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Abstract

We discover a screening rule for `1-regularized Ising model estimation. The simple
closed-form screening rule is a necessary and sufficient condition for exactly
recovering the blockwise structure of a solution under any given regularization
parameters. With enough sparsity, the screening rule can be combined with various
optimization procedures to deliver solutions efficiently in practice. The screening
rule is especially suitable for large-scale exploratory data analysis, where the
number of variables in the dataset can be thousands while we are only interested
in the relationship among a handful of variables within moderate-size clusters for
interpretability. Experimental results on various datasets demonstrate the efficiency
and insights gained from the introduction of the screening rule.

1 Introduction

While the field of statistical learning with sparsity [Hastie et al., 2015] has been steadily rising to
prominence ever since the introduction of the lasso (least absolute shrinkage and selection operator)
at the end of the last century [Tibshirani, 1996], it was not until the recent decade that various
screening rules debuted to further equip the ever-evolving optimization arsenals for some of the
most fundamental problems in sparse learning such as `1-regularized generalized linear models
(GLMs, Friedman et al. 2010) and inverse covariance matrix estimation [Friedman et al., 2008].
Screening rules, usually in the form of an analytic formula or an optimization procedure that is
extremely fast to solve, can accelerate learning drastically by leveraging the inherent sparsity of many
high-dimensional problems. Generally speaking, screening rules can identify a significant portion of
the zero components of an optimal solution beforehand at the cost of minimal computational overhead,
and hence substantially reduce the dimension of the parameterization, which makes possible efficient
computation for large-scale sparse learning problems.

Pioneered by Ghaoui et al. 2010, various screening rules have emerged to speed up learning for
generative models (e.g. Gaussian graphical models) as well as for discriminative models (e.g. GLMs),
and for continuous variables (e.g. lasso) as well as for discrete variables (e.g. logistic regression,
support vector machines). Table 1 summarizes some of the iconic work in the literature, where, to the
best of our knowledge, screening rules for generative models with discrete variables are still notably
absent.

Contrasted with this notable absence is the ever stronger craving in the big data era for scaling
up the learning of generative models with discrete variables, especially in a blockwise structure
identification setting. For example, in gene mutation analysis [Wan et al., 2015, 2016], among tens of
thousands of sparse binary variables representing mutations of genes, we are interested in identifying
a handful of mutated genes that are connected into various blocks and exert synergistic effects on
the cancer. While a sparse Ising model is a desirable choice, for such an application the scalability
of the model could fail due to the innate NP-hardness [Karger and Srebro, 2001] of inference, and
hence maximum likelihood learning, owing to the partition function. To date, even with modern
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Table 1: Screening rules in the literature at a glance
Discriminative Models Generative Models

Continuous
Variables

Ghaoui et al. 2010, Tibshirani et al. 2012
Liu et al. 2013, Wang et al. 2013,

Fercoq et al. 2015, Xiang et al. 2016,
Lee et al. 2017

Banerjee et al. 2008 Honorio and Samaras 2010
Witten et al. 2011,Mazumder and Hastie 2012

Danaher et al. 2014, Luo et al. 2014
Yang et al. 2015

Discrete
Variables

Ghaoui et al. 2010, Tibshirani et al. 2012
Wang et al. 2014, Ndiaye et al. 2015 ?

approximation techniques, a typical application with sparse discrete graphical models usually involves
only hundreds of variables [Viallon et al., 2014, Barber et al., 2015, Vuffray et al., 2016].

Between the need for the scalability of high-dimensional Ising models and the absence of screening
rules that are deemed crucial to accelerated and scalable learning, we have a technical gap to bridge:
can we identify screening rules that can speed up the learning of `1-regularized Ising models? The
major contribution of this paper is to give an affirmative answer to this question. Specifically, we
show the following.

