
Efficient Sublinear-Regret Algorithms for Online
Sparse Linear Regression with Limited Observation

Shinji Ito
NEC Corporation

s-ito@me.jp.nec.com

Daisuke Hatano
National Institute of Informatics

hatano@nii.ac.jp

Hanna Sumita
National Institute of Informatics

sumita@nii.ac.jp

Akihiro Yabe
NEC Corporation

a-yabe@cq.jp.nec.com

Takuro Fukunaga
JST, PRESTO

takuro@nii.ac.jp

Naonori Kakimura
Keio University

kakimura@math.keio.ac.jp

Ken-ichi Kawarabayashi
National Institute of Informatics
k-keniti@nii.ac.jp

Abstract

Online sparse linear regression is the task of applying linear regression analysis
to examples arriving sequentially subject to a resource constraint that a limited
number of features of examples can be observed. Despite its importance in many
practical applications, it has been recently shown that there is no polynomial-
time sublinear-regret algorithm unless NP⊆BPP, and only an exponential-time
sublinear-regret algorithm has been found. In this paper, we introduce mild as-
sumptions to solve the problem. Under these assumptions, we present polynomial-
time sublinear-regret algorithms for the online sparse linear regression. In addi-
tion, thorough experiments with publicly available data demonstrate that our al-
gorithms outperform other known algorithms.

1 Introduction

In online regression, a learner receives examples one by one, and aims to make a good prediction
from the features of arriving examples, learning a model in the process. Online regression has
attracted attention recently in the research community in managing massive learning data.In real-
world scenarios, however, with resource constraints, it is desired to make a prediction with only a
limited number of features per example. Such scenarios arise in the context of medical diagnosis of
a disease [3] and in generating a ranking of web pages in a search engine, in which it costs to obtain
features or only partial features are available in each round. In both these examples, predictions need
to be made sequentially because a patient or a search query arrives online.

To resolve the above issue of limited access to features, Kale [7] proposed online sparse regression.
In this problem, a learner makes a prediction for the labels of examples arriving sequentially over
a number of rounds. Each example has d features that can be potentially accessed by the learner.
However, in each round, the learner can acquire the values of at most k′ features out of the d features,
where k′ is a parameter set in advance. The learner then makes a prediction for the label of the
example. After the prediction, the true label is revealed to the learner, and the learner suffers a
loss for making an incorrect prediction. The performance of the prediction is measured here by the
standard notion of regret, which is the difference between the total loss of the learner and the total

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Table 1: Computational complexity of online sparse linear regression.

Assumptions Time complexity
(1) (2) (a) (b)
X X Hard [5]
X X Hard (Theorem 1)
X X X Polynomial time (Algorithms 1, 2)
X X X Polynomial time (Algorithm 3)

loss of the best predictor. In [7], the best predictor is defined as the best k-sparse linear predictor,
i.e., the label is defined as a linear combination of at most k features.

Online sparse regression is a natural online variant of sparse regression; however, its computational
complexity was not well known until recently, as Kale [7] raised a question of whether it is possible
to achieve sublinear regret in polynomial time for online sparse linear regression. Foster et al. [5]
answered the question by proving that no polynomial-time algorithm achieves sublinear regret unless
NP⊆BPP. Indeed, this hardness result holds even when observing Ω(k log d) features per example.
On the positive side, they also proposed an exponential-time algorithm with sublinear regret, when
we can observe at least k + 2 features in each round. However, their algorithm is not expected to
work efficiently in practice. In fact, the algorithm enumerates all the

(
d
k′

)
possibilities to determine

k′ features in each round, which requires exponential time for any instance.

Our contributions. In this paper, we show that online sparse linear regression admits a
polynomial-time algorithm with sublinear regret, under mild practical assumptions. First, we as-
sume that the features of examples arriving online are determined by a hidden distribution (Assump-
tion (1)), and the labels of the examples are determined by a weighted average of k features, where
the weights are fixed through all rounds (Assumption (2)). These are natural assumptions in the
online linear regression. However, Foster et al. [5] showed that no polynomial-time algorithm can
achieve sublinear regret unless NP⊆BPP even under these two assumptions.1

Owing to this hardness, we introduce two types of conditions on the distribution of features, both
of which are closely related to the restricted isometry property (RIP) that has been studied in the
literature of sparse recovery. The first condition, which we call linear independence of features
(Assumption (a)), is stronger than RIP. This condition roughly says that all the features are lin-
early independent. The second condition, which we call compatibility (Assumption (b)), is weaker
than RIP. Thus, an instance having RIP always satisfies the compatibility condition. Under these
assumptions, we propose the following three algorithms. Here, T is the number of rounds.

