
Pixels to Graphs by Associative Embedding

Alejandro Newell Jia Deng
Computer Science and Engineering
University of Michigan, Ann Arbor
{alnewell, jiadeng}@umich.edu

Abstract

Graphs are a useful abstraction of image content. Not only can graphs represent
details about individual objects in a scene but they can capture the interactions
between pairs of objects. We present a method for training a convolutional neural
network such that it takes in an input image and produces a full graph definition.
This is done end-to-end in a single stage with the use of associative embeddings.
The network learns to simultaneously identify all of the elements that make up a
graph and piece them together. We benchmark on the Visual Genome dataset, and
demonstrate state-of-the-art performance on the challenging task of scene graph
generation.

1 Introduction

Extracting semantics from images is one of the main goals of computer vision. Recent years have
seen rapid progress in the classification and localization of objects [7, 24, 10]. But a bag of labeled
and localized objects is an impoverished representation of image semantics: it tells us what and where
the objects are (“person” and “car”), but does not tell us about their relations and interactions (“person
next to car”). A necessary step is thus to not only detect objects but to identify the relations between
them. An explicit representation of these semantics is referred to as a scene graph [12] where we
represent objects grounded in the scene as vertices and the relationships between them as edges.

End-to-end training of convolutional networks has proven to be a highly effective strategy for image
understanding tasks. It is therefore natural to ask whether the same strategy would be viable for
predicting graphs from pixels. Existing approaches, however, tend to break the problem down into
more manageable steps. For example, one might run an object detection system to propose all of the
objects in the scene, then isolate individual pairs of objects to identify the relationships between them
[18]. This breakdown often restricts the visual features used in later steps and limits reasoning over
the full graph and over the full contents of the image.

We propose a novel approach to this problem, where we train a network to define a complete graph
from a raw input image. The proposed supervision allows a network to better account for the full
image context while making predictions, meaning that the network reasons jointly over the entire
scene graph rather than focusing on pairs of objects in isolation. Furthermore, there is no explicit
reliance on external systems such as Region Proposal Networks (RPN) [24] that provide an initial
pool of object detections.

To do this, we treat all graph elements—both vertices and edges—as visual entities to be detected as
in a standard object detection pipeline. Specifically, a vertex is an instance of an object (“person”),
and an edge is an instance of an object-object relation (“person next to car”). Just as visual patterns
in an image allow us to distinguish between objects, there are properties of the image that allow us to
see relationships. We train the network to pick up on these properties and point out where objects and
relationships are likely to exist in the image space.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Figure 1: Scene graphs are defined by the objects in an image (vertices) and their interactions (edges).
The ability to express information about the connections between objects make scene graphs a useful
representation for many computer vision tasks including captioning and visual question answering.

What distinguishes this work from established detection approaches [24] is the need to represent
connections between detections. Traditionally, a network takes an image, identifies the items of
interest, and outputs a pile of independent objects. A given detection does not tell us anything about
the others. But now, if the network produces a pool of objects (“car”, “person”, “dog”, “tree”, etc),
and also identifies a relationship such as “in front of” we need to define which of the detected objects
is in front of which. Since we do not know which objects will be found in a given image ahead of
time, the network needs to somehow refer to its own outputs.

We draw inspiration from associative embeddings [20] to solve this problem. Originally proposed for
detection and grouping in the context of multiperson pose estimation, associative embeddings provide
the necessary flexibility in the network’s output space. For pose estimation, the idea is to predict
an embedding vector for each detected body joint such that detections with similar embeddings can
be grouped to form an individual person. But in its original formulation, the embeddings are too
restrictive, the network can only define clusters of nodes, and for a scene graph, we need to express
arbitrary edges between pairs of nodes.

To address this, associative embeddings must be used in a substantially different manner. That is,
rather than having nodes output a shared embedding to refer to clusters and groups, we instead have
each node define its own unique embedding. Given a set of detected objects, the network outputs a
different embedding for each object. Now, each edge can refer to the source and destination nodes by
correctly producing their embeddings. Once the network is trained it is straightforward to match the
embeddings from detected edges to each vertex and construct a final graph.