• The screening rule is a simple closed-form formula that is a necessary and sufficient condition for
exact blockwise structure recovery of the solution with a given regularization parameter. Upon the
identification of blockwise structures, different blocks of variables can be considered as different
Ising models and can be solved separately. The various blocks can even be solved in parallel to
attain further efficiency. Empirical results on both simulated and real-world datasets demonstrate
the tremendous efficiency, scalability, and insights gained from the introduction of the screening
rule. Efficient learning of `1-regularized Ising models from thousands of variables on a single
machine is hence readily attainable.

• As an initial attempt to fill in the vacancy illustrated in Table 1, our work is instructive to further
exploration of screening rules for other graphical models with discrete random variables, and
to combining screening rules with various optimization methods to facilitate better learning.
Furthermore, compared with its Gaussian counterpart, where screening rules are available (Table 1)
and learning is scalable [Hsieh et al., 2013], the proposed screening rule is especially valuable and
desperately needed to address the more challenging learning problem of sparse Ising models.

We defer all the proofs in the paper to the supplement and focus on providing intuition and interpreta-
tion of the technical results in the paper.

2 Notation and Background

2.1 Ising Models

Let X = [X1, X2, · · · , Xp]
> be a p × 1 binary random vector, with Xi ∈ {−1, 1}, and i ∈

{1, 2, · · · , p} , V . Let there be a dataset X with n independent and identically distributed samples
ofX , denoted as X =

{
x(1), x(2), · · · , x(n)

}
. Here, x(k) is a p×1 vector of assignments that realizes

X , where k ∈ {1, 2, · · · , n}. We further use x(k)
i to denote the ith component of the kth sample in

the dataset. Let θ ∈ Θ be a p× p symmetric matrix whose diagonal entries are zeros. An Ising model
[Wan et al., 2016] with the parameterization θ is:

Pθ(x) =
1

Z(θ)
exp

p−1∑
i=1

p∑
j>i

θijxixj

 , (1)

where θij represents the component of θ at the ith row and the jth column, and xi and xj represent
the ith and the jth components of x, respectively. Z(θ) is a normalization constant, partition
function, that ensures the probabilities sum up to one. The partition function is given as Z(θ) =∑
x∈{−1,1}p exp

(∑p−1
i=1

∑p
j>i θijxixj

)
. Note that for ease of presentation, we consider Ising

models with only pairwise interaction/potential here. Generalization to Ising models with unary
potentials is given in Section 6.
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2.2 Graphical Interpretation

With the notion of the probability given by an Ising model in (1), estimating an `1-regularized Ising
model is defined as finding θ̂, the penalized maximum likelihood estimator (MLE) under the lasso
penalty:

θ̂ = arg max
θ

1

n

n∑
k=1

log Pθ
(
x(k)

)
− λ

2
‖θ‖1

= arg min
θ
− 1

n

n∑
k=1

p−1∑
i=1

p∑
j>i

θijx
(k)
i x

(k)
j +A(θ) +

λ

2
‖θ‖1.

(2)

Here, A(θ) = logZ(θ) is the log-partition function; ‖θ‖1 =
∑p
i=1

∑p
j=1|θij | is the lasso penalty

that encourages a sparse parameterization. λ ≥ 0 is a given regularization parameter. Using λ
2 is

suggestive of the symmetry of θ so that λ2 ‖θ‖1 = λ
∑p−1
i=1

∑p
j>i|θij |, which echoes the summations

in the negative log-likelihood function. Note that θ corresponds to the adjacency matrix constructed
by the p components of X as nodes, and θij 6= 0 indicates that there is an edge between Xi and
Xj . We further denote a partition of V into L blocks as {C1, C2, · · · , CL}, where Cl, Cl′ ⊆ V ,
Cl ∩ Cl′ = ∅,

⋃L
l=1 Cl = V , l 6= l′, and for all l, l′ ∈ {1, 2, · · · , L}. Without loss of generality, we

assume that the nodes in different blocks are ordered such that if i ∈ Cl, j ∈ Cl′ , and l < l′, then
i < j.