• Algorithm 1: A polynomial-time algorithm that achieves O(d
k′−k
√
T) regret, under As-

sumptions (1), (2), and (a), which requires at least k + 2 features to be observed per exam-
ple.

• Algorithm 2: A polynomial-time algorithm that achieves O(
√
dT + d16

k′16) regret, under
Assumptions (1), (2), and (a), which requires at least k features to be observed per example.

• Algorithm 3: A polynomial-time algorithm that achieves O(
√
dT + d16

k′16) regret, under
Assumptions (1), (2), and (b), which requires at least k features to be observed per example.

We can also construct an algorithm achieving O(d
k′−k
√
T) regret under Assumption (b) for the case

where k′ ≥ k + 2, analogous to Algorithm 1, but we omit it due to space limitations.

Assumptions (1)+(2)+(a) or (1)+(2)+(b) seem to be minimal assumptions needed to achieve sub-
linear regret in polynomial time. Indeed, as listed in Table 1, the problem is hard if any one of the
assumptions is violated, where hard means that no polynomial-time algorithm can achieve sublinear
regret unless NP⊆BPP. Note that Assumption (a) is stronger than (b).

In addition to proving theoretical regret bounds of our algorithms, we perform thorough experi-
ments to evaluate the algorithms. We verified that our algorithms outperform the exponential-time
algorithm [5] in terms of computational complexity as well as performance of the prediction. Our
algorithms also outperform (baseline) heuristic-based algorithms and algorithms proposed in [2, 6]

1 Although the statement in [5] does not mention the assumptions, its proof indicates that the hardness holds
even with these assumptions.

2

for online learning based on limited observation. Moreover, we observe that our algorithms perform
well even for a real dataset, which may not satisfy our assumptions (deciding whether the model
satisfies our assumptions is difficult; for example, the RIP parameter cannot be approximated within
any constant factor under a reasonable complexity assumption [9]). Thus, we can conclude that our
algorithm is applicable in practice.

Overview of our techniques. One naive strategy for choosing a limited number of features is to
choose “large-weight” features in terms of estimated ground-truth regression weights. This strategy,
however, does not achieve sublinear regret, as it ignores small-weight features. When we have
Assumption (a), we show that if we observe two more features chosen uniformly at random, together
with the largest k features, we can make a good prediction. More precisely, using the observed
features, we output the label that minimizes the least-square loss function, based on the technique
using an unbiased estimator of the gradient [2, 6] and the regularized dual averaging (RDA) method
(see, e.g., [11, 4]). This idea gives Algorithm 1, and the details are given in Section 4. The reason
why we use RDA is that it is efficient in terms of computational time and memory space as pointed
out in [11] and, more importantly, we will combine this with the `1 regularization later. However,
this requires at least k + 2 features to be observed in each round.

To avoid the requirement of two extra observations, the main idea is to employ Algorithm 1 with
a partial dataset. As a by-product of Algorithm 1, we can estimate the ground-truth regression
weight vector with high probability, even without observing extra features in each round. We use
the ground-truth weight vector estimated by Algorithm 1 to choose k features. Combining this idea
with RDA adapted for the sparse regression gives Algorithm 2 (Section 5.1) under Assumption (a).

The compatibility condition (Assumption (b)) is often used in LASSO (Least Absolute Shrinkage
and Selection Operator), and it is known that minimization with an `1 regularizer converges to the
sparse solution under the compatibility condition [1]. We introduce `1 regularization into Algo-
rithm 1 to estimate the ground-truth regression weight vector when we have Assumption (b) instead
of Assumption (a). This gives Algorithm 3 (Section 5.2).

Related work. In the online learning problem, a learner aims to predict a model based on the
arriving examples. Specifically, in the linear function case, a learner predicts the coefficient wt of
a linear function w>t xt whenever an example with features xt arrives in round t. The learner then
suffers a loss `t(wt) = (yt−w>t xt)

2. The aim is to minimize the total loss
∑T
t=1(`t(wt)− `t(w))

for an arbitrary w. It is known that both the gradient descent method [12] and the dual averaging
method [11] attain anO(

√
T) regret even for the more general convex function case. However, these

methods require access to all features of the examples.

In linear regression with limited observation, the limited access to features in regression has been
considered [2, 6]. In this problem, a learner can acquire only the values of at most k′ features among
d features. The purpose here is to estimate a good weight vector, e.g., minimize the loss function
`(w) or the loss function with `1 regularizer `(w) + ‖w‖1. Let us note that, even if we obtain a
good weight vector w with small `(w), we cannot always compute w>xt from limited observation
of xt and, hence, in our setting the prediction error might not be as small as `(w). Thus, our setting
uses a different loss function, defined in Section 2, to minimize the prediction error.

