
Is Input Sparsity Time Possible for
Kernel Low-Rank Approximation?

Cameron Musco
MIT

cnmusco@mit.edu

David P. Woodruff
Carnegie Mellon University
dwoodruf@cs.cmu.edu

Abstract

Low-rank approximation is a common tool used to accelerate kernel methods: the
n⇥n kernel matrix K is approximated via a rank-k matrix ˜K which can be stored
in much less space and processed more quickly. In this work we study the limits
of computationally efficient low-rank kernel approximation. We show that for a
broad class of kernels, including the popular Gaussian and polynomial kernels,
computing a relative error k-rank approximation to K is at least as difficult as
multiplying the input data matrix A 2 Rn⇥d by an arbitrary matrix C 2 Rd⇥k.
Barring a breakthrough in fast matrix multiplication, when k is not too large, this
requires ⌦(nnz(A)k) time where nnz(A) is the number of non-zeros in A. This
lower bound matches, in many parameter regimes, recent work on subquadratic
time algorithms for low-rank approximation of general kernels [MM16, MW17],
demonstrating that these algorithms are unlikely to be significantly improved, in
particular to O(nnz(A)) input sparsity runtimes. At the same time there is hope:
we show for the first time that O(nnz(A)) time approximation is possible for
general radial basis function kernels (e.g., the Gaussian kernel) for the closely
related problem of low-rank approximation of the kernelized dataset.

1 Introduction

The kernel method is a popular technique used to apply linear learning and classification algorithms
to datasets with nonlinear structure. Given training input points a

1

, ..., an 2 Rd, the idea is to
replace the standard Euclidean dot product hai, aji = aTi aj with the kernel dot product (ai, aj),
where : Rd ⇥ Rd ! R+ is some positive semidefinite function. Popular kernel functions include
e.g., the Gaussian kernel with (ai, aj) = e�kai�ajk2/� for some bandwidth parameter � and the
polynomial kernel of degree q with (ai, aj) = (c+ aTi aj)

q for some parameter c.

Throughout this work, we focus on kernels where (ai, aj) is a function of the dot products
aTi ai = kaik2, aTj aj = kajk2, and aTi aj . Such functions encompass many kernels used in practice,
including the Gaussian kernel, the Laplace kernel, the polynomial kernel, and the Matern kernels.

Letting F be the reproducing kernel Hilbert space associated with (·, ·), we can write (ai, aj) =
h�(ai),�(aj)i where � : Rd ! F is a typically non-linear feature map. We let � =

[�(a
1

), ...,�(an)]
T denote the kernelized dataset, whose ith row is the kernelized datapoint �(ai).

There is no requirement that � can be efficiently computed or stored – for example, in the case of the
Gaussian kernel, F is an infinite dimensional space. Thus, kernel methods typically work with the
kernel matrix K 2 Rn⇥n with Ki,j = (ai, aj). We will also sometimes denote K = { (ai, aj)}
to make it clear which kernel function it is generated by. We can equivalently write K = ��

T . As
long as all operations of an algorithm only access � via the dot products between its rows, they can
thus be implemented using just K without explicitly computing the feature map.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Unfortunately computing K is expensive, and a bottleneck for scaling kernel methods to large
datasets. For the kernels we consider, where depends on dot products between the input points, we
must at least compute the Gram matrix AAT , requiring ⇥(n2d) time in general. Even if A is sparse,
this takes ⇥(nnz(A)n) time. Storing K then takes ⇥(n2

) space, and processing it for downstream
applications like kernel ridge regression and kernel SVM can be even more expensive.

1.1 Low-rank kernel approximation

For this reason, a vast body of work studies how to efficiently approximate K via a low-rank sur-
rogate ˜K [SS00, AMS01, WS01, FS02, RR07, ANW14, LSS13, BJ02, DM05, ZTK08, BW09,
CKS11, WZ13, GM13]. If ˜K is rank-k, it can be stored in factored form in O(nk) space and
operated on quickly – e.g., it can be inverted in just O(nk2) time to solve kernel ridge regression.

One possibility is to set ˜K = Kk where Kk is K’s best k-rank approximation – the projection onto
its top k eigenvectors. Kk minimizes, over all rank-k ˜K, the error kK � ˜KkF , where kMkF is
the Frobenius norm: (

P
i,j M

2

i,j)
1/2. It in fact minimizes error under any unitarily invariant norm,

e.g., the popular spectral norm. Unfortunately, Kk is prohibitively expensive to compute, requiring
⇥(n3

) time in practice, or n! in theory using fast matrix multiplication, where ! ⇡ 2.373 [LG14].