2.3 Blockwise Solutions

We introduce the definition of a blockwise parameterization:
Definition 1. We call θ blockwise with respect to the partition {C1, C2, · · · , CL} if ∀l and l′ ∈
{1, 2, · · · , L}, where l 6= l′, and ∀i ∈ Cl, ∀j ∈ Cl′ , we have θij = 0.

When θ is blockwise, we can represent θ in a block diagonal fashion:

θ = diag (θ1, θ2, · · · , θL) , (3)

where θ1, θ2, · · · , and θL are symmetric matrices that correspond to C1, C2, · · · , andCL, respectively.
Note that if we can identify the blockwise structure of θ̂ in advance, we can solve each block
independently (See A.1). Since the size of each block could be much smaller than the size of the
original problem, each block could be much easier to learn compared with the original problem.
Therefore, efficient identification of blockwise structure could lead to substantial speedup in learning.

3 The Screening Rule

3.1 Main Results

The preparation in Section 2 leads to the discovery of the following strikingly simple screening rule
presented in Theorem 1.
Theorem 1. Let a partition of V, {C1, C2, · · · , CL}, be given. Let the dataset X ={
x(1), x(2), · · · , x(n)

}
be given. Define EXXiXj = 1

n

∑n
k=1 x

(k)
i x

(k)
j . A necessary and sufficient

condition for θ̂ to be blockwise with respect to the given partition is that

|EXXiXj | ≤ λ, (4)

for all l and l′ ∈ {1, 2, · · · , L}, where l 6= l′, and for all i ∈ Cl, j ∈ Cl′ .

In terms of exact blockwise structure identification, Theorem 1 provides a foolproof (necessary and
sufficient) and yet easily checkable result by comparing the absolute second empirical moments
|EXXiXj |’s with the regularization parameter λ. We also notice the remarkable similarity between
the proposed screening rule and the screening rule for Gaussian graphical model blockwise structure
identification in Witten et al. 2011, Mazumder and Hastie 2012. In the Gaussian case, the screening
rule can be attained by simply replacing the second empirical moment matrix in (4) with the sample
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Algorithm 1 Blockwise Minimization

1: Input: dataset X, regularization parameter λ.
2: Output: θ̂.
3: ∀i, j ∈ V such that j > i, compute the second empirical moments EXXiXj’s .
4: Identify the partition {C1, C2, · · · , CL} using the second empirical moments from the previous

step and according to Witten et al. [2011], Mazumder and Hastie [2012].
5: ∀l ∈ L, perform blockwise optimization over Cl for θ̂l.
6: Ensemble θ̂l’s according to (3) for θ̂.
7: Return θ̂.

covariance matrix. While the exact solution in the Gaussian case can be computed in polynomial
time, estimating an Ising model via maximum likelihood in general is NP-hard . However, as a
consequence of applying the screening rule, the blockwise structure of an `1-regularized Ising model
can be determined as easily as the blockwise structure of a Gaussian graphical model, despite the
fact that within each block, exact learning of a sparse Ising model could still be challenging.

Furthermore, the screening rule also provides us a principal approach to leverage sparsity for the gain
of efficiency: by increasing λ, the nodes of the Ising model will be shattered into smaller and smaller
blocks, according to the screening rule. Solving many Ising models with small blocks of variables is
amenable to both estimation algorithm and parallelism.

3.2 Regularization Parameters

The screening rule also leads to a significant implication to the range of regularization parameters in
which θ̂ 6= 0. Specifically, we have the following theorem.
Theorem 2. Let the dataset X =

{
x(1), x(2), · · · , x(n)

}
be given, and let λ = λmax represent the

smallest regularization parameter such that θ̂ = 0 in (2). Then λmax = maxi,j∈V,i 6=j |EXXiXj | ≤ 1.

With λmax, one can decide the range of regularization parameters, [0, λmax], that generates graphs
with nonempty edge sets, which is an important first step for pathwise optimization algorithms
(a.k.a. homotopy algorithms) that learn the solutions to the problem under a range of λ’s. Furthermore,
the fact that λmax ≤ 1 for any given dataset X suggests that comparison across different networks
generated by different datasets is comprehensible. Finally, in Section 4, λmax will also help to
establish the connection between the screening rule for exact learning and some of the popular inexact
(alternative) learning algorithms in the literature.

