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Abstract

We introduce a novel framework for statistical analysis of populations of non-
degenerate Gaussian processes (GPs), which are natural representations of uncertain
curves. This allows inherent variation or uncertainty in function-valued data to be
properly incorporated in the population analysis. Using the 2-Wasserstein metric we
geometrize the space of GPs with L? mean and covariance functions over compact
index spaces. We prove uniqueness of the barycenter of a population of GPs, as well
as convergence of the metric and the barycenter of their finite-dimensional counter-
parts. This justifies practical computations. Finally, we demonstrate our framework
through experimental validation on GP datasets representing brain connectivity and
climate development. A MATLAB library for relevant computations will be pub-
lished at https://sites.google.com/view/antonmallasto/software.

1 Introduction

Gaussian processes (GPs, see Fig. 1) are the
counterparts of Gaussian distributions (GDs)
over functions, making GPs natural objects to
model uncertainty in estimated functions. With
the rise of GP modelling and probabilistic nu-
merics, GPs are increasingly used to model un-
certainty in function-valued data such as seg-
mentation boundaries [17, 19,30], image regis-
tration [38] or time series [28]. Centered GPs, or
covariance operators, appear as image features
in computer vision [12,16,25,26] and as features
of phonetic language structure [23]. A natural
next step is therefore to analyze populations of
GPs, where performance depends crucially on
proper incorporation of inherent uncertainty or
variation. This paper contributes a principled
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Figure 1: An illustration of a GP, with mean func-

tion (in black) and confidence bound (in grey). The
colorful curves are sample paths of this GP.

framework for population analysis of GPs based on Wasserstein, a.k.a. earth mover’s, distances.

The importance of incorporating uncertainty into population analysis is emphasized by the example
in Fig. 2, where each data point is a GP representing the minimal temperature in the Siberian city
Vanavara over the course of one year [9,34]. A naive way to compute its average temperature curve
is to compute the per-day mean and standard deviation of the yearly GP mean curves. This is shown
in the bottom right plot, and it is clear that the temperature variation is grossly underestimated,
especially in the summer season. The top right figure shows the mean GP obtained with our proposed
framework, which preserves a far more accurate representation of the natural temperature variation.
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Figure 2: Left: Example GPs describing the daily minimum temperatures in a Siberian city (see
Sec. 4). Right top: The mean GP temperature curve, computed as a Wasserstein barycenter. Note
that the inherent variability in the daily temperature is realistically preserved, in contrast with the
naive approach. Right bottom: A naive estimation of the mean and standard deviation of the daily
temperature, obtained by taking the day-by-day mean and standard deviation of the temperature. All
figures show a 95% confidence interval.

We propose analyzing populations of GPs by geometrizing the space of GPs through the Wasserstein
distance, which yields a metric between probability measures with rich geometric properties. We
contribute i) closed-form solutions for arbitrarily good approximation of the Wasserstein distance by
showing that the 2-Wasserstein distance between two finite-dimensional GP representations converges
to the 2-Wasserstein distance of the two GPs; and ii) a characterization of a non-degenerate barycenter
of a population of GPs, and a proof that such a barycenter is unique, and can be approximated by its
finite-dimensional counterpart.

We evaluate the Wasserstein distance in two applications. First, we illustrate the use of the Wasserstein
distance for processing of uncertain white-matter trajectories in the brain segmented from noisy
diffusion-weighted imaging (DWI) data using tractography. It is well known that the noise level and
the low resolution of DWI images result in unreliable trajectories (tracts) [24]. This is problematic as
the estimated tracts are e.g. used for surgical planning [8]. Recent work [17,30] utilizes probabilistic
numerics [29] to return uncertain tracts represented as GPs. We utilize the Wassertein distance to
incorporate the estimated uncertainty into typical DWI analysis tools such as tract clustering [37]
and visualization. Our second study quantifies recent climate development based on data from
Russian meteorological stations using permutation testing on population barycenters, and supplies
interpretability of the climate development using GP-valued kernel regression.

Related work. Multiple frameworks exist for comparing Gaussian distributions (GDs) represented
by their covariance matrices, including the Frobenius, Fisher-Rao (affine-invariant), log-Euclidean
and Wasserstein metrics. Particularly relevant to our work is the 2-Wasserstein metric on GDs, whose
Riemannian geometry is studied in [33], and whose barycenters are well understood [1,4].