There is one further issue that we address in this work: how to deal with detections grounded at the
same location in the image. Frequently in graph prediction, multiple vertices or edges may appear in
the same place. Supervision of this is difficult as training a network traditionally requires telling it
exactly what appears and where. With an unordered set of overlapping detections there may not be a
direct mapping to explicitly lay this out. Consider a set of object relations grounded at the same pixel
location. Assume the network has some fixed output space consisting of discrete “slots” in which
detections can appear. It is unclear how to define a mapping so that the network has a consistent rule
for organizing its relation predictions into these slots. We address this problem by not enforcing any
explicit mapping at all, and instead provide supervision such that it does not matter how the network
chooses to fill its output, a correct loss can still be applied.

Our contributions are a novel use of associative embeddings for connecting the vertices and edges of
a graph, and a technique for supervising an unordered set of network outputs. Together these form
the building blocks of our system for direct graph prediction from pixels. We apply our method to the
task of generating a semantic graph of objects and relations and test on the Visual Genome dataset
[14]. We achieve state-of-the-art results improving performance over prior work by nearly a factor of
three on the most difficult task setting.

2 Related Work

Relationship detection: There are many ways to frame the task of identifying objects and the
relationships between them. This includes localization from referential expressions [11], detection
of human-object interactions [3], or the more general tasks of visual relationship detection (VRD)
[18] and scene graph generation [12]. In all of these settings, the aim is to correctly determine the

2

relationships between pairs of objects and ground this in the image with accurate object bounding
boxes.

Visual relationship detection has drawn much recent attention [18, 28, 27, 2, 17, 19, 22, 23]. The
open-ended and challenging nature of the task lends itself to a variety of diverse approaches and
solutions. For example: incorporating vision and language when reasoning over a pair of objects
[18]; using message-passing RNNs to process a set of proposed object boxes [26]; predicting over
triplets of bounding boxes that corresponding to proposals for a subject, phrase, and object [15];
using reinforcement learning to sequentially evaluate on pairs of object proposals and determine their
relationships [16]; comparing the visual features and relative spatial positions of pairs of boxes [4];
learning to project proposed objects into a vector space such that the difference between two object
vectors is informative of the relationship between them [27].

Most of these approaches rely on generated bounding boxes from a Region Proposal Network (RPN)
[24]. Our method does not require proposed boxes and can produce detections directly from the image.
However proposals can be incorporated as additional input to improve performance. Furthermore,
many methods process pairs of objects in isolation whereas we train a network to process the whole
image and produce all object and relationship detections at once.

Associative Embedding: Vector embeddings are used in a variety of contexts. For example, to
measure the similarity between pairs of images [6, 25], or to map visual and text features to a shared
vector space [5, 8, 13]. Recent work uses vector embeddings to group together body joints for
multiperson pose estimation [20]. These are referred to as associative embeddings since supervision
does not require the network to output a particular vector value, and instead uses the distances
between pairs of embeddings to calculate a loss. What is important is not the exact value of the vector
but how it relates to the other embeddings produced by the network.

More specifically, in [20] a network is trained to detect body joints of the various people in an image.
In addition, it must produce a vector embedding for each of its detections. The embedding is used
to identify which person a particular joint belongs to. This is done by ensuring that all joints that
belong to a single individual produce the same output embedding, and that the embeddings across
individuals are sufficiently different to separate detections out into discrete groups. In a certain sense,
this approach does define a graph, but the graph is restricted in that it can only represent clusters of
nodes. For the purposes of our work, we take a different perspective on the associative embedding
loss in order to express any arbitrary graph as defined by a set of vertices and directed edges. There
are other ways that embeddings could be applied to solve this problem, but our approach depends on
our specific formulation where we treat edges as elements of the image to be detected which is not
obvious given the prior use of associative embeddings for pose.

3 Pixels→ Graph

Our goal is to construct a graph from a set of pixels. In particular, we want to construct a graph
grounded in the space of these pixels. Meaning that in addition to identifying vertices of the graph,
we want to know their precise locations. A vertex in this case can refer to any object of interest in the
scene including people, cars, clothing, and buildings. The relationships between these objects is then
captured by the edges of the graph. These relationships may include verbs (eating, riding), spatial
relations (on the left of, behind), and comparisons (smaller than, same color as).

More formally we consider a directed graph G = (V,E). A given vertex vi ∈ V is grounded at
a location (xi, yi) and defined by its class and bounding box. Each edge e ∈ E takes the form
ei = (vs, vt, ri) defining a relationship of type ri from vs to vt. We train a network to explicitly
define V and E. This training is done end-to-end on a single network, allowing the network to reason
fully over the image and all possible components of the graph when making its predictions.