3.3 Fully Disconnected Nodes

Another consequence of the screening rule is the necessary and sufficient condition that determines
the regularization parameter with which a node is fully disconnected from the remaining nodes:
Corollary 1. Let the dataset X =

{
x(1), x(2), · · · , x(n)

}
be given. Xi is fully disconnected from

the remaining nodes in θ̂, where i ∈ V (i.e., θ̂ij = θ̂ji = 0, ∀j ∈ V \ {i}), if and only if
λ ≥ maxj∈V \{i}|EXXiXj |.

In high-dimensional exploratory data analysis, it is usually the case that most of the variables are
fully disconnected [Danaher et al., 2014, Wan et al., 2016]. In this scenario, Corollary 1 provides a
regularization parameter threshold with which we can identify exactly the subset of fully disconnected
nodes. Since we can choose a threshold large enough to make any nodes fully disconnected, we can
discard a significant portion of the variables efficiently and flexibly at will with exact optimization
guarantees due to Corollary 1. By discarding the large portion of fully disconnected variables, the
learning algorithm can focus on only a moderate number of connected variables, which potentially
results in a substantial efficiency gain.

3.4 Blockwise Minimization

We conclude this section by providing the blockwise minimization algorithm in Algorithm 1 due
to the screening rule. Note that both the second empirical moments and the partition of V in the
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algorithm can be computed in O(p2) operations [Witten et al., 2011, Mazumder and Hastie, 2012].
On the contrary, the complexity of the exact optimization of a block of variables grows exponentially
with respect to the maximal clique size of that block. Therefore, by encouraging enough sparsity,
the blockwise minimization due to the screening rule can provide remarkable speedup by not only
shrinking the size of the blocks in general but also potentially reducing the size of cliques within each
block via eliminating enough edges.

4 Applications to Inexact (Alternative) Methods

We now discuss the interplay between the screening rule and two popular inexact (alternative)
estimation methods: node-wise (NW) logistic regression [Wainwright et al., 2006, Ravikumar et al.,
2010] and the pseudolikelihood (PL) method [Höfling and Tibshirani, 2009]. In what follows, we
use θ̂NW and θ̂PL to denote the solutions given by the node-wise logistic regression method and the
pseudolikelihood method, respectively. NW can be considered as an asymmetric pseudolikelihood
method (i.e., ∃i,j ∈ V such that i 6= j and θ̂NW

ij 6= θ̂NW
ji ), while PL is a pseudolikelihood method that

is similar to NW but imposes additional symmetric constraints on the parameterization (i.e., ∀i,j ∈ V
where i 6= j, we have θ̂PL

ij = θ̂PL
ji ).

Our incorporation of the screening rule to the inexact methods is straightforward: after using the
screening rule to identify different blocks in the solution, we use inexact methods to solve each block
for the solution. As shown in Section 3, when combined with exact optimization, the screening
rule is foolproof for blockwise structure identification. However, in general, when combined with
inexact methods, the proposed screening rule is not foolproof any more because the screening rule is
derived from the exact problem in (2) instead of the approximate problems such as NW and PL. We
provide a toy example in A.6 to illustrate mistakes made by the screening rule when combined with
inexact methods. Nonetheless, as we will show in this section, NW and PL are deeply connected to
the screening rule, and when given a large enough regularization parameter, the application of the
screening rule to NW and PL can be lossless in practice (see Section 5). Therefore, when applied to
NW and PL, the proposed screening rule can be considered as a strong rule (i.e., a rule that is not
foolproof but barely makes mistakes) and an optimal solution can be safeguarded by adjusting the
screened solution to optimality based on the KKT conditions of the inexact problem [Tibshirani et al.,
2012].