The idea of much prior work on low-rank kernel approximation is to find ˜K which is nearly as good
as Kk, but can be computed much more quickly. Specifically, it is natural to ask for ˜K fulfilling the
following relative error guarantee for some parameter ✏ > 0:

kK � ˜KkF  (1 + ✏)kK �KkkF . (1)

Other goals, such as nearly matching the spectral norm error kK �Kkk or approximating K entry-
wise have also been considered [RR07, GM13]. Of particular interest to our results is the closely
related goal of outputting an orthonormal basis Z 2 Rn⇥k satisfying for any � with ��

T
= K:

k�� ZZT
�kF  (1 + ✏)k�� �kkF . (2)

(2) can be viewed as a Kernel PCA guarantee – its asks us to find a low-rank subspace Z such that
the projection of our kernelized dataset � onto Z nearly optimally approximates this dataset. Given
Z, we can approximate K using ˜K = ZZT

��

TZZT
= ZZTKZZT . Alternatively, letting P

be the projection onto the row span of ZZT
�, we can write ˜K = �P�

T , which can be computed
efficiently, for example, when P is a projection onto a subset of the kernelized datapoints [MM16].

1.2 Fast algorithms for relative-error kernel approximation

Until recently, all algorithms achieving the guarantees of (1) and (2) were at least as expensive as
computing the full matrix K, which was needed to compute the low-rank approximation [GM13].

However, recent work has shown that this is not required. Avron, Nguyen, and Woodruff [ANW14]
demonstrate that for the polynomial kernel, Z satisfying (2) can be computed in O(nnz(A)q) +
n poly(3

qk/✏) time for a polynomial kernel with degree q.

Musco and Musco [MM16] give a fast algorithm for any kernel, using recursive Nyström sampling,
which computes ˜K (in factored form) satisfying kK � ˜Kk  �, for input parameter �. With
the proper setting of �, it can output Z satisfying (2) (see Section C.3 of [MM16]). Computing
Z requires evaluating ˜O(k/✏) columns of the kernel matrix along with ˜O(n(k/✏)!�1

) additional
time for other computations. Assuming the kernel is a function of the dot products between the
input points, the kernel evaluations require ˜O(nnz(A)k/✏) time. The results of [MM16] can also be
used to compute ˜K satisfying (1) with ✏ =

p
n in ˜O(nnz(A)k + nk!�1

) time (see Appendix A of
[MW17]).

Woodruff and Musco [MW17] show that for any kernel, and for any ✏ > 0, it is possible to
achieve (1) in ˜O(nnz(A)k/✏)+n poly(k/✏) time plus the time needed to compute an ˜O(

p
nk/✏2)⇥

˜O(

p
nk/✏) submatrix of K. If A has uniform row sparsity – i.e., nnz(ai)  c nnz(A)/n for some

constant c and all i, this step can be done in ˜O(nnz(A)k/✏2.5) time. Alternatively, if d  (

p
nk/✏2)↵

for ↵ < .314 this can be done in ˜O(nk/✏4) = ˜O(nnz(A)k/✏4) time using fast rectangular matrix
multiplication [LG12, GU17] (assuming that there are no all zero data points so n  nnz(A).)

2

1.3 Our results

The algorithms of [MM16, MW17] make significant progress in efficiently solving (1) and (2) for
general kernel matrices. They demonstrate that, surprisingly, a relative-error low-rank approxima-
tion can be computed significantly faster than the time required to write down all of K.

A natural question is if these results can be improved. Even ignoring ✏ dependencies and typically
lower order terms, both algorithms use ⌦(nnz(A)k) time. One might hope to improve this to input
sparsity, or near input sparsity time, ˜O(nnz(A)), which is known for computing a low-rank approx-
imation of A itself [CW13]. The work of Avron et al. affirms that this is possible for the kernel PCA
guarantee of (2) for degree-q polynomial kernels, for constant q. Can this result be extended to other
popular kernels, or even more general classes?

1.3.1 Lower bounds

We show that achieving the guarantee of (1) significantly more efficiently than the work of [MM16,
MW17] is likely very difficult. Specifically, we prove that for a wide class of kernels, the kernel
low-rank approximation problem is as hard as multiplying the input A 2 Rn⇥d by an arbitrary
C 2 Rd⇥k. We have the following result for some common kernels to which our techniques apply:

Theorem 1 (Hardness for low-rank kernel approximation). Consider any polynomial kernel
 (mi,mj) = (c + mT

i mj)
q , Gaussian kernel (mi,mj) = e�kmi�mjk2/� , or the linear ker-

nel (mi,mj) = mT
i mj . Assume there is an algorithm which given M 2 Rn⇥d with associated

kernel matrix K = { (mi,mj)}, returns N 2 Rn⇥k in o(nnz(M)k) time satisfying:

kK �NNT k2F  �kK �Kkk2F

for some approximation factor �. Then there is an o(nnz(A)k) + O(nk2) time algorithm for mul-
tiplying arbitrary integer matrices A 2 Rn⇥d, C 2 Rd⇥k.