While production of the graph occurs all at once, it helps to think of the process in two main steps:
detecting individual elements of the graph, and connecting these elements together. For the first step,
the network indicates where vertices and edges are likely to exist and predicts the properties of these
detections. For the second, we determine which two vertices are connected by a detected edge. We
describe these two steps in detail in the following subsections.

3

Figure 2: Full pipeline for object and relationship detection. A network is trained to produce two
heatmaps that activate at the predicted locations of objects and relationships. Feature vectors are
extracted from the pixel locations of top activations and fed through fully connected networks to
predict object and relationship properties. Embeddings produced at this step serve as IDs allowing
detections to refer to each other.

3.1 Detecting graph elements

First, the network must find all of the vertices and edges that make up a graph. Each graph element
is grounded at a pixel location which the network must identify. In a scene graph where vertices
correspond to object detections, the center of the object bounding box will serve as the grounding
location. We ground edges at the midpoint of the source and target vertices: (bxs+xt

2 c, bys+yt

2 c).
With this grounding in mind, we can detect individual elements by using a network that produces
per-pixel features at a high output resolution. The feature vector at a pixel determines if an edge or
vertex is present at that location, and if so is used to predict the properties of that element.

A convolutional neural network is used to process the image and produce a feature tensor of size h x
w x f . All information necessary to define a vertex or edge is thus encoded at particular pixel in a
feature vector of length f . Note that even at a high output resolution, multiple graph elements may
be grounded at the same location. The following discussion assumes up to one vertex and edge can
exist at a given pixel, and we elaborate on how we accommodate multiple detections in Section 3.3.

We use a stacked hourglass network [21] to process an image and produce the output feature tensor.
While our method has no strict dependence on network architecture, there are some properties that are
important for this task. The hourglass design combines global and local information to reason over
the full image and produce high quality per-pixel predictions. This is originally done for human pose
prediction which requires global reasoning over the structure of the body, but also precise localization
of individual joints. Similar logic applies to scene graphs where the context of the whole scene must
be taken into account, but we wish to preserve the local information of individual elements.

An important design choice here is the output resolution of the network. It does not have to match the
full input resolution, but there are a few details worth considering. First, it is possible for elements to
be grounded at the exact same pixel. The lower the output resolution, the higher the probability of
overlapping detections. Our approach allows this, but the fewer overlapping detections, the better.
All information necessary to define these elements must be encoded into a single feature vector of
length f which gets more difficult to do as more elements occupy a given location. Another detail is
that increasing the output resolution aids in performing better localization.

To predict the presence of graph elements we take the final feature tensor and apply a 1x1 convolution
and sigmoid activation to produce two heatmaps (one for vertices and another for edges). Each
heatmap indicates the likelihood that a vertex or edge exists at a given pixel. Supervision is a binary
cross-entropy loss on the heatmap activations, and we threshold on the result to produce a candidate
set of detections.

Next, for each of these detections we must predict their properties such as their class label. We extract
the feature vector from the corresponding location of a detection, and use the vector as input to a
set of fully connected networks. A separate network is used for each property we wish to predict,
and each consists of a single hidden layer with f nodes. This is illustrated above in Figure 2. During
training we use the ground truth locations of vertices and edges to extract features. A softmax loss is
used to supervise labels like object class and relationship predicate. And to predict bounding box
information we use anchor boxes and regress offsets based on the approach in Faster-RCNN [24].

4

In summary, the detection pipeline works as follows: We pass the image through a network to produce
a set of per-pixel features. These features are first used to produce heatmaps identifying vertex and
edge locations. Individual feature vectors are extracted from the top heatmap locations to predict the
appropriate vertex and edge properties. The final result is a pool of vertex and edge detections that
together will compose the graph.

3.2 Connecting elements with associative embeddings

Next, the various pieces of the graph need to be put together. This is made possible by training the
network to produce additional outputs in the same step as the class and bounding box prediction.
For every vertex, the network produces a unique identifier in the form of a vector embedding, and
for every edge, it must produce the corresponding embeddings to refer to its source and destination
vertices. The network must learn to ensure that embeddings are different across different vertices,
and that all embeddings that refer to a single vertex are the same.