Another problem incorporating the limited access is proposed by Zolghadr et al. [13]. Here, instead
of observing k′ features, one considers the situation where obtaining a feature has an associated cost.
In each round, one chooses a set of features to pay some amount of money, and the purpose is to
minimize the sum of the regret and the total cost. They designed an exponential-time algorithm for
the problem.

Online sparse linear regression has been studied in [5, 7], but only an exponential-time algorithm
has been proposed so far. In fact, Foster et al. [5] suggested designing an efficient algorithm for a
special class of the problem as future work. The present paper aims to follow this suggestion.

Recently, Kale et al. [8]2 presented computationally efficient algorithms to achieve sublinear regret
under the assumption that input features satisfy RIP. Though this study includes similar results to
ours, we can realize some differences. Our paper considers the assumption of the compatibility
condition without extra observation (i.e., the case of k′ = k), whereas Kale et al. [8] studies a

2The paper [8] was published after our manuscript was submitted.

3

stronger assumption with extra observation (k′ ≥ k + 2) that yields a smaller regret bound than
ours. They also studies the agnostic (adversarial) setting.

2 Problem setting

Online sparse linear regression. We suppose that there are T rounds, and an example arrives
online in each round. Each example is represented by d features and is associated with a label,
where features and labels are all real numbers. We denote the features of the example arriving in
round t by xt = (xt1, . . . , xtd)

> ∈ {x ∈ Rd | ‖x‖ ≤ 1}, where the norm ‖ · ‖ without subscripts
denotes the `2 norm. The label of each example is denoted by yt ∈ [−1, 1].

The purpose of the online sparse regression is to predict the label yt ∈ R from a partial observation
of xt in each round t = 1, . . . , T . The prediction is made through the following four steps: (i) we
choose a set St ⊆ [d] := {1, . . . , d} of features to observe, where |St| is restricted to be at most k′;
(ii) observe the selected features {xti}i∈St ; (iii) on the basis of observation {xti}i∈St , estimate a
predictor ŷt of yt; and (iv) observe the true value of yt.

From St, we define Dt ∈ Rd×d to be the diagonal matrix such that its (i, i)th entries are 1 for i ∈ St
and the other entries are 0. Then, observing the selected features {xti}i∈St in (ii) is equivalent to
observing Dtxt. The predictor ŷt is computed by ŷt = w>t Dtxt in (iii).

Throughout the paper, we assume the following conditions, corresponding to Assumptions (1) and
(2) in Section 1, respectively.

Assumption (1) There exists a weight vector w∗ ∈ Rd such that ‖w‖ ≤ 1 and yt = w∗>xt + εt
for all t = 1, . . . , T , where εt ∼ Dε, independent and identically distributed (i.i.d.), and
E[εt] = 0, E[εt

2] = σ2. There exists a distribution Dx on Rd such that xt ∼ Dx, i.i.d. and
independent of {εt}.

Assumption (2) The true weight vector w∗ is k-sparse, i.e., S∗ = supp(w∗) = {i ∈ [d] | w∗i 6= 0}
satisfies |S∗| ≤ k.

Regret. The performance of the prediction is evaluated based on the regret RT (w) defined by

RT (w) =

T∑
t=1

(ŷt − yt)2 −
T∑
t=1

(w>xt − yt)2. (1)

Our goal is to achieve smaller regret RT (w) for an arbitrary w ∈ Rd such that ‖w‖ ≤ 1 and
‖w‖0 ≤ k. For random inputs and randomized algorithms, we consider the expected regret
maxw:‖w‖0≤k,‖w‖≤1 E[RT (w)].

Define the loss function `t(w) = (w>xt − yt)2. If we compute a predictor ŷt = w>t Dtxt using
a weight vector wt = (wt1, . . . , wtd)

> ∈ Rd in each step, we can rewrite the regret RT (w) in (1)
using Dt and wt as

RT (w) =

T∑
t=1

(`t(Dtwt)− `t(w)) (2)

because (ŷt − yt)2 = (w>t Dtxt − yt)2 = `t(Dtwt). It is worth noting that if our goal is only to
construct wt that minimizes the loss function `t(wt), then the definition of the regret should be

R′T (w) =

T∑
t=1

(`t(wt)− `t(w)). (3)

However, the goal of online sparse regression involves predicting yt from the limited observation.
Hence, we use (2) to evaluate the performance. In terms of the regret defined by (3), several algo-
rithms based on limited observation have been developed. For example, the algorithms proposed by
Cesa-Bianchi et al. [3] and Hazan and Koren [6] achieve O(

√
T) regret of (3).