The above applies for any approximation factor �. While we work in the real RAM model, ignoring
bit complexity, as long as � = poly(n) and A,C have polynomially bounded entries, our reduction
from multiplication to low-rank approximation is achieved using matrices that can be represented
with just O(log(n+ d)) bits per entry.

Theorem 1 shows that the runtime of ˜O(nnz(A)k + nk!�1

) for � =

p
n achieved by [MM16]

for general kernels cannot be significantly improved without advancing the state-of-the-art in matrix
multiplication. Currently no general algorithm is known for multiplying integer A 2 Rn⇥d, C 2
Rd⇥k in o(nnz(A)k) time, except when k � n↵ for ↵ < .314 and A is dense. In this case, AC can
be computed in O(nd) time using fast rectangular matrix multiplication [LG12, GU17].

As discussed, when A has uniform row sparsity or when d  (

p
nk/✏2)↵, the runtime of [MW17]

for � = (1+ ✏), ignoring ✏ dependencies and typically lower order terms, is ˜O(nnz(A)k), which is
also nearly tight.

In recent work, Backurs et al. [BIS17] give lower bounds for a number of kernel learning problems,
including kernel PCA for the Gaussian kernel. However, their strong bound, of ⌦(n2

) time, requires
very small error � = exp(�!(log2 n), whereas ours applies for any relative error �.

1.3.2 Improved algorithm for radial basis function kernels

In contrast to the above negative result, we demonstrate that achieving the alternative Kernel PCA
guarantee of (2) is possible in input sparsity time for any shift and rotationally invariant kernel – e.g.,
any radial basis function kernel where (xi, xj) = f(kxi � xjk). This result significantly extends
the progress of Avron et al. [ANW14] on the polynomial kernel.

Our algorithm is based off a fast implementation of the random Fourier features method [RR07],
which uses the fact that that the Fourier transform of any shift invariant kernel is a probability
distribution after appropriate scaling (a consequence of Bochner’s theorem). Sampling frequencies
from this distribution gives an approximation to (·, ·) and consequentially the matrix K.

3

We employ a new analysis of this method [AKM+17], which shows that sampling ˜O
�

n
✏2�

�
random

Fourier features suffices to give ˜K =

˜

�

˜

�

T satisfying the spectral approximation guarantee:
(1� ✏)(˜K + �I) � K + �I � (1 + ✏)(˜K + �I).

If we set �  �k+1

(K)/k, we can show that ˜

� also gives a projection-cost preserving sketch
[CEM+15] for the kernelized dataset �. This ensures that any Z satisfying k˜� � ZZT

˜

�k2F 
(1 + ✏)k˜�� ˜

�kk2F also satisfies k�� ZZT
�k2F  (1 +O(✏))k�� �kk2F and thus achieves (2).

Our algorithm samples s =

˜O
�

n
✏2�

�
=

˜O
⇣

nk
✏2�k+1(K)

⌘
random Fourier features, which naively re-

quires O(nnz(A)s) time. We show that this can be accelerated to O(nnz(A))+poly(n, s) time, us-
ing a recent result of Kapralov et al. on fast multiplication by random Gaussian matrices [KPW16].
Our technique is analogous to the ‘Fastfood’ approach to accelerating random Fourier features using
fast Hadamard transforms [LSS13]. However, our runtime scales with nnz(A), which can be signif-
icantly smaller than the ˜O(nd) runtime given by Fastfood when A is sparse. Our main algorithmic
result is:
Theorem 2 (Input sparsity time kernel PCA). There is an algorithm that given A 2 Rn⇥d along
with shift and rotation-invariant kernel function : Rd⇥Rd ! R+ with (x, x) = 1, outputs, with
probability 99/100, Z 2 Rn⇥k satisfying:

k�� ZZT
�k2F  (1 + ✏)k�� �kk2F

for any � with ��

T
= K = { (ai, aj)} and any ✏ > 0. Letting �k+1

denote the (k + 1)

th largest
eigenvalue of K and ! < 2.373 be the exponent of fast matrix multiplication, the algorithm runs in

O(nnz(A)) +

˜O

✓
n!+1.5 ·

⇣
k

�k+1✏2

⌘!�1.5
◆

time.