These embeddings are critical for explicitly laying out the definition of a graph. For instance, while
it is helpful that edge detections are grounded at the midpoint of two vertices, this ultimately does
not address a couple of critical details for correctly constructing the graph. The midpoint does
not indicate which vertex serves as the source and which serves as the destination, nor does it
disambiguate between pairs of vertices that happen to share the same midpoint.

To train the network to produce a coherent set of embeddings we build off of the loss penalty used in
[20]. During training, we have a ground truth set of annotations defining the unique objects in the
scene and the edges between these objects. This allows us to enforce two penalties: that an edge points
to a vertex by matching its output embedding as closely as possible, and that the embedding vectors
produced for each vertex are sufficiently different. We think of the first as “pulling together” all
references to a single vertex, and the second as “pushing apart” the references to different individual
vertices.

We consider an embedding hi ∈ Rd produced for a vertex vi ∈ V . All edges that connect to this
vertex produce a set of embeddings h′ik, k = 1, ...,Ki where Ki is the total number of references to
that vertex. Given an image with n objects the loss to “pull together” these embeddings is:

Lpull =
1∑n

i=1 Ki

n∑
i=1

Ki∑
k=1

(hi − h′ik)
2

To “push apart” embeddings across different vertices we first used the penalty described in [20],
but experienced difficulty with convergence. We tested alternatives and the most reliable loss was a
margin-based penalty similar to [9]:

Lpush =

n−1∑
i=1

n∑
j=i+1

max(0,m− ||hi − hj ||)

Intuitively, Lpush is at its highest the closer hi and hj are to each other. The penalty drops off sharply
as the distance between hi and hj grows, eventually hitting zero once the distance is greater than a
given margin m. On the flip side, for some edge connected to a vertex vi, the loss Lpull will quickly
grow the further its reference embedding h′i is from hi.

The two penalties are weighted equally leaving a final associative embedding loss of Lpull + Lpush.
In this work, we use m = 8 and d = 8. Convergence of the network improves greatly after increasing
the dimension d of tags up from 1 as used in [20].

Once the network is trained with this loss, full construction of the graph can be performed with a
trivial postprocessing step. The network produces a pool of vertex and edge detections. For every
edge, we look at the source and destination embeddings and match them to the closest embedding
amongst the detected vertices. Multiple edges may have the same source and target vertices, vs and
vt, and it is also possible for vs to equal vt.

5

3.3 Support for overlapping detections

In scene graphs, there are going to be many cases where multiple vertices or multiple edges will be
grounded at the same pixel location. For example, it is common to see two distinct relationships
between a single pair of objects: person wearing shirt — shirt on person. The detection pipeline
must therefore be extended to support multiple detections at the same pixel.

One way of dealing with this is to define an extra axis that allows for discrete separation of detections
at a given x, y location. For example, one could split up objects along a third spatial dimension
assuming the z-axis were annotated, or perhaps separate them by bounding box anchors. In either of
these cases there is a visual cue guiding the network so that it can learn a consistent rule for assigning
new detections to a correct slot in the third dimension. Unfortunately this idea cannot be applied as
easily to relationship detections. It is unclear how to define a third axis such that there is a reliable
and consistent bin assignment for each relationship.

In our approach, we still separate detections out into several discrete bins, but address the issue of
assignment by not enforcing any specific assignment at all. This means that for a given detection we
strictly supervise the x, y location in which it is to appear, but allow it to show up in one of several
“slots”. We have no way of knowing ahead of time in which slot it will be placed by the network, so
this means an extra step must be taken at training time to identify where we think the network has
placed its predictions and then enforce the loss at those slots.

We define so and sr to be the number of slots available for objects and relationships respectively.
We modify the network pipeline so that instead of producing predictions for a single object and
relationship at a pixel, a feature vector is used to produce predictions for a set of so objects and sr
relationships. That is, given a feature vector f from a single pixel, the network will for example
output so object class labels, so bounding box predictions, and so embeddings. This is done with
separate fully connected layers predicting the various object and relationship properties for each
available slot. No weights are shared amongst these layers. Furthermore, we add an additional output
to serve as a score indicating whether or not a detection exists at each slot.

During training, we have some number of ground truth objects, between 1 and so, grounded at a
particular pixel. We do not know which of the so outputs of the network will correspond to which
objects, so we must perform a matching step. The network produces distributions across possible
object classes and bounding box sizes, so we try to best match the outputs to the ground truth
information we have available. We construct a reference vector by concatenating one-hot encodings
of the class and bounding box anchor for a given object. Then we compare these reference vectors to
the output distributions produced at each slot. The Hungarian method is used to perform a maximum
matching step such that ground truth annotations are assigned to the best possible slot, but no two
annotations are assigned to the same slot.