4

3 Extra assumptions on features of examples

Foster et al. [5] showed that Assumptions (1) and (2) are not sufficient to achieve sublinear regret.
Owing to this observation, we impose extra assumptions.

Let V := E[x>t xt] ∈ Rd×d and let L be the Cholesky decomposition of V (i.e., V = L>L). Denote
the largest and the smallest singular values of L by σ1 and σd, respectively. Under Assumption (1)
in Section 2, we have σ1 ≤ 1 because, for arbitrary unit vector u ∈ Rd, it holds that u>V u =
E[(u>x)2] ≤ 1. For a vector w ∈ R[d] and S ⊆ [d], we let wS denote the restriction of w onto S.
For S ⊆ [d], Sc denotes [d] \ S. We assume either one of the following conditions holds.

(a) Linear independence of features: σd > 0.
(b) Compatibility: There exists a constant φ0 > 0 that satisfies φ20‖wS∗‖21 ≤ kw>Vw for all

w ∈ Rd with ‖w(S∗)c‖1 ≤ 2‖wS∗‖1.

We assume the linear independence of features in Sections 4 and 5.1, and the compatibility in Sec-
tion 5.2 to develop efficient algorithms.

Note that condition (a) means that L is non-singular, and so is V . In other words, condition (a)
indicates that the features in xt are linearly independent. This is the reason why we call condition
(a) the “linear independence of features” assumption. Note that the linear independence of features
does not imply the stochastic independence of features.

Conditions (a) and (b) are closely related to RIP. Indeed, condition (b) is a weaker assumption than
RIP, and RIP is weaker than condition (a), i.e., (a) linear independence of features =⇒ RIP =⇒
(b) compatibility (see, e.g., [1]). We now clarify how the above two assumptions are connected to
the regret. The expectation of the loss function `t(w) is equal to

Ext,yt [`t(w)] = Ext∼Dx,εt∼Dε [(w
>xt −w∗>xt − εt)2]

= Ext∼Dx [((w −w∗)>xt)
2] + Eεt∼Dε [ε

>
t εt] = (w −w∗)>V (w −w∗) + σ2

for all t, where the second equality comes from E[εt] = 0 and that xt and εt are independent. Denote
this function by `(w), and then `(w) is minimized when w = w∗. If Dt and wt are determined
independently of xt and yt, the expectation of the regret RT (w) satisfies

E[RT (w)] = E[

T∑
t=1

(`(Dtwt)− `(w))] ≤ E[

T∑
t=1

(`(Dtwt)− `(w∗))]

= E[

T∑
t=1

(Dtwt −w∗)>V (Dtwt −w∗)] = E[

T∑
t=1

‖L(Dtwt −w∗)‖2]. (4)

We bound (4) in the analysis.

Hardness result. Similarly to [5], we can show that it remains hard under Assumptions (1), (2),
and (a). Refer to Appendix A for the proof.
Theorem 1. Let D be any positive constant, and let cD ∈ (0, 1) be a constant dependent on D.
Suppose that Assumptions (1) and (2) hold with k = O(dcD) and k′ = bkD ln dc. If an algorithm
for the online sparse regression problem runs in poly(d, T) time per iteration and achieves a regret
at most poly(d, 1/σd)T

1−δ in expectation for some constant δ > 0, then NP⊆BPP.

4 Algorithm with extra observations and linear independence of features

In this section, we present Algorithm 1. Here we assume k′ ≥ k + 2, in addition to the linear
independence of features (Assumption (a)). The additional assumption will be removed in Section 5.

As noted in Section 2, our algorithm first computes a weight vector wt, chooses a set St of k′
features to be observed, and computes a label ŷt by ŷt = w>t Dtxt in each round t. In addition,
our algorithm constructs an unbiased estimator ĝt of the gradient gt of the loss function `t(w) at
w = wt, i.e., gt = ∇w`t(wt) = 2xt(x

>
t wt − yt) at the end of the round. In the following, we

describe how to compute wt, St, and ĝt in round t, respectively, assuming that wt′ , St′ , and ĝt′ are
computed in the previous rounds t′ = 1, . . . , t−1. The entire algorithm is described in Algorithm 1.

5

Algorithm 1
Input: {xt, yt} ⊆ Rd × R, {λt} ⊆ R>0, k′ ≥ 2 and k1 ≥ 0 such that k1 ≤ k′ − 2.