We note that the runtime of our algorithm is O(nnz(A)) whenever n, k, 1/�k+1

, and 1/✏ are not
too large. Due to the relatively poor dependence on n, the algorithm is relevant for very high
dimensional datasets with d � n. Such datasets are found often, e.g., in genetics applications
[HDC+01, JDMP11]. While we have dependence on 1/�k+1

, in the natural setting, we only com-
pute a low-rank approximation up to an error threshold, ignoring very small eigenvalues of K, and
so �k+1

will not be too small. We do note that if we apply Theorem 2 to the low-rank approximation
instances given by our lower bound construction, �k+1

can be very small,  1/ poly(n, d) for ma-
trices with poly(n) bounded entries. Thus, removing this dependence is an important open question
in understanding the complexity of low-rank kernel approximation.

We leave open the possibility of improving our algorithm, achieving O(nnz(A)) + n · poly(k, ✏)
runtime, which would match the state-of-the-art for low-rank approximation of non-kernelized ma-
trices [CW13]. Alternatively, it is possible that a lower bound can be shown, proving the that high n
dependence, or the 1/�k+1

term are required even for the Kernel PCA guarantee of (2).

2 Lower bounds

Our lower bound proof argues that for a broad class of kernels, given input M , a low-rank approxi-
mation of the associated kernel matrix K achieving (1) can be used to obtain a close approximation
to the Gram matrix MMT . We write (mi,mj) as a function of mT

i mj (or kmi � mjk2 for dis-
tance kernels) and expand this function as a power series. We show that the if input points are
appropriately rescaled, the contribution of degree-1 term mT

i mj dominates, and hence our kernel
matrix approximates MMT , up to some easy to compute low-rank components.

We then show that such an approximation can be used to give a fast algorithm for multiplying any
two integer matrices A 2 Rn⇥d and C 2 Rd⇥k. The key idea is to set M = [A,wC] where w is a
large weight. We then have:

MMT
=


AAT wAC

wCTAT w2CTC

�
.

Since w is very large, the AAT block is relatively very small, and so MMT is nearly rank-2k –
it has a ‘heavy’ strip of elements in its last k rows and columns. Thus, computing a relative-error
rank-2k approximation to MMT recovers all entries except those in the AAT block very accurately,
and importantly, recovers the wAC block and so the product AC.

4

2.1 Lower bound for low-rank approximation of MMT .

We first illustrate our lower bound technique by showing hardness of direct approximation of MMT .
Theorem 3 (Hardness of low-rank approximation for MMT). Assume there is an algorithm A
which given any M 2 Rn⇥d returns N 2 Rn⇥k such that kMMT � NNT k2F  �

1

kMMT �
(MMT

)kk2F in T (M,k) time for some approximation factor �
1

.

For any A 2 Rn⇥d and C 2 Rd⇥k each with integer entries in [��

2

,�
2

], let B = [AT , wC]

T

where w = 3

p
�

1

�

2

2

nd. It is possible to compute the product AC in time T (B, 2k) +O(nk!�1

).

Proof. We can write the (n+ k)⇥ (n+ k) matrix BBT as:

BBT
= [AT , wC]

T
[A,wC] =


AAT wAC

wCTAT w2CTC

�
.

Let Q 2 Rn⇥2k be an orthogonal span for the columns of the n⇥ 2k matrix:
0 wAC
V w2CTC

�

where V 2 Rk⇥k spans the columns of wCTAT 2 Rk⇥n. The projection QQTBBT gives the best
Frobenius norm approximation to BBT in the span of Q. We can see that:

kBBT � (BBT
)

2kk2F  kBBT �QQTBBT k2F 
����


AAT

0

0 0

�����
2

F

 �

4

2

n2d2 (3)

since each entry of A is bounded in magnitude by �

2

and so each entry of AAT is bounded by d�2

2

.

Let N be the matrix returned by running A on B with rank 2k. In order to achieve the approximation
bound of kBBT �NNT k2F  �

1

kBBT � (BBT
)

2kk2F we must have, for all i, j:
(BBT �NNT

)

2

i,j  kBBT �NNT k2F  �

1

�

4

2

n2d2

where the last inequality is from (3). This gives |BBT � NNT |i,j 
p
�

1

�

2

2

nd. Since A and
C have integer entries, each entry in the submatrix wAC of BBT is an integer multiple of w =

3

p
�

1

�

2

2

nd. Since (NNT
)i,j approximates this entry to error

p
�

1

�

2

2

nd, by simply rounding
(NNT

)i,j to the nearest multiple of w, we obtain the entry exactly. Thus, given N , we can exactly
recover AC in O(nk!�1

) time by computing the n⇥k submatrix corresponding to AC in BBT .

