where p is the probability an edge is sampled and m(H) is the number of distinct edges in a k-cyclic
pseudograph H. Plugging in this value of p(H ), which can be computed in time linear in k, into
the estimator (3), we get an estimate customized for Erdos-Rényi sampling. Given a rank-r matrix
M, the difficulty of estimating properties of M from sampled entries is captured by the incoherence
of the original matrix M, which we denote by (M) € R [3]. Formally, let M = USU " be the
singular value decomposition of a positive definite matrix where U is a d x r orthonormal matrix and
¥ = diag(oy, - - - , o) with singular values o1 > g2 > --- > g, > 0. Let U, ,» denote the i-th row
and j-th column entry of matrix U. The incoherence p( M) is defined as the smallest positive value
such that the following holds:

Al. Foralli € [d], wehave .| _ U2 (04/01) < pr/d.
A2. Foralli # j € [d], wehave | Y.! _ UiaUja(0a/01)| < py/r/d.
The incoherence measures how well spread out the matrix is and is a common measure of difficulty

in completing a matrix from random samples [3, 11].

3.1 Performance guarantee

For any d x d positive semidefinite matrix M of rank r with incoherence p(M) = p and the effective
condition number k = oyax(M)/omin (M), we define

dp k—1 ,,,kpkfl
P = (Hu)ng(k)maX{l,( zl T (-

®)

~

such that the variance of our estimator is bounded by Var(0(Pq(M))/||M||¥) < p*(r'=2/* /dp)k
as we show in the proof of Theorem 1 in Section D.1. Here, g(k) = O(k!).



Theorem 1 (Upper bound under the Erdos-Rényi sampling) For any integer k € [3,00), any
8 > 0, any rank-r positive semidefinite matrix M € R4*?, and given i.i.d. samples of the entries

of M with probability p, the proposed estimate of (3) achieves normalized error § with probability
bounded by

180 (Pa(20) — M| g2 (ri=E k
P( IR > o) < H() ©

Consider a typical scenario where p, x, and k are finite with respect to d and . Then the Chebyshev’s
bound in (9) implies that the sample d?p = O(dr'~2/¥) is sufficient to recover || M ||¥ up to arbitrarily
small multiplicative error and arbitrarily small (but strictly positive) error probability. This is strictly
less than the known minimax sample complexity for recovering the entire low-rank matrix, which
scales is ©(rdlog d). As we seek to estimate only a property of the matrix (i.e. the Schatten k-norm)
and not the whole matrix itself, we can be more efficient on the sample complexity by a factor of
72/k in rank and a factor of log d in the dimension. We emphasize here that such a gain can only be
established using the proposed estimator based on the structure of the k-cyclic pseudographs. We
will show empirically that the standard matrix completion approaches fail in the critical regime of
samples below the recovery threshold of O(rdlog d).
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Figure 4: The proposed estimator outperforms both baseline approaches below the matrix completion
threshold. For k = 5, comparison of the absolute relative error in estimated Schatten norm that is

|| M|% — | M || /]| M|k for the three algorithms: (1) the proposed estimator, [|M]|F = Oy, (Po (M),
(2) Schatten norm of the scaled sampled matrix, || M||¥ = |[(1/p)P,(Pa(M))||¥, (3) Schatten norm

of the completed matrix, M = AltMin(Pq(M)) from [10], | M|k = HMHZ, where P, (-) is the
standard best rank-r projection of a matrix. 2 is generated by Erdos-Rényi sampling of matrix M
with probability p.

1211 —

[ M|[5]/| M|, for k = 5, for three approaches: the proposed estimator, Schatten norm of the
scaled sampled matrix (after rank-r projection), and Schatten norm of the completed matrix, using
state-of-the-art alternating minimization algorithm [10]. All the three estimators are evaluated 20
times for each value of p. M is a symmetric positive semi-definite matrix of size d = 500, and rank
r = 100 (left panel) and » = 500 (right panel). Singular vectors U of M = UXU T, are generated
by QR decomposition of N (0,I4x4) and X; ; is uniformly distributed over [1,2]. For a low rank
matrix on the left, there is a clear critical value of p ~ (.45, above which matrix completion is exact
with high probability. However, this algorithm knows the underlying rank and crucially exploits the
fact that the underlying matrix is exactly low-rank. In comparison, our approach is agnostic to the
low-rank assumption but finds the accurate estimate that is adaptive to the actual rank in a data-driven
manner. Using the first r singular values of the (rescaled) sampled matrix fails miserably for all
regimes (we truncate the error at one for illustration purposes). In this paper, we are interested in the

Figure 4 is a scatter plot of the absolute relative error in estimated Schatten k-norm,




regime where exact matrix completion is impossible as we do not have enough samples to exactly
recover the underlying matrix: p < 0.45 in the left panel and all regimes in the right panel.