1: Set ĥ0 = 0.
2: for t = 1, . . . , T do
3: Define wt by (5) and define St by Observe(wt, k

′, k1).
4: Observe Dtxt and output ŷt := w>t Dtxt.
5: Observe yt and define ĝt by (6) and set ĥt = ĥt−1 + ĝt
6: end for

Computing wt. We use ĝ1, . . . , ĝt−1 to estimate wt by the dual averaging method as follows.
Define ĥt−1 =

∑t−1
j=1 ĝj , which is the average of all estimators of gradients computed in the pre-

vious rounds. Moreover, let (λ1, . . . , λT) be a monotonically non-decreasing sequence of positive
numbers. From these, we define wt by

wt = arg min
w∈Rd,‖w‖≤1

{
ĥ>t−1w +

λt
2
‖w‖2

}
= − 1

max{λt, ‖ĥt−1‖}
ĥt−1, (5)

Computing St. Let k1 be an integer such that k1 ≤ k′− 2. We define Ut ⊆ [d] as the set of the k1
largest features with respect to wt, i.e., choose Ut so that |Ut| = k1 and all i ∈ Ut and j ∈ [d] \ Ut
satisfy |wti| ≥ |wtj |. Let Vt be the set of (k′ − k1) elements chosen from [d] \ Ut uniformly at
random. Then our algorithm observes the set St = Ut ∪Vt of the k′ features. We call this procedure
to obtain St Observe(wt, k

′, k1).

Observation 1. We observe that Ut ⊆ St and Prob[i, j ∈ St] ≥ (k′−k1)(k′−k1−1)
d(d−1) =: Cd,k′,k1 .

Thus, Prob[i, j ∈ St] > 0 for all i, j ∈ [d] if k′ ≥ k1 + 2.

For simplicity, we use the notation p(t)i = Prob[i ∈ St] and p(t)ij = Prob[i, j ∈ St] for i, j ∈ [d].

Computing ĝt. Define X̃t = (x̃tij) ∈ Rd×d by X̃t = Dtx
>
t xtDt and let Xt ∈ Rd×d be a matrix

whose (i, j)-th entry is x̃tij/p
(t)
ij . It follows that Xt is an unbiased estimator of xtx>t . Similarly,

defining zt = (zti) ∈ Rd by zti = xti/p
(t)
i for i ∈ St and zti = 0 for i /∈ St, we see that zt is an

unbiased estimator of xt. Using Xt and zt, we define ĝt to be

ĝt = 2Xtwt − 2ytzt. (6)

Regret bound of Algorithm 1. Let us show that the regret achieved by Algorithm 1 is
O(d

k′−k
√
T) in expectation.

Theorem 2. Suppose that the linear independence of features is satisfied and k ≤ k′ − 2. Let k1
be an arbitrary integer such that k ≤ k1 ≤ k′ − 2. Then, for arbitrary w ∈ Rd with ‖w‖ ≤ 1,

Algorithm 1 achieves E[RT (w)] ≤ 3
σ2
d

(
16

Cd,k′,k1

∑T
t=1

1
λt

+ λT+1

2

)
. By setting λt = 8

√
t/Cd,k′,k1

for each t = 1, . . . , T , we obtain

E[RT (w)] ≤ 24

σ2
d

√
d(d− 1)

(k′ − k1)(k′ − k1 − 1)
·
√
T + 1. (7)

The rest of this section is devoted to proving Theorem 2. By (4), it suffices to evaluate
E[
∑T
t=1 ‖L(Dtwt − w∗)‖2] instead of E[RT (w)]. The following lemma asserts that each term

of (4) can be bounded, assuming the linear independence of features. Proofs of all lemmas are given
in the supplementary material.

Lemma 3. Suppose that the linear independence of features is satisfied. If St ⊇ Ut,

‖L(Dtwt −w∗)‖2 ≤ 3

σ2
d

‖L(wt −w∗)‖2. (8)

6

Proof. We have

‖L(Dtwt −w∗)‖2 ≤ σ2
1‖Dtwt −w∗‖2 = σ2

1

 ∑
i∈S∗∩St

(wti − w∗i)2 +
∑

i∈S∗\St

w∗2i +
∑

i∈St\S∗
w2
ti


≤ σ2

1

‖wt −w∗‖2 +
∑

i∈S∗\St

w∗2i

 , (9)

where the second inequality holds since w∗i = 0 for i ∈ [d] \ S∗. It holds that∑
i∈S∗\St

w∗2i ≤
∑

i∈S∗\Ut

w∗2i ≤
∑

i∈S∗\Ut

(
2w2

ti + 2(wti − w∗i)2
)

≤ 2
∑

i∈Ut\S∗
w2
ti + 2

∑
i∈S∗\Ut

(wti − w∗i)2 ≤ 2‖wt −w∗‖2. (10)

The first and third inequalities come from Ut ⊆ St and the definition of Ut. Putting (10) into (9),
we have

‖L(Dtwt −w∗)‖2 ≤ 3σ2
1‖wt −w∗‖2 ≤ 3σ2

1

σ2
d

‖L(wt −w∗)‖2.