Matching for relationships is similar. The ground truth reference vector is constructed by concate-
nating a one-hot encoding of its class with the output embeddings hs and ht from the source and
destination vertices, vs and vt. Once the best matching has been determined we have a correspon-
dence between the network predictions and the set of ground truth annotations and can now apply the
various losses. We also supervise the score for each slot depending on whether or not it is matched
up to a ground truth detection - thus teaching the network to indicate a “full” or “empty” slot.

This matching process is only used during training. At test time, we extract object and relationship
detections from the network by first thresholding on the heatmaps to find a set of candidate pixel
locations, and then thresholding on individual slot scores to see which slots have produced detections.

4 Implementation details

We train a stacked hourglass architecture [21] in TensorFlow [1]. The input to the network is a
512x512 image, with an output resolution of 64x64. To prepare an input image we resize it is so that
its largest dimension is of length 512, and center it by padding with zeros along the other dimension.
During training, we augment this procedure with random translation and scaling making sure to
update the ground truth annotations to ignore objects and relationships that may be cropped out.
We make a slight modification to the orginal hourglass design: doubling the number of features to
512 at the two lowest resolutions of the hourglass. The output feature length f is 256. All losses -
classification, bounding box regression, associative embedding - are weighted equally throughout

6

Figure 3: Predictions on Visual Genome. In the top row, the network must produce all object and
relationship detections directly from the image. The second row includes examples from an easier
version of the task where object detections are provided. Relationships outlined in green correspond
to predictions that correctly matched to a ground truth annotation.

the course of training. We set so = 3 and sr = 6 which is sufficient to completely accommodate the
detection annotations for all but a small fraction of cases.

Incorporating prior detections: In some problem settings, a prior set of object detections may be
made available either as ground truth annotations or as proposals from an independent system. It is
good to have some way of incorporating these into the network. We do this by formatting an object
detection as a two channel input where one channel consists of a one-hot activation at the center of
the object bounding box and the other provides a binary mask of the box. Multiple boxes can be
displayed on these two channels, with the first indicating the center of each box and the second, the
union of their masks.

If provided with a large set of detections, this representation becomes too crowded so we either
separate bounding boxes by object class, or if no class information is available, by bounding box
anchors. To reduce computational cost this additional input is incorporated after several layers
of convolution and pooling have been applied to the input image. For example, we set up this
representation at the output resolution, 64x64, then apply several consecutive 1x1 convolutions to
remap the detections to a feature tensor with f channels. Then, we add this result to the first feature
tensor produced by the hourglass network at the same resolution and number of channels.

Sparse supervision: It is important to note that it is almost impossible to exhaustively annotate
images for scene graphs. A large number of possible relationships can be described between pairs of
objects in a real-world scene. The network is likely to generate many reasonable predictions that are
not covered in the ground truth. We want to reduce the penalty associated with these detections and
encourage the network to produce as many detections as possible. There are a few properties of our
training pipeline that are conducive to this.

For example, we do not need to supervise the entire heatmap for object and relationship detections.
Instead, we apply a loss at the pixels we know correspond to positive detections, and then randomly
sample some fraction from the rest of the image to serve as negatives. This balances the proportion of
positive and negative samples, and reduces the chance of falsely penalizing unannotated detections.

5 Experiments

Dataset: We evaluate the performance of our method on the Visual Genome dataset [14]. Visual
Genome consists of 108,077 images annotated with object detections and object-object relationships,
and it serves as a challenging benchmark for scene graph generation on real world images. Some

7

SGGen (no RPN) SGGen (w/ RPN) SGCls PredCls
R@50 R@100 R@50 R@100 R@50 R@100 R@50 R@100

Lu et al. [18] – – 0.3 0.5 11.8 14.1 27.9 35.0
Xu et al. [26] – – 3.4 4.2 21.7 24.4 44.8 53.0
Our model 6.7 7.8 9.7 11.3 26.5 30.0 68.0 75.2

Table 1: Results on Visual Genome

Figure 4: How detections are distributed across the
six available slots for relationships.

