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Abstract

We initiate a systematic investigation of distribution learning (density estimation)
when the data is distributed across multiple servers. The servers must communicate
with a referee and the goal is to estimate the underlying distribution with as few
bits of communication as possible. We focus on non-parametric density estimation
of discrete distributions with respect to the `1 and `2 norms. We provide the first
non-trivial upper and lower bounds on the communication complexity of this basic
estimation task in various settings of interest. Specifically, our results include the
following:

1. When the unknown discrete distribution is unstructured and each server has
only one sample, we show that any blackboard protocol (i.e., any protocol
in which servers interact arbitrarily using public messages) that learns the
distribution must essentially communicate the entire sample.

2. For the case of structured distributions, such as k-histograms and monotone
distributions, we design distributed learning algorithms that achieve signif-
icantly better communication guarantees than the naive ones, and obtain
tight upper and lower bounds in several regimes. Our distributed learning
algorithms run in near-linear time and are robust to model misspecification.

Our results provide insights on the interplay between structure and communication
efficiency for a range of fundamental distribution estimation tasks.

1 Introduction

1.1 Background and Motivation

We study the problem of distribution learning (or density estimation) in a distributed model, where
the data comes from an unknown distribution and is partitioned across multiple servers. The main
goal of this work is to explore the inherent tradeoff between sample size and communication for non-
parametric density estimation of discrete distributions. We seek answers to the following questions:
What is the minimum amount of communication required to learn the underlying distribution of the
data? Is there a communication-efficient learning algorithm that runs in polynomial time? We obtain
the first non-trivial algorithms and lower bounds for distributed density estimation. Before we state
our results, we provide the relevant background.

Density Estimation. Distribution learning or density estimation is the following prototypical
inference task: Given samples drawn from an unknown target distribution that belongs to (or is
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well-approximated by) a given family of distributions P , the goal is to approximately estimate (learn)
the target distribution. Estimating a distribution from samples is a fundamental unsupervised learning
problem that has been studied in statistics since the late nineteenth century [36]. The classical statistics
literature focuses primarily on the sample complexity of distribution learning, i.e., on the information-
theoretic aspects of the problem. More recently, there has been a large body of work in computer
science on this topic with an explicit focus on computational efficiency [12, 11, 7, 8, 1, 13, 2]. We
emphasize that the aforementioned literature studies density estimation in the centralized setting,
where all the data samples are available on a single machine.

Distributed Computation. In recent years, we have seen an explosion in the amount of data that
has been generated and collected across various scientific and technological domains [10]. Due to the
size and heterogeneity of modern datasets, there is a real need for the design of efficient algorithms
that succeed in the distributed model, when the data is partitioned across multiple servers. A major
bottleneck in distributed computation is the communication cost between individual machines. In
practice, communication may be limited by bandwidth constraints and power consumption, leading
to either slow or expensive systems (see, e.g., [23] for a survey). Hence, the general problem of
designing communication-efficient distributed protocols is of fundamental importance in this setting.
In recent years, a number of statistical estimation problems have been algorithmically studied in the
distributed setting [3, 16, 15, 40, 21, 30, 24, 33, 5, 29]. To the best of our knowledge, the problem of
nonparametric density estimation has not been previously studied in this context.

This Work: Distributed Density Estimation. We initiate a systematic investigation of density
estimation in the distributed model. We believe that this is a fundamental problem that merits
investigation in its own right. Also, the problem of distributed density estimation arises in various real-
data applications when it is required to reconstruct the data distribution from scattered measurements.
Examples include sensor networks and P2P systems (see, e.g., [35, 32, 27, 41, 37] and references
therein).

We explore the tradeoff between communication and statistical efficiency for a number of funda-
mental nonparametric density estimation problems. Specifically, we insist that our algorithms are
sample-efficient and our goal is to design distributed protocols using a minimum amount of com-
munication. As our main contribution, we provide the first non-trivial upper and lower bounds on
the communication complexity of density estimation for a range of natural distribution families
that have been extensively studied in the centralized regime. The main conceptual message of our
findings is the following: When the underlying discrete distribution is unstructured, no non-trivial
communication protocol is possible. In sharp contrast, for various families of structured distributions,
there are non-trivial algorithms whose communication complexity significantly improves over naive
protocols. It should be noted that all our algorithms are in addition computationally efficient.