It follows from the above lemma that, if wt converges to w∗, we have Dtwt = w∗, and hence St
includes the support of w∗. Moreover, it holds that

∑T
t=1 E[‖L(wt−w∗)‖2] = E[

∑T
t=1(`t(wt)−

`t(w
∗))] = E[R′T (w∗)], since wt is independent of xt and yt. Thus, to bound

∑T
t=1 E[‖L(wt −

w∗)‖2], we shall evaluate E[R′T (w∗)].

Lemma 4 ([11]). Suppose that wt is defined by (5) for each t = 1, . . . , T , and w ∈ Rd satisfies
‖w‖ ≤ 1. Let Gt = E[‖ĝt‖2] for t = 1, . . . , T . Then,

E[R′T (w)] ≤
T∑
t=1

1

λt
Gt +

λT+1

2
. (11)

If Gt = O(1) and λt = Θ(
√
t), the right-hand side of (11) is O(

√
T). The following lemma shows

that this is true if p(t)ij = Ω(1).

Lemma 5. Suppose that the linear independence of features is satisfied. Let t ∈ [T], and let q be a
positive number such that q ≤ min{p(t)i , p

(t)
ij }. Then we have Gt ≤ 16/q.

We are now ready to prove Theorem 2.

Proof of Theorem 2. The expectation E[RT (w)] of the regret is bounded as E[RT (w)] ≤∑T
t=1 E[‖L(Dtwt − w∗)‖2] ≤ 3

σ2
d

∑T
t=1 E[‖L(wt − w∗)‖2] = 3

σ2
d
E[R′T (w∗)], where the first

inequality comes from (4) and the second comes from Lemma 3. From Lemma 4, E[R′T (w∗)]

is bounded by E[R′T (w∗)] ≤ HT :=
∑T
t=1

1
λt
Gt + λT+1

2 . Lemma 5 and Observation 1 yield

Gt ≤ 16/Cd,k′,k1 . Hence, for λt = 8
√
Cd,k′,k1t, HT satisfies HT ≤

∑T
t=1

16
Cd,k′,k1λt

+ λT+1

2 =∑T
t=1

2√
Cd,k′,k1 t

+ 4√
Cd,k′,k1

√
T + 1 ≤ 8 1√

Cd,k′,k1

√
T + 1. Combining the above three inequali-

ties, we obtain (7).

5 Algorithms without extra observations

5.1 Algorithm 2: Assuming (a) the linear independence of features

In Section 4, Lemma 3 showed a connection between RT and R′T : E[RT (w)] ≤ 3σ2
1

σd2
E[R′T (w∗)]

under Ut ⊆ St. Then, Lemmas 4 and 5 gave an upper bound of E[R′T (w∗)]: E[R′T (w∗)] = O(
√
T)

7

under p(t)ij = Ω(1). In the case of k′ = k, however, the conditions Ut ⊆ St and p(t)ij = Ω(1) may
not be satisfied simultaneously, since, if Ut ⊆ St and |St| = k′ = k ≥ k1 = |Ut|, then we have
Ut = St, which means p(t)ij = 0 for i /∈ Ut or j /∈ Ut. Thus, we cannot use both relationships for the
analysis. In Algorithm 2, we bound RT (w) without bounding R′T (w).

Let us describe an idea of Algorithm 2. To achieve the claimed regret, we first define a subset J
of {1, 2, . . . , T} by the set of squares, i.e., J = {s2 | s = 1, . . . , b

√
T c}. Let ts denote the s-th

smallest number in J for each s = 1, . . . , |J |. In each round t, the algorithm computes St, a weight
vector w̃t, and a vectorDtg̃t, where g̃t is the gradient of `t(w) at w = Dtw̃t. In addition, if t = ts,
the algorithm computes other weight vectors ws and w̄s := 1

s

∑s
j=1 wj , and an unbiased estimator

ĝs of the gradient of the loss function `t(w) at ws.