A body of work exists on generalizing the aforementioned metrics to the infinite-dimensional
covariance operators. As pointed out in [23], extending the affine-invariant and Log-Euclidean
metrics is problematic as covariance operators are not compatible with logarithmic maps and their
inverses are unbounded. These problems are avoided in [25, 26] by regularizing the covariance
operators, but unfortunately, this also alters the data in a non-unique way. The Procrustes metric
from [23] avoids this, but as it is, only defines a metric between covariance operators.

The 2-Wasserstein metric, on the other hand, generalizes naturally from GDs to GPs, does not require
regularization, and can be arbitrarily well approximated by a closed form expression, making the
computations cheap. Moreover, the theory of optimal transport [5, 6,36] shows that the Wasserstein
metric yields a rich geometry, which is further demonstrated by the previous work on GDs [33].

After this work was presented in NIPS, a preprint appeared [20] which also studies convergence
results and barycenters of GPs in the Wasserstein geometry, in a more general setting.



Structure. Prior to introducing the Wasserstein distance between GPs, we review GPs, their Hilbert
space covariance operators and the corresponding Gaussian measures in Sec. 2. In Sec. 3 we introduce
the Wasserstein metric and its barycenters for GPs and prove convergence properties of the metric
and barycenters, when GPs are approximated by finite-dimensional GDs. Experimental validation is
found in Sec. 4, followed by discussion and conclusion in Sec. 5.

2 Prerequisites

Gaussian processes and measures. A Gaussian process (GP) f is a collection of random variables,
such that any finite restriction of its values (f(z;))X_, has a joint Gaussian distribution, where z; € X,
and X is the index set. A GP is entirely characterized by the pair

m(z) =E[f(z)], k(z,2') = E[(f(z) — m(z))(f(2") = m())] , (1
where m and k are called the mean function and covariance function, respectively. We use the
notation f ~ GP(m, k) for a GP f with mean function m and covariance function k. It follows from
the definition that the covariance function k is symmetric and positive semidefinite. We say that f is
non-degenerate, if k is strictly positive definite. We will assume the GPs used to be non-degenerate.

GPs relate closely to Gaussian measures on Hilbert spaces. Given probability spaces (X, X x, ) and
(Y, Sy, v), we say that the measure v is a push-forward of p if v(A) = pu(T~1(A)) for a measurable
T: X — Y and any A € Xy. Denote this by Tyt = v. A Borel measure p on a separable Hilbert
space H is a Gaussian measure, if its push-forward with respect to any non-zero continuous element
of the dual space of H is a non-degenerate Gaussian measure on R (i.e., the push-forward gives a
univariate Gaussian distribution). A Borel-measurable set B is a Gaussian null set, if y(B) = 0 for
any Gaussian measure p on X. A measure v on H is regular if v(B) = 0 for any Gaussian null set
B. Note that regular Gaussian measures correspond to non-degenerate GPs.

Covariance operators. Denote by L?(X) the space of L2-integrable functions from X to R. The
covariance function & has an associated integral operator K : L?(X) — L?(X) defined by

Kd](z) = /X ke, $)0(s)ds, Vo € L2(X) @

called the covariance operator associated with k. As a by-product of the 2-Wasserstein metric
on centered GPs, we get a metric on covariance operators. The operator K is Hilbert-Schmidt,
self-adjoint, compact, positive, and of trace class, and the space of such covariance operators is a
convex space. Furthermore, the assignment & — K from L?(X x X) is an isometric isomorphism
onto the space of Hilbert-Schmidt operators on L2(X) [7, Prop. 2.8.6]. This justifies us to write both
f~GP(m,K)and f ~ GP(m, k).

Trace of an operator. The Wasserstein distance between GPs admits an analytical formula using
traces of their covariance operators, as we will see below. Let (7, (-, -)) be a separable Hilbert space
with the orthonormal basis {ex }32 ;. Then the frace of a bounded linear operator 7" on H is given by

TrT := Z(Tek,ek> , (3)
k=1

which is absolutely convergent and independent of the choice of the basis if Tr (7T )% < 00, where

T* denotes the adjoint operator of 1" and Tz is the square-root of T'. In this case 7 is called a trace
class operator. For positive self-adjoint operators, the trace is the sum of their eigenvalues.

The Wasserstein metric. The Wasserstein metric on probability measures derives from the optimal
transport problem introduced by Monge and made rigorous by Kantorovich. The p-Wasserstein
distance describes the minimal cost of transporting the unit mass of one probability measure into the
unit mass of another probability measure, when the cost is given by a L? distance [5, 6, 36].