Predicate R@100 Predicate R@100
wearing 87.3 to 5.5

has 80.4 and 5.4
on 79.3 playing 3.8

wears 77.1 made of 3.2
of 76.1 painted on 2.5

riding 74.1 between 2.3
holding 66.9 against 1.6

in 61.6 flying in 0.0
sitting on 58.4 growing on 0.0
carrying 56.1 from 0.0

Table 2: Performance per relationship predicate
(top ten on left, bottom ten on right)

processing has to be done before using the dataset as objects and relationships are annotated with
natural language not with discrete classes, and many redundant bounding box detections are provided
for individual objects. To make a direct comparison to prior work we use the preprocessed version of
the set made available by Xu et al. [26]. Their network is trained to predict the 150 most frequent
object classes and 50 most frequent relationship predicates in the dataset. We use the same categories,
as well as the same training and test split as defined by the authors.

Task: The scene graph task is defined as the production of a set of subject-predicate-object tuples. A
proposed tuple is composed of two objects defined by their class and bounding box and the relationship
between them. A tuple is correct if the object and relationship classes match those of a ground truth
annotation and the two objects have at least a 0.5 IoU overlap with the corresponding ground truth
objects. To avoid penalizing extra detections that may be correct but missing an annotation, the
standard evaluation metric used for scene graphs is Recall@k which measures the fraction of ground
truth tuples to appear in a set of k proposals. Following [26], we report performance on three problem
settings:

SGGen: Detect and classify all objects and determine the relationships between them.

SGCls: Ground truth object boxes are provided, classify them and determine their relationships.

PredCls: Boxes and classes are provided for all objects, predict their relationships.

SGGen corresponds to the full scene graph task while PredCls allows us to focus exclusively on
predicate classification. Example predictions on the SgGen and PredCls tasks are shown in Figure
3. It can be seen in Table 1 that on all three settings, we achieve a significant improvement in
performance over prior work. It is worth noting that prior approaches to this problem require a
set of object proposal boxes in order to produce their predictions. For the full scene graph task
(SGGen) these detections are provided by a Region Proposal Network (RPN) [24]. We evaluate
performance with and without the use of RPN boxes, and achieve promising results even without the
use of proposal boxes - using nothing but the raw image as input. Furthermore, the network is trained
from scratch, and does not rely on pretraining on other datasets.

Discussion: There are a few interesting results that emerge from our trained model. The network
exhibits a number of biases in its predictions. For one, the vast majority of predicate predictions
correspond to a small fraction of the 50 predicate classes. Relationships like “on” and “wearing” tend
to completely dominate the network output, and this is in large part a function of the distribution of
ground truth annotations of Visual Genome. There are several orders of magnitude more examples for

8

“on” than most other predicate classes. This discrepancy becomes especially apparent when looking
at the performance per predicate class in Table 2. The poor results on the worst classes do not have
much effect on final performance since there are so few instances of relationships labeled with those
predicates.

We do some additional analysis to see how the network fills its “slots” for relationship detection.
Remember, at a particular pixel the network produces a set of dectection and this is expressed by
filling out a fixed set of available slots. There is no explicit mapping telling the network which slots it
should put particular detections. From Figure 4, we see that the network learns to divide slots up such
that they correspond to subsets of predicates. For example, any detection for the predicates behind,
has, in, of, and on will exclusively fall into three of the six available slots. This pattern emerges for
most classes, with the exception of wearing/wears where detections are distributed uniformly across
all six slots.

6 Conclusion

The qualities of a graph that allow it to capture so much information about the semantic content of an
image come at the cost of additional complexity for any system that wishes to predict them. We show
how to supervise a network such that all of the reasoning about a graph can be abstracted away into a
single network. The use of associative embeddings and unordered output slots offer the network the
flexibility necessary to making training of this task possible. Our results on Visual Genome clearly
demonstrate the effectiveness of our approach.

7 Acknowledgements

This publication is based upon work supported by the King Abdullah University of Science and
Technology (KAUST) Office of Sponsored Research (OSR) under Award No. OSR-2015-CRG4-
2639.

References
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Yuval Atzmon, Jonathan Berant, Vahid Kezami, Amir Globerson, and Gal Chechik. Learning to generalize
to new compositions in image understanding. arXiv preprint arXiv:1608.07639, 2016.

[3] Yu-Wei Chao, Yunfan Liu, Xieyang Liu, Huayi Zeng, and Jia Deng. Learning to detect human-object
interactions. arXiv preprint arXiv:1702.05448, 2017.