At the beginning of round t, if t = ts, the algorithm first computes ws, and w̄s is defined as the
average of w1, . . . ,ws. Roughly speaking, ws is the weight vector computed with Algorithm 1
applied to the examples (xt1 , yt1), . . . , (xts , yts), setting k1 to be at most k − 2. Then, we can
show that w̄s is a consistent estimator of w∗. This step is only performed if t ∈ J . Then St is
defined from w̄s, where s is the largest number such that ts ≤ t. Thus, St does not change for any
t ∈ [ts, ts+1 − 1]. After this, the algorithm computes w̃t from D1g̃1, . . . , Dt−1g̃t−1, and predicts
the label of xt as ŷt := w̃>t Dtxt. At the end of the round, the true label yt is observed, and Dtg̃t
is computed from wt and (Dtxt, yt). In addition, if t = ts, ĝs is computed as in Algorithm 1. We
need ĝs for computing ws′ with s′ > s in the subsequent rounds ts′ .

The following theorem bounds the regret of Algorithm 2. See the supplementary material for details
of the algorithm and the proof of the theorem.

Theorem 6. Suppose that (a), the linear independence of features, is satisfied and k ≤ k′. Then,
there exists a polynomial-time algorithm such that E[RT (w)] is at most

8(1+
√
d)
√
T + 1+12T

∑
i∈S∗
|w∗i | exp(−

C2
d,k′,0(T

1
4 − 1)|w∗i |2σ2

d

18432
)+4

∑
i∈S∗
|w∗i |(

4096

C2
d,k′,0w

∗4
i σ

4
d

+1)2,

for arbitrary w ∈ Rd with ‖w‖ ≤ 1, where Cd,k′,0 = k′(k′−1)
d(d−1) = O(k

′2

d2).2

5.2 Algorithm 3: Assuming (b) the compatibility condition

Algorithm 3 adopts the same strategy as Algorithm 2 except for the procedure for determining ws

and w̄s. In the analysis of Algorithm 2, we show that, to achieve the claimed regret, it suffices to
generate {St} that satisfies

∑T
t=1 Prob[i /∈ St] = O(

√
T) for i ∈ S∗. The condition was satisfied

by defining St as the set of k largest features with respect to a weight vector w̄s =
∑s
j=1 wj/s.

The linear independence of features guarantees that w̄s computed in Algorithm 2 converges to w∗,
and hence {St} defined as above possesses the required property. Unfortunately, if the assumption
of the independence of features is not satisfied, e.g., if we have almost same features, then w̄s does
not converge to w∗. However, if we introduce an `1-regularization to the minimization problem in
the definition of ws and change the definition of w̄s to a weighted average of the modified vectors
w1, . . . ,ws, then we can generate a required set {St} under the compatibility assumption. See the
supplementary material for details and the proof of the following theorem.

Theorem 7. Suppose that (b), the compatibility assumption, is satisfied and k ≤ k′. Then, there
exists a polynomial-time algorithm such that E[RT (w)] is at most

8(1+
√
d)
√
T+1 + 12T

∑
i∈S∗
|w∗i | exp(−Cd,k

′,0

√
T

1
4−1|w∗i |2φ20

5832k
) + 4

∑
i∈S∗
|w∗i |(

64 · 364k2

C2
d,k′,0w

∗4
i φ

4
0

+1)2,

for arbitrary w ∈ Rd with ‖w‖ ≤ 1, where Cd,k′,0 = k′(k′−1)
d(d−1) = O(k

′2

d2).3,4

3 The asymptotic regret bound mentioned in Section 1, can be yielded by bounding the second term with
the aid of the following: maxT≥0 T exp(−αT β) = (αβ)

− 1
β exp(−1/β) for arbitrary α > 0, β > 0.

4Note that φ0 is the constant appearing in Assumption (b) in Section 3.

8

6 Experiments

In this section, we compare our algorithms with the following four baseline algorithms: (i) a greedy
method that chooses the k′ largest features with respect to wt computed as in Algorithm 1; (ii)
a uniform-random method that chooses k′ features uniformly at random; (iii) the algorithm of [6]
(called AELR); and (iv) the algorithm of [5] (called FKK). Owing to space limitations, we only
present typical results here. Other results and the detailed descriptions on experiment settings are
provided in the supplementary material.

Synthetic data. First we show results on two kinds of synthetic datasets: instances with (d, k, k′)
and instances with (d, k1, k). We set k1 = k in the setting of (d, k, k′) and k′ = k in the setting of
(d, k1, k). The instances with (d, k, k′) assume that Algorithm 1 can use the ground truth k, while
Algorithm 1 cannot use k in the instances with (d, k1, k). For each (d, k, k′) and (d, k1, k), we
executed all algorithms on five instances with T = 5000 and computed the averages of regrets and
run time, respectively. When (d, k, k′) = (20, 5, 7), FKK spent 1176 s on average, while AELR
spent 6 s, and the others spent at most 1 s.