Let (M, d) be a Polish space (complete and separable metric space) and denote by P, (M) the set
of all probability measures y on M satisfying [, d?(x,xzo)du(x) < oo for some xy € M. The
p-Wasserstein distance between two probability measures p, v € P, (M) is given by

P
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where I'[1, V] is the set of joint measures on M x M with marginals ¢ and v. Defined as above, W,
satisfies the properties of a metric. Furhermore, a minimizer in (4) is always achieved.

3 The Wasserstein metric for GPs

We will now study the Wasserstein metric with p = 2 between GPs. For GDs, this has been studied
in [11,14,18,22,33].

From now on, assume that all GPs f ~ GP(m, k) are indexed over a compact X C R™ so that
H := L?(X) is separable. Furthermore, we assume m € L%*(X), k € L*(X x X), so that
observations of f live almost surely in H. Let fi ~ GP(mq, k1) and fo ~ GP(ma, ko) be GPs with
associated covariance operators K7 and K , respectively. As the sample paths of f; and f5 are in H,
they induce Gaussian measures 1, tio € Pa(H) on H, as there is a 1-1 correspondence between GPs
having sample paths almost surely on a L?(X) space and Gaussian measures on L?(X) [27].

The 2-Wasserstein metric between the Gaussian measures i1, o is given by [13]

1 1
W2 (a1, p2) = d2(my,ma) + Tr (K 4+ Ky — 2(K2 KoK 2)7), (5)
where dj is the canonical metric on L?(X). Using this, we get the following definition

Definition 1. Let f1, fo be GPs as above, and the induced Gaussian measures of f1 and fo be 11
and o, respectively. Then, their squared 2-Wasserstein distance is given by

1 1
W2(f1, f2) = W2(p1, p2) = d2(my,ma) + Tr (Ky + Ky — 2(KZ K, KZ2)?) |

Remark 2. Note that the case m1 = mo = 0 defines a metric for the covariance operators K1, Ko,
as (5) shows that the space of GPs is isometric to the cartesian product of L*>(X) and the covariance
operators. We will denote this metric by W3 (K1, Ks). Furthermore, as GDs are just a subset of GPs,
W22 yields also the 2-Wasserstein metric between GDs studied in [11, 14, 18,22, 33].

Barycenters of Gaussian processes. Next, we define and study barycenters of populations of GPs,
in a similar fashion as the GD case in [1].

Given a population {y;}Y., C Py(H) and weights {&; > 0}, with Zfil & = 1,and H a
separable Hilbert space, the solution z of the problem

HEP2(H) “

N
(P) inf > &W3 (i, p),
=1

is the barycenter of the population {s;}I¥., with barycentric coordinates {&;} Y ;. The barycenter
for GPs is defined to be the barycenter of the associated Gaussian measures.

Remark 3. The following theorems require the assumption that the barycenter is non-degenerate, it
is still a conjecture that the barycenter of non-degenerate GPs is nondegenerate [20], but this holds
in the finite-dimensional case of GDs.

We now state the main theorem of this section, which follows from Prop. 5 and Prop. 6 below.

Theorem 4. Ler { fi}ﬁ17b€ a population of GPs with f; ~ GP(m;, K;), then there exists a unique

barycenter f ~ GP(m, K) with barycentric coordinates (£;)X_. If f is non-degenerate, then m and
K satisfy

Proposition 5. Let {y;}Y.| C Po(H) and ji be a barycenter with barycentric coordinates (£;)_ ;.
Assume p; is regular for some 1, then [i is the unique minimizer of (P).

Proof. We first show that the map v — W (u,v) is convex, and strictly convex if j is a regular
measure. To see this, let v; € Po(H) and v} € I'[u, v;] be the optimal transport plans between £ and



v; fori = 1,2, then My} + (1 — A\)vs € T, Ava + (1 — A)we] for A € [0, 1]. Therefore

W22(,LL,>\I/1 + (1 - )‘)VQ) = d2(1’7y)d’y

inf /
vET [ Avi+(1=Nva] J w1
< / 02 (2, y)d(M7 + (1— A)n)
HXH
= AW3 (11, 11) + (1 — NW3 (1, 1),

which gives convexity. Note that for A €]0, 1], the transport plan A\y; + (1 — A)75 splits mass.
Therefore it cannot be the unique optimal plan between p and (1 — t)vq + tvo. As u is regular,
the optimal plan does not split mass, as it is induced by a map [3, Thm. 6.2.10], so we have strict
convexity. From this follows the strict convexity of the object function in (P). O

Next we characterize the barycenter, assuming it is non-degenerate, in the spirit of the finite-
dinemsional case in [1, Thm. 6.1].