Communication Model for Density Estimation. We now informally describe the communication
model used in this paper. We refer to the preliminaries in Section 2 for formal definitions.

The model is parameterized by the number of samples per server (player), which we denote by
s. There are a specific number of servers, each holding s independent samples from an unknown
distribution P . We call these servers sample-holding players. Additionally, there is a server that
holds no samples from P . We call this server a referee or fusion center. In communication protocols
considered in this work, servers exchange messages, and at the end of the protocol, the referee outputs
an accurate hypothesis distribution P̂ . More precisely, we want the the hypothesis P̂ to satisfy
d(P̂ , P ) ≤ ε with high probability (over the samples and internal randomness), where the metric d is
either the `1-norm (statistical distance) or the `2-norm.

We study two variants of this model. In the simultaneous communication model, each sample-holding
player sends a message (of one or more bits) to the referee once, based only on the samples she holds
and public randomness. In the blackboard model, the sample-holding players’ messages are public,
and the communication protocol does not restrict the number of times a player may speak. The goal
is to minimize the amount of communication between the players and the referee, while transmitting
enough information about the samples so that the underlying distribution P can be approximately
recovered from the transcript of the communication.
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Table 1: Communication complexity bounds for density estimation of unstructured distributions (for
success probability 9/10)

Regime CCs,1/10(ADE(Dn, 1, ε, α)) CC→s,1/10(ADE(Dn, 1, ε, α))

s = 1 Ω( nε2 log n) O( nε2 log n)
s = Θ(n) Ω(n log 1

ε ) O( nε2 )
s = Θ( nε2 ) Ω(n log 1

ε ) O(n log 1
ε )

1.2 Our Contributions

In this section, we provide informal statements of our main results. For the formal statements of
all our results the reader is referred to the full version of the paper. We will require the following
notation.‘ We use n to denote an upper bound on the domain size of our distributions and α to denote
the total sample size. Without loss of generality, we will assume that the domain of the distributions
is the set [n] := {1, 2, . . . , n}. The `1 (resp. `2) distance between two discrete distributions is the
`1 (resp. `2) norm of the difference between their probability vectors. We note that the sample
sizes in this section correspond to high constant probability of success. This can be boosted to high
probability by standard techniques.

We start by pointing out the baseline result that we compare against. The naive protocol to perform
distribution density estimation is the following: all the servers (players) communicate their entire
sample to the referee, who applies a centralized estimator to output an accurate hypothesis. The
communication complexity of this approach is Θ(α log n) bits. The obvious question is whether
there exists a protocol with significantly smaller communication complexity.

Unstructured Discrete Distributions. Our starting point is the basic setting in which the under-
lying distribution over n elements is potentially arbitrary and each server (player) holds exactly
one sample from an unknown distribution over a domain of size n. (This basic setting is motivated
by practical applications, e.g., aggregation of cell-phone data, etc.) In the centralized setting, it
is a folklore fact (see, e.g., [19]) that Θ(n/ε2) samples are necessary and sufficient to learn an
unstructured distribution supported on n elements within `1-error ε. This fact in turn implies that the
naive distributed protocol uses O( nε2 log n) bits. We show that this protocol is best possible, up to
constant factors:
Theorem 1. Suppose Θ(n/ε2) samples from an unknown distribution P over [n] are distributed
such that each player has exactly one sample. Then learning P within `1-distance ε requires
Ω((n/ε2) log n) bits of communication in the blackboard model.

We remark that a blackboard model captures a very general interaction between sample-holding
players and the referee. The players are allowed to send messages in arbitrary order and share partial
information about their samples from [n], perhaps using much fewer than log n bits. For instance, if
one of the players has revealed her sample, other players may just notify everyone that they hold the
same (or a correlated) sample, using O(1) extra bits. Thus, our lower bound excludes the possibility
of non-trivial protocols that do better than essentially having each machine transmit its entire sample.
This statement might seem intuitively obvious, but its proof is not straightforward.

By a standard packing argument, we also show a communication lower bound of Ω(n log 1
ε ) for all

protocols that estimate an unstructured discrete distribution over [n] in `1-distance. In the regime
where there are Θ(n/ε2) samples per machine, we show that there is a simple estimator that achieves
this lower bound. (See Table 1 for instantiations of the theorems, and Section 2 for the formal
definitions.)