[4] Bo Dai, Yuqi Zhang, and Dahua Lin. Detecting visual relationships with deep relational networks. arXiv
preprint arXiv:1704.03114, 2017.

[5] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas Mikolov, et al. Devise: A
deep visual-semantic embedding model. In Advances in neural information processing systems, pages
2121–2129, 2013.

[6] Andrea Frome, Yoram Singer, Fei Sha, and Jitendra Malik. Learning globally-consistent local distance
functions for shape-based image retrieval and classification. In 2007 IEEE 11th International Conference
on Computer Vision, pages 1–8. IEEE, 2007.

[7] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 580–587, 2014.

[8] Yunchao Gong, Liwei Wang, Micah Hodosh, Julia Hockenmaier, and Svetlana Lazebnik. Improving
image-sentence embeddings using large weakly annotated photo collections. In European Conference on
Computer Vision, pages 529–545. Springer, 2014.

[9] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant mapping.
In Computer vision and pattern recognition, 2006 IEEE computer society conference on, volume 2, pages
1735–1742. IEEE, 2006.

9

[10] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. arxiv preprint. arXiv preprint
arXiv:1703.06870, 2017.

[11] Ronghang Hu, Marcus Rohrbach, Jacob Andreas, Trevor Darrell, and Kate Saenko. Modeling relationships
in referential expressions with compositional modular networks. arXiv preprint arXiv:1611.09978, 2016.

[12] Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and Li Fei-
Fei. Image retrieval using scene graphs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3668–3678, 2015.

[13] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image descriptions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3128–3137,
2015.

[14] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, Michael Bernstein, and Li Fei-Fei. Visual genome:
Connecting language and vision using crowdsourced dense image annotations. 2016.

[15] Yikang Li, Wanli Ouyang, and Xiaogang Wang. Vip-cnn: A visual phrase reasoning convolutional neural
network for visual relationship detection. arXiv preprint arXiv:1702.07191, 2017.

[16] Xiaodan Liang, Lisa Lee, and Eric P Xing. Deep variation-structured reinforcement learning for visual
relationship and attribute detection. arXiv preprint arXiv:1703.03054, 2017.

[17] Wentong Liao, Michael Ying Yang, Hanno Ackermann, and Bodo Rosenhahn. On support relations and
semantic scene graphs. arXiv preprint arXiv:1609.05834, 2016.

[18] Cewu Lu, Ranjay Krishna, Michael Bernstein, and Li Fei-Fei. Visual relationship detection with language
priors. In European Conference on Computer Vision, pages 852–869. Springer, 2016.

[19] Cewu Lu, Hao Su, Yongyi Lu, Li Yi, Chikeung Tang, and Leonidas Guibas. Beyond holistic object
recognition: Enriching image understanding with part states. arXiv preprint arXiv:1612.07310, 2016.

[20] Alejandro Newell and Jia Deng. Associative embedding: End-to-end learning for joint detection and
grouping. arXiv preprint arXiv:1611.05424, 2016.

[21] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for human pose estimation. In
European Conference on Computer Vision, pages 483–499. Springer, 2016.

[22] Bryan A Plummer, Arun Mallya, Christopher M Cervantes, Julia Hockenmaier, and Svetlana Lazebnik.
Phrase localization and visual relationship detection with comprehensive linguistic cues. arXiv preprint
arXiv:1611.06641, 2016.

[23] David Raposo, Adam Santoro, David Barrett, Razvan Pascanu, Timothy Lillicrap, and Peter Battaglia. Dis-
covering objects and their relations from entangled scene representations. arXiv preprint arXiv:1702.05068,
2017.

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In Advances in neural information processing systems, pages 91–99, 2015.

[25] Kilian Q Weinberger, John Blitzer, and Lawrence K Saul. Distance metric learning for large margin nearest
neighbor classification. In Advances in neural information processing systems, pages 1473–1480, 2005.

[26] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by iterative message
passing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[27] Hanwang Zhang, Zawlin Kyaw, Shih-Fu Chang, and Tat-Seng Chua. Visual translation embedding network
for visual relation detection. arXiv preprint arXiv:1702.08319, 2017.

[28] Bohan Zhuang, Lingqiao Liu, Chunhua Shen, and Ian Reid. Towards context-aware interaction recognition.
arXiv preprint arXiv:1703.06246, 2017.

10