Proposition 6. Let {f;}Y., be a population of centered GPs, f; ~ GP(0,K;). Then (P) has a
unique solution f ~ GP(0, K). If f is non-degenerate, then K is the unique bounded self-adjoint
positive linear operator satisfying

ZN:@ (K%K,;K%)% - K. (6)
=1

Proof. Existence can be shown following the proof for the finite dimensional case [1, Prop. 4.2],
which uses multimarginal optimal transport; this appears in the preprint [20, Cor. 9]. For the
characterization, assume f to be non-degenerate, and let

N
i=1

be the barycentric expression, and assume that the minimizer f of BC is non-degenerate. Let
0 < A1, Ag, ... be the eigenvalues of K with eigenfunctions ey, ea, .... Then, by [10, Prop. 2.2.] the
transport map between f and f, is given by

Ty (z) = ZZ <x’ej><(K§Kk§§)§ej’ei>ei(x) . (7

Using [6, Thm. 8.4.7], we can write the gradient of the barycentric expression. We furthermore
know that the expression is strictly convex, thus the gradient at f equals zero if and only if f is the
minimizer. Now let Id be the identity operator, then

VBC(f) =) (T —1d) =0,

i=1
substituting in (7), we get
N 1
1 1 2
Y& (K?K}K?) - K.
i=1

O

Proof of Theorem 4. Use Prop. 6, the properties of a barycenter in a Hilbert space, and that the space
of GPs is isometric to the cartesian product of L2(X) and the covariance operators. O

Remark 7. For the practical computations of barycenters of GDs approximating GPs, to be discussed
below, a fixed-point iteration scheme with a guarantee of convergence exists [4, Thm. 4.2].



Convergence properties. Now, we show that the 2-Wasserstein metric for GPs can be approxi-
mated arbitrarily well by the 2-Wasserstein metric for GDs. This is important, as in real-life we
observe finite-dimensional representations of the covariance operators.

Let {e;}°, be an orthonormal basis for L?(X). Then we define the GDs given by restrictions m;,,
and K, of m; and K;, 1 =1,2,0onV,, = span(ey, ..., e,) by

min(2) =Y _(ma, ex)er(@), Kind =Y (¢, ex)Kiex, Y6 € Vi, Yo € X, ®)
k=1 k=1

and prove the following:

Theorem 8. The 2-Wasserstein metric between GDs on finite samples converges to the Wasserstein
metric between GPs, that is, if fin ~ N (min, Kin), fi ~ GP(m;, K;) fori = 1,2, then

Jim W3 (fins fon) = W3 (f1, f2).

By the same argument, it also follows that W (-, -) is continuous in both arguments in operator norm
topology.

Proof. K;, — K, in operator norm as n — oco. Because taking a sum, product and square-root of
operators are all continuous with respect to the operator norm, it follows that

1 1 1 1
Kip+ Koy — 2(K2 Kon K22 = Ki + Ky — 2(Kf Ko K2)%.
Note that for any sequence A,, — A with convergence in operator norm, we have

0 Cauchy Schwarz >
TrA—TrA,| <> (A= An)en, ex)] Z (A= Aer| 2 M . 9

as lim sup |[(A— Ap)v| 2 = 0 due to the convergence in operator norm. Here MCT stands
n—oo 'UELE, (X)

for the monotone convergence theorem. Thus we have

W2(fins fon) = d2(min, man) + Tr (K1 + Kon — 2(K§nK2nK§n)%)
"2 Ry, ma) + Tr (K + Ky — 2(K7 Ko K2 )3)
=W;3(f1, f2).
0

The importance of Proposition 8 is that it justifies computations of distances using finite representa-
tions of GPs as approximations for the infinite-dimensional case.

Next, assuming the barycenter is non-degenerate, we show that we can also approximate the barycenter
of a population of GPs by computing the barycenters of populations of GDs converging to these GPs.
In the degenerate case, see [20, Thm. 11].

Theorem 9. Assuming the barycenter of a population of GPs is non-degenerate, then it varies
continuously, that is, the map (fi, ..., fn) — f is continuous in the operator norm. Especially, this
implies that the barycenter f,, of the finite-dimensional restrictions { f;n }I\.; converges to f.

First, we show that if f; ~ GP(m;, K;) and f = GP(m, K), then that the map (K1, ..., Ky) — K
is continuous. Continuity of (my, ..., my) — m is clear.