Structured Discrete Distributions. In contrast to the unstructured case, we design non-trivial
protocols that significantly improve upon the naive protocols in several regimes of interest.

Our main algorithmic results are the first communication-efficient algorithms for robust learning
of histogram distributions. A k-histogram distribution over [n] is a probability distribution that is
piecewise constant over some set of k intervals over [n]. Histograms have been extensively studied in
statistics and computer science. In the database community, histograms constitute the most common

3



tool for the succinct approximation of data [9, 38, 25, 26, 1]. In statistics, many methods have been
proposed to estimate histogram distributions in a variety of settings [22, 34, 17, 31].

The algorithmic difficulty in learning histograms lies in the fact that the location and “size” of
these intervals is a priori unknown. In the centralized setting, sample and computationally efficient
algorithms for learning histograms have been recently obtained [7, 8, 2]. Our distributed learning
algorithm for the `1-metric builds on the recent centralized algorithm of [2]. In particular, we have
the following:
Theorem 2. For the problem of learning k-histograms with `1 error ε, the following hold:

1. In the regime of one sample per player, there exists a protocol that usesO(kε log n+ k
ε3 log k

ε )

bits of communication. Furthermore, any successful protocol must use Ω(k log n
k + k

ε2 log k)
bits of communication.

2. In the regime of Θ( kε2 ) samples per player, there exists a successful protocol with O(kε log n)

bits of communication. Furthermore, any protocol must use Ω(k log n
k + k log 1

ε ) bits of
communication.

We now turn our attention to learning under the `2-metric. Previous centralized algorithms for this
problem [1] work in a “bottom-up” fashion. Unfortunately, this approach does not seem amenable
to distributed computation for the following reason: it seems impossible to keep track of a large
number of intervals with limited communication. Instead, we devise a new “top-down” algorithm that
starts with a small number of large intervals and iteratively splits them based on the incurred `2-error.
A careful application of this idea in conjunction with some tools from the streaming literature—
specifically, an application of the Johnson-Lindenstrauss tranform to estimate the `22 error using few
bits of communication—yields the following result:
Theorem 3. For the problem of learning k-histograms with `2 error ε, the following hold:

1. In the regime of s = Õ(k log n) samples per player, there exists a protocol that uses
O( 1

ε2 log n) bits of communication. Furthermore, any successful protocol must use
Ω(k log n

k + 1
ε log εk) bits of communication.

2. In the regime of s = ω(k log n) samples per player, there exists a protocol with Õ( k
sε2 log n)

bits of communication. Furthermore, any successful protocol must use Ω(k log n
k + 1

ε log εk)
bits.

We remark that the above algorithms are robust to model misspecification, i.e., they provide near-
optimal error guarantees even if the input distribution is only close a histogram. As an immediate
corollary, we also obtain communication efficient learners for all families of structured discrete
distributions that can be well-approximated by histograms. Specifically, by using the structural
approximation results of [6, 7, 20], we obtain sample-optimal distributed estimators for various
well-studied classes of structured densities including monotone, unimodal, log-concave, monotone
hazard rate (MHR) distributions, and others. The interested reader is referred to the aforementioned
works.

For specific families of structured distributions, we may be able to do better by exploiting additional
structure. An example of interest is the family of monotone distributions. By a result of Birge [4]
(see also [14] for an adaptation to the discrete case), every monotone distribution over [n] is ε-close
in `1-distance to a k-histogram distribution, for k = O(ε−1 log n). Hence, an application of the
above theorem yields a distributed estimation algorithm for monotone distributions. The main insight
here is that each monotone distribution is well-approximated by an oblivious histogram, i.e., one
whose intervals are the same for each monotone distribution. This allows us to essentially reduce the
learning problem to that of learning a discrete distribution over the corresponding domain size. A
reduction in the opposite direction yields the matching lower bound. Please refer to the full version
for more details.

1.3 Comparison to Related Work

Recent works [40, 21, 24, 5] study the communication cost of mean estimation problems of structured,
parametrized distributions. These works develop powerful information theoretic tools to obtain lower
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bounds for parameter estimation problems. In what follows, we briefly comment why we need to
develop new techniques by pointing out fundamental differences between the two problems.

First, our most general results on distributed density estimation do not assume any structure on the
distribution (and thus, our learning algorithms are agnostic). This is in contrast to the problems
considered before, where the concept classes are restricted (Gaussians, linear separators) and enjoy a
lot of structure, which is often leveraged during the design of estimators.