4.1 Node-wise (NW) Logistic Regression and the Pseudolikelihood (PL) Method

In NW, for each i ∈ V , we consider the conditional probability of Xi upon X\i, where X\i =
{Xt | t ∈ V \ {i}}. This is equivalent to solving p `1-regularized logistic regression problems
separately, i.e., ∀i ∈ V :

θ̂NW
\i = arg min

θ\i

1

n

n∑
k=1

[
−y(k)

i η
(k)
\i + log

(
1 + exp

(
η

(k)
\i

))]
+ λ

∥∥θ\i∥∥1
, (5)

where η(k)
\i = θ>\i(2x

(k)
\i ), y(k)

i = 1 represents a successful event x(k)
i = 1, y(k)

i = 0 represents an

unsuccessful event x(k)
i = −1, and

θ\i =
[
θi1 θi2 · · · θi(i−1) θi(i+1) · · · θip

]>
,

x
(k)
\i =

[
x

(k)
i1 x

(k)
i2 · · · x

(k)
i(i−1) x

(k)
i(i+1) · · · x

(k)
ip

]>
.

Note that θ̂NW constructed from θ̂NW
\i ’s is asymmetric, and ad hoc post processing techniques are used

to generate a symmetric estimation such as setting each pair of elements from θ̂NW in symmetric
positions to the one with a larger (or smaller) absolute value.

On the other hand, PL can be considered as solving all p `1-regularized logistic regression problems
in (5) jointly with symmetric constraints over the parameterization [Geng et al., 2017]:

θ̂PL = arg min
θ∈Θ

1

n

n∑
k=1

p∑
i=1

[
−y(k)

i ξ
(k)
i + log

(
1 + exp

(
ξ

(k)
i

))]
+
λ

2
‖θ‖1 , (6)
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where ξ(k)
i =

∑
j∈V \{i} 2θmin{i,j},max{i,j}x

(k)
j .That is to say, if i < j, then θmin{i,j},max{i,j} = θij ;

if i > j, then θmin{i,j},max{i,j} = θji. Recall that Θ in (6) defined in Section 2.1 represents a space
of symmetric matrices whose diagonal entries are zeros.

4.2 Regularization Parameters in NW and PL

Since the blockwise structure of a solution is given by the screening rule under a fixed regularization
parameter, the ranges of regularization parameters under which NW and PL can return nonzero
solutions need to be linked to the range [0, λmax] in the exact problem. Theorem 3 and Theorem 4
establish such relationships for NW and PL, respectively.

Theorem 3. Let the dataset X =
{
x(1), x(2), · · · , x(n)

}
be given, and let λ = λNW

max represent the
smallest regularization parameter such that θ̂NW

\i = 0 in (5), ∀i ∈ V . Then λNW
max = λmax.

Theorem 4. Let the dataset X =
{
x(1), x(2), · · · , x(n)

}
be given, and let λ = λPL

max represent the
smallest regularization parameter such that θ̂PL = 0 in (6), then λPL

max = 2λmax.

Let λ be the regularization parameter used in the exact problem. A strategy is to set the corresponding
λNW = λ when using NW and λPL = 2λ when using PL, based on the range of regularization param-
eters given in Theorem 3 and Theorem 4 for NW and PL. Since the magnitude of the regularization
parameter is suggestive of the magnitude of the gradient of the unregulated objective, the proposed
strategy leverages that the magnitudes of the gradients of the unregulated objectives for NW and
PL are roughly the same as, and roughly twice as large as, that of the unregulated exact objective,
respectively.

This observation has been made in the literature of binary pairwise Markov networks [Höfling and
Tibshirani, 2009, Viallon et al., 2014]. Here, by Theorem 3 and Theorem 4, we demonstrate that
this relationship is exactly true if the optimal parameterization is zero. Höfling and Tibshirani 2009
even further exploits this observation in PL for exact optimization. Their procedure can be viewed as
iteratively solving adjusted PL problems regularized by λPL = 2λ in order to obtain an exact solution
regularized by λ. The close quantitative correspondence between the derivatives of the inexact
objectives and that of the exact objective also provides insights into why combing the screening rule
with inexact methods does not lose much in practice.