Let K be a covariance operator, denote its maximal eigenvalue by Ap,.x(K). Note that this map is
well-defined, as K is also bounded, normal operator, thus Ayax (K) = || K||op < 0o holds. Now let
a = (Ky,..., Ky) be a population of covariance operators, denote i as a(i) = K, then define the

continuous function 3 and correspondence (a set valued map) ® as follows

at— (Z 67, maa: Z))) ) (I) ra— KB(a) = {K € HS(H) | 5(3)] 2 K 2 0}



Then the fixed point of (6) can be found in ®(a), as the map
N 1
F(K) =& (KiKK?)®
i=1

is a compact operator, ®(a) is bounded, and so the closure of F'(®(a)) is compact. Furthermore, do
note that F' is a map from ®(a) to itself, so by Schauder’s fixed point theorem, there exists a fixed
point.

Now, we want to show that this correspondence is continuous in order to put the Maximum theorem to

use. A correspondence ® : A — B is upper hemi-continuous at a € A, if all convergent sequences

(an) € A, (by) € ®(a,) satisfy lim b, = b, lim a, = a and b € ®(a). The correspondence is
n—oo n—oo

lower hemi-continuous at a € A, if for all convergent sequences a,, — a in A and any b € ®(a),
there is a subsequence a,, , so that we have a sequence b, € ®(ay,, ) which satisfies b, — b. If the
correspondence is both upper and lower hemi-continuous, we say that it is continuous. For more
about the Maximum theorem and hemi-continuity, see [2].

Lemma 10. The correspondence ® : a — Kpg(q) is continuous as correspondence.

Proof. First, we show the correspondence is lower hemi-continuous. Let (a,,)52 ; be a sequence of
populations of covariance operators of size IV, that converges a,, — a. Use the shorthand notation
Bn = B(ay), then B, — Bo := f(a),and letb € ®(a) = Kpz__.

Pick subsequence (ay,, )32, so that (8, )52, is increasing or decreasing. If it was decreasing, then
Kp., C© Kg, forevery ng. Thus the proof would be finished by choosing b, = b for every k.

Hence assume the sequence is increasing, so that Kg, C K/gnk+1 . Now let y(t) = (1 — t)by + tb,
where by € Kg,, and let t,,, be the solution to (1 — t)51 + t8oc = Bn,,, then by, := y(t,, ) € Kﬁnk
and b, — b.

For upper hemicontinuity, assume that a,, — a, b,, € Kg,_ and that b,, — b. Then using the
definition of ®, we get the positive sequence ((5,I — b, )z, z) > 0 indexed by n, then by continuity
and the positivity of this sequence it follows that

0< nli_{r;()((ﬁnl —bn)z,x) = (Bl — b)z, ).

One can check the criterion b > 0 similarly, and so we are done. O

Proof of Theorem 9. Now let a = (K, ..., K,,), f(K,a) := Zf\; EWE(K,K;) and F(K) =
Zij\il & (K2 K;Kz)2, then the unique minimizer K of f is the fixed point of . Furthermore, the
closure cl(F(Kp(a))) is compact, a — cl(F(Kpg(a))) is a continuous correspondence as the closure
of composition of two continuous correspondence. Additionally, we know that K € cl(F(Kp(,))).
so applying the maximum theorem, we have shown that the barycenter of a population of covariance
operators varies continuously, i.e. the map (K7, ..., Ky) — K is continuous, finishing the proof. [J

4 Experiments

We illustrate the utility of the Wasserstein metric in two different applications: Processing of uncertain
white-matter tracts estimated from DWI, and analysis of climate development via temperature curve
GPs.

Experimental setup. The white-matter tract GPs are estimated for a single subject from the
Human Connectome Project [15, 32, 35], using probabilistic shortest-path tractography [17]. See
the supplementary material for details on the data and its preprocessing. From daily minimum
temperatures measured at a set of 30 randomly sampled Russian metereological stations [9, 34],
GP regression was used to estimate a GP temperature curve per year and station for the period
1940 — 2009 using maximum likelihood parameters. All code for computing Wasserstein distances
and barycenters was implemented in MATLAB and ran on a laptop with 2,7 GHz Intel Core i5
processor and 8 GB 1867 MHz DDR3 memory. On the temperature GP curves (represented by 50
samples), the average runtime of the 2-Wasserstein distance computation was 0.048 £ 0.014 seconds
(estimated from 1000 pairwise distance computations), and the average runtime of the 2-Wasserstein
barycenter of a sample of size 10 was 0.69 = 0.11 seconds (estimated from 200 samples).