Secondly, while we also consider more structured distributions (monotone, k-histograms), the
techniques developed in the study of distributed parameter estimation do not apply to our problems.
Specifically, those results reduce to the problem of learning a high-dimensional vector (say, where
each coordinate parametrizes a spherical Gaussian distribution), where the value at each coordinate
is independent of the others. The results in distributed parameter estimation crucially use the
coordinate independence feature. The lower bounds essentially state that the communication cost of a
d-dimensional parameter vector with independent components grows proportionally to the dimension
d, and hence one needs to estimate each coordinate separately.

2 Preliminaries

Notation. For any positive integer n, we write [n] to denote {1, . . . , n}, the set of integers between
1 and n. We think of a probability distribution P on [n] as a vector of probabilities (p1, . . . , pn) that
sum up to 1. We write X ∼ P to denote that a random variable X is drawn from P . Sometimes
we use the notation P (i) to denote P[X = i], where X ∼ P . We consider three families of discrete
distributions:

• Dn: the family of unstructured discrete distributions on [n],

• Hn,k: the family of k-histogram distributions on [n],

• Mn: the family of monotone distributions on [n].

We use `p metrics on spaces of probability distributions. For two distributions P and P ′ on [n], their
`p-distance, where p ∈ [1,∞), is defined as

‖P − P ′‖p :=

(
n∑
i=1

|P (i)− P ′(i)|p
)1/p

.

In this work we focus on the cases of p = 1 and p = 2, in which ‖P − P ′‖1 =
∑n
i=1 |P (i)− P ′(i)|

and ‖P − P ′‖2 =
√∑n

i=1(P (i)− P ′(i))2.

For a given distribution Q ∈ Dn and family P ⊆ Dn of distributions, we denote the `p-distance of Q
to P as distp(Q,P) := infP∈P ‖Q− P‖p.

Packings and the Packing Number. Let (X, ‖ · ‖p) be a normed space, E ⊂ X , and r > 0 be
a radius. E′ = {e1, . . . , en} ⊂ E is an (r, p)-packing of E if mini 6=j ‖ei − ej‖p > r. The (r, p)-
packing numberNpack

r (E, p) is the cardinality of the largest (r, p)-packing ofE, i.e.,Npack
r (E, p) :=

sup{|E′| | E′ ⊂ E is an (r, p)-packing of E}.

Density Estimation. We now formally introduce density estimation problems considered in this
paper. First, for a given n ∈ Z+, let P ⊆ Dn be a family of distributions on [n], ε ∈ [0,∞), and
p ∈ [1,∞). The goal of the density estimation problem DE(P, p, ε) is to output, for any unknown
distribution P ∈ P , a distribution Q ∈ Dn such that ‖P −Q‖p ≤ ε. Note that in this problem, we
are guaranteed that the unknown distribution belongs to P .

Now we define a version of the problem that allows inputs from outside of the class of interest. For a
given n ∈ Z+, let P ⊆ P be a family of distributions on [n]. Also let ε ∈ [0,∞), p ∈ [1,∞), and
α ∈ [1,∞). The goal of the agnostic density estimation problem ADE(P, p, ε, α) is to output, for
any unknown distribution P ∈ Dn, a distribution Q ∈ Dn such that ‖P −Q‖p ≤ α ·distp(P,P) + ε,
with high probability. The reason for this version of the problem is that in practice one often has to
deal with noisy or non-ideal data. Hence if the unknown distribution is close to belonging to a class
P , we wish to output a near distribution as well.
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Estimators and Sample Complexity. For any distribution estimation problem A involving an un-
known distribution P—such as DE(P, p, ε) and ADE(P, p, ε, α) defined above—we now introduce
the notion of an estimator. For any m ∈ N, an estimator θ : [n]m × {0, 1}∞ → Dn is a function that
takes a sequence ~X = (X1, . . . Xm) of m independent samples from P and sequence R of uniformly
and independently distributed random bits, and outputs a hypothesis distribution P̂ := θ(~X, R). We
say that the estimator solves A with probability 1 − δ if for any unknown distribution P allowed
by the formulation of problem A, the probability that P̂ is a correct solution to A is at least 1− δ.
For instance, if A is the ADE(P, p, ε, α) problem, the hypothesis distribution P̂ produced by the
estimator should satisfy the following inequality for any distribution P ∈ Dn:

P
[
‖P̂ − P‖p ≤ α · distp(P,P) + ε

]
≥ 1− δ.