Theorem 3 gives our main bound Theorem 1 for the case of the linear kernel (mi,mj) = mT
i mj .

Proof of Theorem 1 – Linear Kernel. We apply Theorem 3 after noting that for B = [AT , wC]

T ,
nnz(B)  nnz(A) + nk and so T (B, 2k) = o(nnz(A)k) +O(nk2).

We show in Appendix A that there is an algorithm which nearly matches the lower bound of Theorem
1 for any � = (1 + ✏) for any ✏ > 0. Further, in Appendix B we show that even just outputting an
orthogonal matrix Z 2 Rn⇥k such that ˜K = ZZTMMT is a relative-error low-rank approximation
of MMT , but not computing a factorization of ˜K itself, is enough to give fast multiplication of
integer matrices A and C.

2.2 Lower bound for dot product kernels

We now extend Theorem 3 to general dot product kernels – where (ai, aj) = f(aTi aj) for some
function f . This includes, for example, the polynomial kernel.
Theorem 4 (Hardness of low-rank approximation for dot product kernels). Consider any kernel
 : Rd ⇥ Rd ! R+ with (ai, aj) = f(aTi aj) for some function f which can be expanded as
f(x) =

P1
q=0

cqx
q with c

1

6= 0 and |cq/c1|  Gq�1 and for all q � 2 and some G � 1.

Assume there is an algorithm A which given M 2 Rn⇥d with kernel matrix K = { (mi,mj)},
returns N 2 Rn⇥k satisfying kK �NNT k2F  �

1

kK �Kkk in T (M,k) time.

For any A 2 Rn⇥d, C 2 Rd⇥k with integer entries in [��

2

,�
2

], let B = [w
1

AT , w
2

C]

T with w
1

=

w2

12

p
�1�

2
2nd

, w
2

=

1

4

p
Gd�2

. Then it is possible to compute AC in time T (B, 2k+ 1) +O(nk!�1

).

5

Proof. Using our decomposition of (·, ·), we can write the kernel matrix for B and as:

K = c
0


1 1

1 1

�
+ c

1


w2

1

AAT w
1

w
2

AC
w

1

w
2

CTAT w2

2

CTC

�
+ c

2

K(2)

+ c
3

K(3)

+ ... (4)

where K(q)
i,j = (bTi bj)

q and 1 denotes the all ones matrix of appropriate size. The key idea is to show
that the contribution of the K(q) terms is small, and so any relative-error rank-(2k+1) approximation
to K must recover an approximation to BBT , and thus the product AC as in Theorem 3.

By our setting of w
2

=

1

4

p
Gd�2

, the fact that w
1

< w
2

, and our bound on the entries of A and C,
we have for all i, j, |bTi bj |  w2

2

d�2

2

< 1

16G . Thus, for any i, j, using that |cq/c1|  Gq�1:
�����

1X

q=2

cqK
(q)
i,j

�����  c
1

|bTi bj | ·

�����

1X

q=2

Gq�1|bTi bj |q�1

�����  c
1

|bTi bj |
1X

q=2

Gq�1

(16G)

q�1

 1

12

c
1

|bTi bj |. (5)

Let ¯K be the matrix
✓
K � c

0


1 1

1 1

�◆
, with its top right n ⇥ n block set to 0. ¯K just has its last

k columns and rows non-zero, so has rank  2k. Let Q 2 Rn⇥2k+1 be an orthogonal span for the
columns ¯K along with the all ones vector of length n. Let N be the result of running A on B with
rank 2k + 1. Then we have:

kK �NNT k2F  �

1

kK �K
2k+1

k2F  �

1

kK �QQTKk2F

 �

1

����


(c

1

w2

1

AAT
+ c

2

ˆK(2)

+ ...) 0

0 0

�����
2

F

(6)

where ˆK(q) denotes the top left n⇥ n submatrix of K(q). By our bound on the entries of A and (5):
����
⇣
c
1

w2

1

AAT
+ c

2

ˆK(2)

+ c
3

ˆK(3)

+ ...
⌘

i,j

���� 
13

12

���
�
c
1

w2

1

AAT
�
i,j

���  2c
1

w2

1

d�2

2

.

Plugging back into (6) and using w
1

=

w2

12

p
�1�

2
2nd

, this gives for any i, j:

(K �NNT
)i,j  kK �NNT kF 

p
�

1

n2 · 2c
1

w2

1

d�2

2


p
�

1

n · 2c
1

d�2

2

12

p
�

1

�

2

2

nd
· w

1

w
2

 w
1

w
2

c
1

6

. (7)

Since A and C have integer entries, each entry of c
1

w
1

w
2

AC is an integer multiple of c
1

w
1

w
2

. By
the decomposition of (4) and the bound of (5), if we subtract c

0

from the corresponding entry of
K and round it to the nearest multiple of c

1

w
1

w
2

, we will recover the entry of AC. By the bound
of (7), we can likewise round the corresponding entry of NNT . Computing all nk of these entries
given N takes time O(nk!�1

), giving the theorem.