4.3 Preservation for Fully Disconnectedness

While the screening rule is not foolproof when combined with NW and PL, it turns out that in terms
of identifying fully disconnected nodes, the necessary and sufficient condition in Corollary 1 can be
preserved when applying NW with caution, as shown in the following.

Theorem 5. Let the dataset X =
{
x(1), x(2), · · · , x(n)

}
be given. Let θ̂NW

min ∈ Θ denote a symmetric
matrix derived from θ̂NW by setting each pair of elements from θ̂NW in symmetric positions to the
one with a smaller absolute value. A sufficient condition for Xi to be fully disconnected from the
remaining nodes in θ̂NW

min, where i ∈ V , is that λNW ≥ maxj∈V \{i}|EXXiXj |. Furthermore, when
θ̂NW
\i = 0, the sufficient condition is also necessary.

In practice, the utility of Theorem 5 is to provide us a lower bound for λ above which we can fully
disconnect Xi (sufficiency). Moreover, if θ̂NW

\i = 0 also happens to be true, which is easily verifiable,
we can conclude that such a lower bound is tight (necessity).

5 Experiments

Experiments are conducted on both synthetic data and real world data. We will focus on efficiency in
Section 5.1 and discuss support recovery performance in Section 5.2. We consider three synthetic
networks (Table 2) with 20, 35, and 50 blocks of 20-node, 35-node, and 50-node subnetworks,
respectively. To demonstrate the estimation of networks with unbalanced-size subnetworks, we also
consider a 46-block network with power law degree distributed subnetworks of sizes ranging from 5
to 50. Within each network, the subnetwork is generated according to a power law degree distribution,
which mimics the structure of a biological network and is believed to be more challenging to recover
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Figure 1: Runtime of pathwise optimization on networks in Table 2. Runtime plotted is the median
runtime over five trials. The experiments of the baseline method PL without screening can not be
fully conducted on larger networks due to high memory cost. NW: Node-wise logistic regression
without screening; NW+screen: Node-wise logistic regression with screening; PL: Pseudolikelihood
without screening; PL+screen: Pseudolikelihood with screening.

compared with other less complicated structures [Chen and Sharp, 2004, Peng et al., 2009, Danaher
et al., 2014]. Each edge of each network is associated with a weight first sampled from a standard
normal distribution, and then increased or decreased by 0.2 to further deviate from zero. For each
network, 1600 samples are generated via Gibbs sampling within each subnetwork. Experiments on
exact optimization are reported in B.2.

5.1 Pathwise Optimization

Pathwise optimization aims to compute solutions over a range of different λ’s. Formally, we denote
the set of λ’s used in (2) as Λ = {λ1, λ2, · · · , λτ}, and without loss of generality, we assume that
λ1 < λ2 < · · · < λτ .

The introduction of the screening rule provides us insightful heuristics for the determination of Λ.
We start by choosing a λ1 that reflects the sparse blockwise structural assumption on the data. To
achieve sparsity and avoid densely connected structures, we assume that the number of edges in the
ground truth network is O(p). This assumption coincides with networks generated according to a
power law degree distribution and hence is a faithful representation of the prior knowledge stemming
from many biological problems. As a heuristic, we relax and apply the screening rule in (4) on each
of the

(
p
2

)
second empirical moments and choose λ1 such that the number of the absolute second

empirical moments that are greater than λ1 is about p log p. Given a λ1 chosen this way, one can
check how many blocks θ̂(λ1) has by the screening rule. To encourage blockwise structures, we
magnify λ1 via λ1 ← 1.05λ1 until the current θ̂(λ1) has more than one block. We then choose λτ
such that the number of absolute second empirical moments that are greater than λτ is about p. In
our experiments, we use an evenly spaced Λ with τ = 25.