The sample complexity of A with error δ, which we denote SCδ(A), is the minimum number of
samples m, for which there exists an estimator θ : [n]m × {0, 1}∞ → Dn that solves A with
probability 1− δ.

As a simple application of this notation, note that SCδ(DE(P, p, ε)) ≤ SCδ(ADE(P, p, ε, α)) for
any α ∈ [1,∞). This follows from the fact that in DE(P, p, ε), one has to solve exactly the same
problem but only for a subset of input distributions in ADE(P, p, ε, α). Since the input P for
DE(P, p, ε)) comes from P , we have distp(P,P) = 0.

Communication Complexity of Density Estimation. In all of our communication models, when
a player wants to send a message, the set of possible messages is prefix-free, i.e., after fixing both the
randomness and the set of previous messages known to the player, there are no two possible messages
such that one is a proper prefix of the other. Furthermore, for a protocol Π in any of them, we
write CostP(Π) to denote the (worst-case) communication cost of Π on P defined as the maximum
length of messages that can be generated in the protocol if the unknown distribution belongs to P .
Similarly, we write CostP(Π) to denote the expected communication cost of Π on P defined as
the maximum expected total length of messages exchanged, where the maximum is taken over all
unknown distributions in P and the expectation is taken over all assignments of samples to machines
and settings of public randomness. The following inequality always holds: CostP(Π) ≤ CostP(Π).

Simultaneous communication. In the simultaneous communication model, each sample-holding
player sends a message to the referee once, based only on the samples she holds and public
randomness.
For a density estimation problem A, let P be the family of possible unknown distributions P .
We write CC→s,δ(A) to denote (s, δ)-simultaneous communication complexity of A defined
as the minimum CostP(Π) over all simultaneous communication protocols Π that solve A
with probability at least 1− δ for any P ∈ P with s samples per sample-holding player and
an arbitrary number of sample-holding players.

Blackboard communication. In this model, each message sent by each player is visible to all
players. The next player speaking is uniquely determined by the previously exchanged
messages and public randomness. We use this model to prove lower bounds. Any lower
bound in this model applies to the previous communication models. More specifically, we
show lower bounds for the average communication complexity, which we define next.
For a density estimation problem A, let P be the family of possible unknown distributions
P . We write CCs,δ(A) to denote (s, δ)-average communication complexity of A defined
as the infimum CostP(Π) over all blackboard protocols Π that solve A with probability
at least 1 − δ for any P ∈ P with s samples per sample-holding player and an arbitrary
number of sample-holding players.

The communication complexity notions that we just introduced remain in the following relationship.
Claim 1. For any density estimation problem A,

CCs,δ(A) ≤ CC→s,δ(A).

The claim follows from the fact that simultaneous communication is a specific case of blackboard
communication. Additionally, expected communication cost lower bounds worst-case communication
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cost. All lower bounds that we prove are on the average communication complexity in blackboard
communication.

A Trivial Upper Bound. There is always a trivial protocol that leverages the sample complexity
of the density estimation. Since SCδ(A) samples are enough to solve the problem, it suffices that
sample-holding players communicate this number of samples to the referee. Since each sample can
be communicated with at most dlog ne bits, we obtain the following upper bound on the simultaneous
communication complexity.
Claim 2. For any density estimation problem A and any s ≥ 1,

CC→s,δ(A) ≤ SCδ(A) · dlog ne.

In this paper, we investigate whether there exist protocols that significantly improve on this direct
upper bound.

Randomness. All our protocols are deterministic (more precisely, depend only the randomness
coming from samples provided by the samples from the hidden distribution). On the other hand our
lower bounds apply to all protocols, also those using an arbitrary amount of public randomness (i.e.,
pre-shared randomness).

3 Our Techniques

In this section, we provide a high-level description of the main ideas in our upper and lower bounds.
We defer the details of upper and lower bounds for monotone distributions to the full version of the
paper.

3.1 Overview of Algorithmic Ideas

We start by describing the main ideas in our distributed learning algorithms.