White-matter tract processing. The inferior longitudinal fasiculus is a white-matter bundle which
splits into two separate bundles. Fig. 3 (top) shows the results of agglomerative hierarchical clustering
of the GP tracts using average Wasserstein distance. The per-cluster Wasserstein barycenter can
be used to represent the tracts; its overlap with the individual GP mean curves is shown in Fig. 3
(bottom).

The individual GP tracts are visualized via their mean curves, but they are in fact a population of GPs.
To confirm that the two clusters are indeed different also when the covariance function is taken into
account, we perform a permutation test for difference between per-cluster Wasserstein barycenters,
and already with 50 permutations we observe a p-value of p = 0.0196, confirming that the two
clusters are significantly different at a 5% significance level.

Quantifying climate change. Using the Wasserstein
barycenters we perform nonparametric kernel regression to
visualize how yearly temperature curves evolve with time,
based on the Russian yearly temperature GPs. Fig. 4 shows
snapshots from this evolution, and a continuous movie ver-
sion climate.avi is found in the supplementary material.
The regressed evolution indicates an increase in overall
temperature as we reach the final year 2009. To quan-
tify this observation, we perform a permutation test using
the Wasserstein distance between population Wasserstein
barycenters to compare the final 10 years 2000-2009 with
the years 1940-1999. Using 50 permutations we obtain a
p-value of 0.0392, giving significant difference in temper-
ature curves at a 95% confidence level.

Significance. Note that the state-of-the-art in tract anal-
ysis as well as in functional data analysis would be to
ignore the covariance of the estimated curves and treat
the mean curves as observations. We contribute a frame-
work to incorporate the uncertainty into the population
analysis — but why would we want to retain uncertainty?
In the white-matter tracts, the GP covariance represents
spatial uncertainty in the estimated curve trajectory. The
individual GPs represent connections between different
endpoints. Thus, they do not represent observations of
the exact same trajectory, but rather of distinct, nearby
trajectories. It is common in diffusion MRI to represent
such sets of estimated trajectories by a few prototype tra-
jectories for visualization and comparative analysis; we obtain prototypes through the Wasserstein
barycenter. To correctly interpret the spatial uncertainty, e.g. for a brain surgeon [8], it is crucial
that the covariance of the prototype GP represents the covariances of the individual GPs, and not
smaller. If you wanted to reduce uncertainty by increasing sample size, you would need more images,
not more curves — because the noise is in the image. But more images are not usually available. In
the climate data, the GP covariance models natural temperature variation, not measurement noise.
Increasing the sample size decreases the error of the temperature distribution, but should not decrease
this natural variation (i.e. the covariance).

Figure 3: Top: The mean functions of
the individual GPs, colored by cluster
membership, in the context of the corre-
sponding T1-weighted MRI slices. Bot-
tom: The tract GP mean functions and
the cluster mean GPs with 95% confi-
dence bounds.

5 Discussion and future work

We have shown that the Wasserstein metric for GPs is both theoretically and computationally well-
founded for statistics on GPs: It defines unique barycenters, and allows efficient computations
through finite-dimensional representations. We have illustrated its use in two different applications:
Processing of uncertain estimates of white-matter trajectories in the brain, and analysis of climate
development via GP representations of temperature curves. We have seen that the metric itself is
discriminative for clustering and permutation testing, and we have seen how the GP barycenters allow
truthful interpretation of uncertainty in the white matter tracts and of variation in the temperature
curves.
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Figure 4: Snapshots from the kernel regression giving yearly temperature curves 1940-2009. We
observe an apparent temperature increase which is confirmed by the permutation test.

Future work includes more complex learning algorithms, starting with preprocessing tools such as
PCA [31], and moving on to supervised predictive models. This includes a better understanding of
the potentially Riemannian structure of the infinite-dimensional Wasserstein space, which would
enable us to draw on existing results for learning with manifold-valued data [21].

The Wasserstein distance allows the inherent uncertainty in the estimated GP data points to be
appropriately accounted for in every step of the analysis, giving truthful analysis and subsequent
interpretation. This is particularly important in applications where uncertainty or variation is crucial:
Variation in temperature is an important feature in climate change, and while estimated white-matter
trajectories are known to be unreliable, they are used in surgical planning, making uncertainty about
their trajectories a highly relevant parameter.
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