Theorem 4 lets us lower bound the time to compute a low-rank kernel approximation for any kernel
function expressible as a reasonable power expansion of aTi aj . As a straightforward example, it
gives the lower bound for the polynomial kernel of any degree stated in Theorem 1.

Proof of Theorem 1 – Polynomial Kernel. We apply Theorem 4, noting that (mi,mj) = (c +

mT
i mj)

q can be written as f(mT
i mj) where f(x) =

Pq
j=0

cjx
j with cj = cq�j

�
q
j

�
. Thus c

1

6= 0

and |cj/c1|  Gj�1 for G = (q/c). Finally note that nnz(B)  nnz(A)+nk giving the result.

2.3 Lower bound for distance kernels

We finally extend Theorem 4 to handle kernels like the Gaussian kernel whose value depends on the
squared distance kai � ajk2 rather than just the dot product aTi aj . We prove:

6

Theorem 5 (Hardness of low-rank approximation for distance kernels). Consider any kernel func-
tion : Rd⇥Rd ! R+ with (ai, aj) = f(kai�ajk2) for some function f which can be expanded
as f(x) =

P1
q=0

cqx
q with c

1

6= 0 and |cq/c1|  Gq�1 and for all q � 2 and some G � 1.

Assume there is an algorithm A which given input M 2 Rn⇥d with kernel matrix K =

{ (mi,mj)}, returns N 2 Rn⇥k satisfying kK �NNT k2F  �

1

kK �Kkk in T (M,k) time.

For any A 2 Rn⇥d, C 2 Rd⇥k with integer entries in [��

2

,�
2

], let B = [w
1

AT , w
2

C]

T with
w

1

=

w2

36

p
�1�

2
2nd

, w
2

=

1

(16Gd2
�

4
2)(36

p
�1�

2
2nd)

. It is possible to compute AC in T (B, 2k + 3) +

O(nk!�1

) time.

The proof of Theorem 5 is similar to that of Theorem 4, and relegated to Appendix C. The key
idea is to write K as a polynomial in the distance matrix D with Di,j = kbi � bjk2

2

. Since kbi �
bjk2

2

= kbik2
2

+ kbjk2
2

� 2bTi bj , D can be written as �2BBT plus a rank-2 component. By setting
w

1

, w
2

sufficiently small, as in the proof of Theorem 4, we ensure that the higher powers of D are
negligible, and thus that our low-rank approximation must accurately recover the submatrix of BBT

corresponding to AC. Theorem 5 gives Theorem 1 for the popular Gaussian kernel:

Proof of Theorem 1 – Gaussian Kernel. (mi,mj) can be written as f(kmi�mjk2) where f(x) =
e�x/�

=

P1
q=0

(�1/�)q

q! xq . Thus c
1

6= 0 and |cq/c1|  Gq�1 for G = 1/�. Applying Theorem 5
and bounding nnz(B)  nnz(A) + nk, gives the result.

3 Input sparsity time kernel PCA for radial basis kernels

Theorem 1 gives little hope for achieving o(nnz(A)k) time for low-rank kernel approximation.
However, the guarantee of (1) is not the only way of measuring the quality of ˜K. Here we show that
for shift/rotationally invariant kernels, including e.g., radial basis kernels, input sparsity time can be
achieved for the kernel PCA goal of (2).

3.1 Basic algorithm

Our technique is based on the random Fourier features technique [RR07]. Given any shift-invariant
kernel, (x, y) = (x� y) with (0) = 1 (we will assume this w.l.o.g. as the function can always
be scaled), there is a probability density function p(⌘) over vectors in Rd such that:

 (x� y) =

Z

Rd

e�2⇡i⌘T
(x�y)p(⌘)d⌘. (8)

p(⌘) is just the (inverse) Fourier transform of (·), and is a density function by Bochner’s theorem.
Informally, given A 2 Rn⇥d if we let Z denote the matrix with columns z(⌘) indexed by ⌘ 2 Rd.
z(⌘)j = e�2⇡i⌘T aj . Then (8) gives ZPZ⇤

= K where P is diagonal with P⌘,⌘ = p(⌘), and Z⇤

denotes the Hermitian transpose.