Robustly Learning Histograms in `1-Distance. We will require the following definition:
Definition 1. (Distribution flattening) Let P be a distribution over [n] and let I = {Ii}`i=1 be a
partition of [n] into disjoint intervals. We denote by P̄I the distribution over [n], where

P̄I(i) =

∑
k∈Ij P (k)

|Ij |
, ∀j ∈ [`], i ∈ Ij .

This means that P̄I is obtained by spreading the total mass of an interval uniformly in the interval.

Our upper bounds in this setting crucially depend on the following norm from Vapnik-Chervonenkis
(VC) theory [39], known as the Ak norm (see, e.g., [18]).
Definition 2 (Ak norm). For any function f : [n]→ R, we define the Ak norm of f as

‖f‖Ak
= sup
I1,...,Ik

k∑
i=1

|f(Ii)| ,

where for any set S ⊆ [n], we let f(S) =
∑
i∈S f(i) and the supremum is taken over disjoint

intervals.

In other words, the Ak norm of f is the maximum norm of any flattening of f into k interval pieces.

Our distributed algorithms crucially rely on the following building blocks:

Theorem 4 ([2]). Let P : [n] → R be a distribution, and let P̂ : [n] → R be a distribution such
that ‖P − P̂‖Ak

≤ ε. There is an efficient algorithm LEARNHIST(P̂ , k, ε) that given P̂ , outputs a
k-histogram h such that ‖P − h‖1 ≤ 3OPTk +O(ε), where OPTk = minh∈Hn,k

‖P − h‖1.

This theorem says that if we know a proxy to P that is close in Ak-norm to P , then this gives us
enough information to construct the best k-histogram fit to P . Moreover, this is the only information
we need to reconstruct a good k-histogram fit to P . The following well-known version of the VC-
inequality states that the empirical distribution after O(k/ε2) samples is close to the true distribution
in Ak-norm:
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Theorem 5 (VC inequality, e.g., [18]). Fix ε, δ > 0. Let P : [n]→ R be a distribution, and let Q be
the empirical distribution after O(k+log 1/δ

ε2 ) samples from P . Then with probability at least 1− δ,
we have that ‖P −Q‖Ak

≤ ε.

These two theorems together imply (via the triangle inequality) that in order to learn P , it suffices to
construct some distribution P̂ such that the empirical distribution Q is close to P̂ in Ak-norm. After
we construct this P̂ , we can run LEARNHIST at a centralized server, and simply output the resulting
hypothesis distribution. Thus, the crux of our distributed algorithm is a communication-efficient way
of constructing such a P̂ .

We achieve this as follows. First, we learn a partition I of [n] such that on each interval I ∈ I,
either |I| = 1 and Q(I) ≥ Ω(ε/k), or we have Q(I) ≤ O(ε/k). We then show that if we let P̂ be
the flattening of Q over this partition, then P̂ is ε-close to P in Ak-norm. To find this partition, we
repeatedly perform binary search over the the domain to find intervals of maximal length, starting
at some fixed left endpoint `, such that the mass of Q over that interval is at most O(ε/k). We
show that the intervals in I can be found iteratively, using O(m logms log n) bits of communication
each, and that there are at most O(k/ε) intervals in I. This in turn implies a total upper bound of
Õ(mk log n/ε) bits of communication, as claimed.

We also show a black-box reduction for robustly learning k-histograms. It improves on the communi-
cation cost when the domain size is very large. Specifically, we show:
Lemma 1. Fix n ∈ N, and ε, δ > 0. Suppose for all 1 ≤ n′ ≤ n, there is a robust learning
algorithm forHn′,k with s samples per server and m servers, using B(k, n,′m, s, ε) bits of commu-
nication, where ms ≥ Ω((k + log 1/δ)/ε2). Then there is an algorithm which solves Hn,k using
O(B(k,O(k/ε), s, ε) + k

ε log n) bits of communication.

In other words, by increasing the communication by an additive factor of kε log n, we can replace the
domain size n with O(k/ε). This is crucial for getting tighter bounds in certain regimes.

Learning Histograms in `2-Distance. We now describe our algorithm for learning k-histograms
in `2. We first require the following folklore statistical bound:
Lemma 2 (see e.g. [1]). Fix ε, δ > 0 and a distribution P : [n] → R. Let Q be the empirical
distribution with O(log(1/δ)/ε) i.i.d. samples from P . Then with probability 1 − δ, we have
‖P −Q‖22 ≤ ε.