To estimate the networks in Table 2, we implement both NW and PL with and without screening
using glmnet [Friedman et al., 2010] in R as a building block for logistic regression according to
Ravikumar et al. 2010 and Geng et al. 2017. To generate a symmetric parameterization for NW, we
set each pair of elements from θNW in symmetric positions to the element with a larger absolute value.
Given Λ, we screen only at λ1 to identify various blocks. Each block is then solved separately in a
pathwise fashion under Λ without further screening. The rationale of performing only one screening
is that starting from a λ1 chosen in the aforementioned way has provided us a sparse blockwise
structure that sets a significant portion of the parameterization to zeros; further screening over larger
λ’s hence does not necessarily offer more efficiency gain.

Figure 1 summarizes the runtime of pathwise optimization on the four synthetic networks in Table 2.
The experiments are conducted on a PowerEdge R720 server with two Intel(R) Xeon(R) E5-2620
CPUs and 128GB RAM. As many as 24 threads can be run in parallel. For robustness, each runtime
reported is the median runtime over five trials. When the sample size is less than 1600, each trial
uses a subset of samples (subsamples) that are randomly drawn from the original datasets without
replacement. As illustrated in Figure 1, the efficiency gain due to the screening rule is self-evident.
Both NW and PL benefit substantially from the application of the screening rule. The speedup is
more apparent with the increase of sample size as well as the increase of the dimension of the data. In
our experiments, we observe that even with arguably the state-of-the-art implementation [Geng et al.,
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indx #blk #nd/blk TL#nd
1 20 20 400
2 35 35 1225
3 50 50 2500
4 46 5-50 1265

Table 2: Summary of the four syn-
thetic networks used in the experi-
ments. indx represents the index
of each network. #blk represents
the number of blocks each net-
work has. #nd/blk represents the
number of nodes each block has.
TL#nd represents the total number
of nodes each network has.
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(b) Model selection runtime

Figure 2: Model selection performance. Mix: provide PL
+screen with the regularization parameter chosen by the model
selection of NW+screen. Other legend labels are the same as
in Figure 1.

2017], PL without screening still has a significantly larger memory footprint compared with that of
NW. Therefore, the experiments for PL without screening are not fully conducted in Figure 1b,1c,
and 1d for networks with thousands of nodes. On the contrary, PL with the screening rule has a
comparable memory footprint with that of NW. Furthermore, as shown in Figure 1, after applying the
screening rule, PL also has a similar runtime with NW. This phenomenon demonstrates the utility of
the screening rule for effectively reducing the memory footprint of PL, making PL readily available
for large-scale problems.

5.2 Model Selection

Our next experiment performs model selection by choosing an appropriate λ from the regularization
parameter set Λ. We leverage the Stability Approach to Regularization Selection (StARS, Liu et al.
2010) for this task. In a nutshell, StARS learns a set of various models, denoted asM, over Λ using
many subsamples that are drawn randomly from the original dataset without replacement. It then
picks a λ∗ ∈ Λ that strikes the best balance between network sparsity and edge selection stability
among the models inM. After the determination of λ∗, it is used on the entire original dataset to
learn a model with which we compare the ground truth model and calculate its support recovery Area
Under Curve (AUC). Implementation details of model selection are provided in B.1.

In Figure 2, we summarize the experimental results of model selection, where 24 subsamples are used
for pathwise optimization in parallel to constructM. In Figure 2a, NW with and without screening
achieve the same high AUC values over all four networks, while the application of the screening
rule to NW provides roughly a 2x speedup, according to Figure 2b. The same AUC value shared by
the two variants of NW is due to the same λ∗ chosen by the model selection procedure. Even more
importantly, it is also because that under the same λ∗, the screening rule is able to perfectly identify
the blockwise structure of the parameterization.