The idea of random Fourier features is to select s frequencies ⌘
1

, ..., ⌘s according to the density p(⌘)

and set ˜Z =

1p
s
[z(⌘

1

), ...z(⌘s)]. ˜K =

˜Z ˜ZT is then used to approximate K.

In recent work, Avron et al. [AKM+17] give a new analysis of random Fourier features. Extending
prior work on ridge leverage scores in the discrete setting [AM15, CMM17], they define the ridge
leverage function for parameter � > 0:

⌧�(⌘) = p(⌘)z(⌘)⇤(K + �I)�1z(⌘) (9)

As part of their results, which seek ˜K that spectrally approximates K, they prove the following:
Lemma 6. For all ⌘, ⌧�(⌘)  n/�.

While simple, this bound is key to our algorithm. It was shown in [CMM17] that if the columns of
a matrix are sampled by over-approximations to their ridge leverage scores (with appropriately set
�), the sample is a projection-cost preserving sketch for the original matrix. That is, it can be used
as a surrogate in computing a low-rank approximation. The results of [CMM17] carry over to the
continuous setting giving, in conjunction with Lemma 6:

7

Lemma 7 (Projection-cost preserving sketch via random Fourier features). Consider any A 2 Rn⇥d

and shift-invariant kernel (·) with (0) = 1, with associated kernel matrix K = { (ai � aj)}
and kernel Fourier transform p(⌘). For any 0 < �  1

k

Pn
i=k+1

�i(K), let s =

cn log(n/��)
✏2� for

sufficiently large c and let ˜Z =

1p
s
[z(⌘

1

), ..., z(⌘s)] where ⌘
1

, ..., ⌘s are sampled independently
according to p(⌘). Then with probability � 1� �, for any orthonormal Q 2 Rn⇥k and any � with
��

T
= K:

(1� ✏)kQQT
˜Z � ˜Zk2F  kQQT

�� �k2F  (1 + ✏)kQQT
˜Z � ˜Zk2F . (10)

By (10) if we compute Q satisfying kQQT
˜Z � ˜Zk2F  (1 + ✏)k ˜Z � ˜Zkk2F then we have:

kQQT
�� �k2F  (1 + ✏)2k ˜Z � ˜Zkk2F  (1 + ✏)2

1� ✏
kUkU

T
k �� �k2F

= (1 +O(✏))k�� �kk2F

where Uk 2 Rn⇥k contains the top k column singular vectors of �. By adjusting constants on ✏ by
making c large enough, we thus have the relative error low-rank approximation guarantee of (2). It
remains to show that this approach can be implemented efficiently.

3.2 Input sparsity time implementation

Given ˜Z sampled as in Lemma 7, we can find a near optimal subspace Q using any input sparsity
time low-rank approximation algorithm (e.g., [CW13, NN13]). We have the following Corollary:

Corollary 8. Given ˜Z sampled as in Lemma 7 with s = ˜

⇥(

nk
✏2�k+1(K)

), there is an algorithm running

in time ˜O(

n2k
✏2�k+1(K)

) that computes Q satisfying with high probability, for any � with ��

T
= K:

kQQT
�� �k2F  (1 + ✏)k�� �kk2F .

With Corollary 8 in place the main bottleneck to our approach becomes computing ˜Z.

3.2.1 Sampling Frequencies

To compute ˜Z, we first sample ⌘
1

, ..., ⌘s according to p(⌘). Here we use the rotational invariance of
 (·). In this case, p(⌘) is also rotationally invariant [LSS13] and so, letting p̂(·) be the distribution
over norms of vectors sampled from p(⌘) we can sample ⌘

1

, ..., ⌘n by first selecting s random
Gaussian vectors and then rescaling them to have norms distributed according to p̂(·). That is, we
can write [⌘

1

, ..., ⌘n] = GD where G 2 Rd⇥s is a random Gaussian matrix and D is a diagonal
rescaling matrix with Dii =

m
kGik with m ⇠ p̂. We will assume that p̂ can be sampled from in

O(1) time. This is true for many natural kernels – e.g., for the Gaussian kernel, p̂ is just a Gaussian
density.

3.2.2 Computing ˜Z

Due to our large sample size, s > n, even writing down G above requires ⌦(nd) time. However,
to form ˜Z we do not need G itself: it suffices to compute for m = 1, ..., s the column z(⌘m)

with z(⌘m)j = e�2⇡i⌘T
maj . This requires computing AGD, which contains the appropriate dot

products aTj ⌘m for all m, j. We use a recent result [KPW16] which shows that this can be performed
approximately in input sparsity time:
Lemma 9 (From Theorem 1 of [KPW16]). There is an algorithm running in O(nnz(A) +

log

4 dn3s!�1.5

�) time which outputs random B whose distribution has total variation distance at most
� from the distribution of AG where G 2 Rd⇥s is a random Gaussian matrix. Here, ! < 2.373 is
the exponent of fast matrix multiplication.