This lemma states that it suffices to approximate the empirical distribution Q in `2 norm. We now
describe how to do so.

Our first key primitive is that using the celebrated Johnson-Lindenstrauss lemma [28], it is possible
to get an accurate estimate of ‖x‖22 when server i has access to xi and x =

∑
xi, where each server

communicates at most logarithmically many bits, regardless of the dimension of x. Moreover, we
can do this for poly(n) many different x’s, even without shared randomness, by communicating
only O(log n log log n) bits once at the beginning of the algorithm and constantly many bits per call
afterwards. In particular, we use this to approximate

eI =
∑
i∈I

(Q(i)−Q(I))2 ,

for all intervals I ⊆ [n].

Perhaps surprisingly, we are now able to give an algorithm that outputs the best O(k log n)-histogram
approximation to Q in `2, which only accesses the distribution via the eI . Moreover, we show that
this algorithm needs to query only O(k log n) such eI . Since each query to eI can be done with
logarithmically many bits per server, this yields the claimed communication bound of Õ(mk log n).
Roughly speaking, our algorithm proceeds as follows. At each step, it maintains a partition of [n].
Initially, this is the trivial partition containing just one element: [n]. Then in every iteration it finds
the 2k intervals in its current partition with largest eI , and splits them in half (or splits them all in
half if there are less than 2k intervals). It then repeats this process for log n iterations, and returns the
flattening over the set of intervals returned. By being somewhat careful with how we track error, we
are able to show that this in fact only ever requires O(k log n) queries to eI . While this algorithm is
quite simple, proving correctness requires some work and we defer it to the full version.
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3.2 Proof Ideas for the Lower Bounds

We now give an overview of proofs of our lower bounds.

Interactive Learning of Unstructured Distributions. We start with the most sophisticated of our
lower bounds: a lower bound for unstructured distributions with one sample per player and arbitrary
communication in the blackboard model. We show that Ω((n/ε2) log n) bits of communication are
needed. Thid is optimal and implies that in this case, there is no non-trivial protocol that saves more
than a constant factor over the trivial one (in which O(n/ε2) samples are fully transmitted). In order
to prove the lower bound, we apply the information complexity toolkit. Our lower bound holds for a
family of nearly uniform distributions on [n], in which each pair of consecutive elements, (2i− 1, 2i),
have slightly perturbed probabilities. In the uniform distribution each element has probability 1/n.
Here for each pair of elements 2i − 1 and 2i, we set the probabilities to be 1

n (1 + 100δiε) and
1
n (1− 100δiε), where each δi is independently selected from the uniform distribution on {−1, 1}.
Each such pair can be interpreted as a single slightly biased coin. We show that the output of any good
learning protocol can be used to learn the bias δi of most of the pairs. This implies that messages
exchanged in any protocol that is likely to learn the distribution have to reveal most of the biases with
high constant probability.

Intuitively, the goal in our analysis is to show that if a player sends much fewer than log n bits overall,
this is unlikely to provide much information about that player’s sample and help much with predicting
δi’s. This is done by bounding the mutual information between the transcript and the δi’s. It should
be noted that our lower bound holds in the interactive setting. That is, players are unlikely to gain
much by adaptively selecting when to continue providing more information about their samples. The
details of the proof are deferred to the full version.

Packing Lower Bounds. Some of our lower bounds are obtained via the construction of a suitable
packing set. We use the well-known result that the logarithm of the size of the packing set is a lower
bound on the communication complexity. This follows from using the well-known reduction from
estimation to testing, in conjunction with Fano’s inequality.

4 Conclusion and Open Problems

This work provides the first rigorous study of the communication complexity of nonparametric
distribution estimation. We have obtained both negative results (tight lower bounds in certain regimes)
and the first non-trivial upper bounds for a range of structured distributions.

A number of interesting directions remain. We outline a few of them here:

1. The positive results of this work focused on discrete univariate structured distributions (e.g.,
histograms and monotone distributions). For what other families of structured distributions
can one obtain communication-efficient algorithms? Studying multivariate structured
distributions in this setting is an interesting direction for future work.

2. The results of this paper do not immediately extend to the continuous setting. Can we obtain
positive results for structured continuous distributions?

3. It would be interesting to study related inference tasks in the distributed setting, including
hypothesis testing and distribution property estimation.
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