Figures 1 and 2 plot the regrets given by (1) over the number of rounds on a typical instance with
(d, k, k′) = (20, 5, 7). Tables 2 and 3 summarize the average regrets at T = 5000, where A1, A2,
A3, G, and U denote Algorithm 1, 2, 3, greedy, and uniform random, respectively. We observe that
Algorithm 1 achieves smallest regrets in the setting of (d, k, k′), whereas Algorithms 2 and 3 are
better than Algorithm 1 in the setting of (d, k1, k). The results match our theoretical results.

0 1000 2000 3000 4000 5000
T

0

1000

2000

3000

4000

5000

6000

7000

R T

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR
FKK

Figure 1: Plot of regrets with
(d, k, k′) = (20, 5, 7)

0 1000 2000 3000 4000 5000
T

0

1000

2000

3000

4000

5000

6000

7000

R T

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR
FKK

Figure 2: Plot of regrets with
(d, k1, k) = (20, 5, 7)

0 10000 20000 30000 40000 50000
T

0.00

0.25

0.50

0.75

1.00

1.25

1.50

T ∑ t=
0(

̂ y t
−
y t
)2

1e8

Algorithm 1
Algorithm 2
Algorithm 3
greedy
uniform random
AELR

Figure 3: CT-slice datasets

Table 2: Values of RT /102 when changing
(d, k, k′).

(d, k1, k) A1 A2 A3 G U AELR FKK
(10,2,4) 1.53 2.38 3.60 33.28 25.73 60.76 24.05

Table 3: Values of RT /102 when changing
(d, k1, k).

(d, k1, k) A1 A2 A3 G U AELR FKK
(10,2,4) 26.88 20.59 17.19 43.03 60.02 64.75 58.71

Real data. We next conducted experiments using a CT-slice dataset, which is available online [10].
Each data consists of 384 features retrieved from 53500 CT images associated with a label that
denotes the relative position of an image on the axial axis.

We executed all algorithms except FKK, which does not work due to its expensive run time. Since
we do not know the ground-truth regression weights, we measure the performance by the first term
of (1), i.e., square loss of predictions. Figure 3 plots the losses over the number of rounds. The
parameters are k1 = 60 and k′ = 70. For this instance, the run times of Algorithms 1 and 2, greedy,
uniform random, and AELR were 195, 35, 147, 382, and 477 s, respectively.

We observe that Algorithms 2 and 3 are superior to the others, which implies that Algorithm 2 and 3
are suitable for instances where the ground truth k is not known, such as real data-based instances.

Acknowledgement

This work was supported by JST ERATO Grant Number JPMJER1201, Japan.

References
[1] P. Bühlmann and S. van de Geer. Statistics for high-dimensional data. 2011.

9

[2] N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir. Some impossibility results for budgeted
learning. In Joint ICML-COLT workshop on Budgeted Learning, 2010.

[3] N. Cesa-Bianchi, S. Shalev-Shwartz, and O. Shamir. Efficient learning with partially observed
attributes. Journal of Machine Learning Research, 12:2857–2878, 2011.

[4] X. Chen, Q. Lin, and J. Pena. Optimal regularized dual averaging methods for stochastic
optimization. In Advances in Neural Information Processing Systems, pages 395–403, 2012.

[5] D. Foster, S. Kale, and H. Karloff. Online sparse linear regression. In 29th Annual Conference
on Learning Theory, pages 960–970, 2016.

[6] E. Hazan and T. Koren. Linear regression with limited observation. In Proceedings of the 29th
International Conference on Machine Learning (ICML-12), pages 807–814, 2012.

[7] S. Kale. Open problem: Efficient online sparse regression. In Proceedings of The 27th Con-
ference on Learning Theory, pages 1299–1301, 2014.

[8] S. Kale, Z. Karnin, T. Liang, and D. Pál. Adaptive feature selection: Computationally efficient
online sparse linear regression under rip. In Proceedings of the 34th International Conference
on Machine Learning (ICML-17), pages 1780–1788, 2017.

[9] P. Koiran and A. Zouzias. Hidden cliques and the certification of the restricted isometry prop-
erty. IEEE Trans. Information Theory, 60(8):4999–5006, 2014.

[10] M. Lichman. UCI machine learning repository, 2013.

[11] L. Xiao. Dual averaging methods for regularized stochastic learning and online optimization.
Journal of Machine Learning Research, 11:2543–2596, 2010.

[12] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages
928–936, 2003.

[13] N. Zolghadr, G. Bartók, R. Greiner, A. György, and C. Szepesvári. Online learning with costly
features and labels. In Advances in Neural Information Processing Systems, pages 1241–1249,
2013.

10