The sufficient condition of d%p = O(dr1_2/ ¥) in Theorem 1 holds for a broad range of parameters
where the rank is sufficiently small r = O(d*/((k=1(k=2))) (to ensure that the first term in p?
dominates). However, the following results in Figure 5 on numerical experiments suggest that our
analysis holds more generally for all regimes of the rank r, even those close to d. M is generated
using settings similar to that of Figure 4. Empirical probabilities are computed by averaging over 100
instances.

One might hope to tighten the Chebyshev bound by exploiting the fact that the correlation among the
summands in our estimator (3) is weak. This can be made precise using recent result from [18], where
a Bernstein-type bound was proved for sum of polynomials of independent random variables that are
weakly correlated. The first term in the bound (10) is the natural Bernstein-type bound corresponding
to the Chebyshev’s bound in (9). However, under the regime where & is large or p is large, the
correlation among the summands become stronger, and the second and third term in the bound (10)
starts to dominate. In the typical regime of interest where 1, &, k are finite, d*p = O(dr'~2/¥), and
sufficiently small rank r = O(d*/((k=1)(k=2))) the error probability is dominated by the first term in
the right-hand side of (10). Neither one of the two bounds in (9) and (10) dominates the other, and
depending on the values of the problem parameters, we might want to apply the one that is tighter.
We provide a proof in Section D.2.

Theorem 2 Under the hypotheses of Theorem 1, the error probability is upper bounded by
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Figure 5: Each colormap in each block for k € {2,3,4,5,6, 7} show empirical probability of the
event { ||| M|/} — ©r(Pa(M))|/|[M||k < 6}, for § = 0.5 (left panel) and § = 0.2 (right panel). {2 is
generated by Erdos-Rényi sampling of matrix M with probability p (vertical axis). M is a symmetric
positive semi-definite matrix of size d = 1000. The solid lines correspond to our theoretical prediction

p= (/dri2/

These two results show that the sample size of d?p = O(dr'~2/¥) is sufficient to estimate a Schatten
k-norm accurately. In general, we do not expect to get a universal upper bound that is significantly
tighter for all r, because for a special case of r = d, the following corollary of [15, Theorem 3.2]
provides a lower bound; it is necessary to have sample size d’p = Q(d>~*/*) when r = d. Hence,

the gap is at most a factor of 72/¥ in the sample complexity.

Corollary 1 Consider any linear observation X € R™ of a matrix M € R**¢ and any estimate
0(X) satisfying (1 — ;)| M|} < 0(X) < (1 + 0x)|| M|} for any M with probability at least 3 /4,
where 0y, = (1.2% — 1)/(1.2F 4 1). Then, n = Q(d>~*/%).



For k € {1,2}, precise bounds can be obtained with simpler analyses. In particular, we have
the following remarks, whose proof follows immediately by applying Chebyshev’s inequality and
Bernstien’s inequality along with the incoherence assumptions.

Remark 3 For k = 1, the probability of error in (9) is upper bounded by min{vy, v, }, where

1 (kp)?
02 dp

—52 /(ku)? K -1
(0% )

and vy =2exp (

Remark 4 For k = 2, the probability of error in (9) is upper bounded by min{vy, v5}, where

1 (kp)t r? _ 52
1/1:5—2 2p (2+—) , and y2:2exp(—?<

("‘@u)4( 2) _~_5(“N)2T)71) .

r
2 J—
d d2p * d 3d2p

When k = 2, for rank small r < C'v/d, we only need d?p = Q(1) samples for recovery up to any
arbitrary small multiplicative error. When rank r is large, our estimator requires d?p = Q(d) for both
ke {1,2}.
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