Due to high memory cost, the model selection for PL without screening (green bars in Figure 2)
is omitted in some networks. To control the memory footprint, the model selection for PL with
screening (golden bars in Figure 2) also needs to be carried out meticulously by avoiding small λ’s
in Λ that correspond to dense structures inM during estimation from subsamples. While avoiding
dense structures makes PL with screening the fastest among all (Figure 2b), it comes at the cost
of delivering the least accurate (though still reasonably effective) support recovery performance
(Figure 2a). To improve the accuracy of this approach, we also leverage the connection between
NW and PL by substituting 2λ∗NW for the resultant regularization parameter from model selection
of PL, where λ∗NW is the regularization parameter selected for NW. This strategy results in better
performance in support recovery (purple bars in Figure 2a).

5.3 Real World Data

Our real world data experiment applies NW with and without screening to a real world gene mutation
dataset collected from 178 lung squamous cell carcinoma samples [Weinstein et al., 2013]. Each
sample contains 13,665 binary variables representing the mutation statuses of various genes. For ease
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Figure 3: Connected components learned from lung squamous cell carcinoma mutation data. Genes in
red are (lung) cancer and other disease related genes [Uhlén et al., 2015]. Mutation data are extracted
via the TCGA2STAT package [Wan et al., 2015] in R and the figure is rendered by Cytoscape.

of interpretation, we keep genes whose mutation rates are at least 10% across all samples, yielding
a subset of 145 genes in total. We use the model selection procedure introduced in Section 5.2 to
determine a λ∗NW with which we learn the gene mutation network whose connected components are
shown in Figure 3. For model selection, other than the configuration in B.1, we choose τ = 25. 384
trials are run in parallel using all 24 threads. We also choose λ1 such that about 2p log(p) absolute
second empirical moments are greater than λ1. We choose λτ such that about 0.25p absolute second
empirical moments are greater than λτ .

In our experiment, NW with and without screening select the same λ∗NW, and generate the same
network. Since the dataset in question has a lower dimension and a smaller sample size compared with
the synthetic data, NW without screening is adequately efficient. Nonetheless, with screening NW is
still roughly 20% faster. This phenomenon once again indicates that in practice the screening rule
can perfectly identify the blockwise sparsity pattern in the parameterization and deliver a significant
efficiency gain. The genes in red in Figure 3 represent (lung) cancer and other disease related genes,
which are scattered across the seven subnetworks discovered by the algorithm. In our experiment, we
also notice that all the weights on the edges are positive. This is consistent with the biological belief
that associated genes tend to mutate together to cause cancer.

6 Generalization

With unary potentials, the `1-regularized MLE for the Ising model is defined as:

θ̂ = arg min
θ
− 1

n

n∑
k=1

 p∑
i=1

θiix
(k)
i +

p−1∑
i=1

p∑
j>i

θijx
(k)
i x

(k)
j

+A(θ) +
λ

2
‖θ‖1,off, (7)

where ‖θ‖1,off =
∑p
i=1

∑p
j 6=i|θij |. Note that the unary potentials are not penalized, which is a

common practice [Wainwright et al., 2006, Höfling and Tibshirani, 2009, Ravikumar et al., 2010,
Viallon et al., 2014] to ensure a hierarchical parameterization. The screening rule here is to replace
(4) in Theorem 3 with:

|EXXiXj − EXXiEXXj | ≤ λ. (8)
Exhaustive justification, interpretation, and experiments are provided in Supplement C.

7 Conclusion
We have proposed a screening rule for `1-regularized Ising model estimation. The simple closed-form
screening rule is a necessary and sufficient condition for exact blockwise structural identification.
Experimental results suggest that the proposed screening rule can provide drastic speedups for
learning when combined with various optimization algorithms. Future directions include deriving
screening rules for more general undirected graphical models [Liu et al., 2012, 2014b,a, Liu, 2014,
Liu et al., 2016], and deriving screening rules for other inexact optimization algorithms [Liu and
Page, 2013]. Further theoretical justifications regarding the conditions upon which the screening rule
can be combined with inexact algorithms to recover block structures losslessly are also desirable.
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U54 AI117924 and the NIGMS grant 2RO1 GM097618.
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