Proof. Theorem 1 of [KPW16] shows that for B to have total variation distance � from the distribu-
tion of AG it suffices to set B = ACG0 where C is a d ⇥ O(log

4 dn2s1/2/�) CountSketch matrix

8

and G0 is an O(log

4 dn2s1/2/�)⇥ s random Gaussian matrix. Computing AC requires O(nnz(A))

time. Multiplying the result by G0 then requires O(

log

4 dn3s1.5

�) time if fast matrix multiplication is
not employed. Using fast matrix multiplication, this can be improved to O(

log

4 dn3s!�1.5

�).

Applying Lemma 9 with � = 1/200 lets us compute random BD with total variation distance 1/200
from AGD. Thus, the distribution of ˜Z generated from this matrix has total variation distance
 1/200 from the ˜Z generated from the true random Fourier features distribution. So, by Corollary
8, we can use ˜Z to compute Q satisfying kQQT

� � �k2F  (1 + ✏)k� � �kk2F with probability
1/100 accounting for the the total variation difference and the failure probability of Corollary 8.
This yields our main algorithmic result, Theorem 2.

3.3 An alternative approach

We conclude by noting that near input sparsity time Kernel PCA can also be achieved for a broad
class of kernels using a very different approach. We can approximate (·, ·) via an expansion into
polynomial kernel matrices as is done in [CKS11] and then apply the sketching algorithms for the
polynomial kernel developed in [ANW14]. As long as the expansion achieves high accuracy with
low degree, and as long as 1/�k+1

is not too small – since this will control the necessary approxima-
tion factor, this technique can yield runtimes of the form ˜O(nnz(A))+poly(n, k, 1/�k+1

, 1/✏), giv-
ing improved dependence on n for some kernels over our random Fourier features method. Improv-
ing the poly(n, k, 1/�k+1

, 1/✏) term in both these methods, and especially removing the 1/�k+1

dependence and achieving linear dependence on n is an interesting open question for future work.

4 Conclusion

In this work we have shown that for a broad class of kernels, including the Gaussian, polynomial, and
linear kernels, given data matrix A, computing a relative error low-rank approximation to A’s kernel
matrix K (i.e., satisfying (1)) requires at least ⌦(nnz(A)k) time, barring a major breakthrough in
the runtime of matrix multiplication. In the constant error regime, this lower bound essentially
matches the runtimes given by recent work on subquadratic time kernel and PSD matrix low-rank
approximation [MM16, MW17].

We show that for the alternative kernel PCA guarantee of (2), a potentially faster runtime of
O(nnz(A)) + poly(n, k, 1/�k+1

, 1/✏) can be achieved for general shift and rotation-invariant ker-
nels. Practically, improving the second term in our runtime, especially the poor dependence on
n, is an important open question. Generally, computing the kernel matrix K explicitly requires
O(n2d) time, and so our algorithm only gives runtime gains when d is large compared to n – at least
⌦(n!�.5

), even ignoring k, �k+1

, and ✏ dependencies. Theoretically, removing the dependence on
�k+1

would be of interest, as it would give input sparsity runtime without any assumptions on the
matrix A (i.e., that �k+1

is not too small). Resolving this question has strong connections to finding
efficient kernel subspace embeddings, which approximate the full spectrum of K.

References
[AKM+17] Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Vel-

ingker, and Amir Zandieh. Random Fourier features for kernel ridge regression: Ap-
proximation bounds and statistical guarantees. In Proceedings of the 34th International
Conference on Machine Learning (ICML), 2017.

[AM15] Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression
with statistical guarantees. In Advances in Neural Information Processing Systems 28
(NIPS), pages 775–783, 2015.

[AMS01] Dimitris Achlioptas, Frank Mcsherry, and Bernhard Schölkopf. Sampling techniques
for kernel methods. In Advances in Neural Information Processing Systems 14 (NIPS),
2001.

9

[ANW14] Haim Avron, Huy Nguyen, and David Woodruff. Subspace embeddings for the polyno-
mial kernel. In Advances in Neural Information Processing Systems 27 (NIPS), pages
2258–2266, 2014.

[BIS17] Arturs Backurs, Piotr Indyk, and Ludwig Schmidt. On the fine-grained complexity
of empirical risk minimization: Kernel methods and neural networks. In Advances in
Neural Information Processing Systems 30 (NIPS), 2017.

[BJ02] Francis Bach and Michael I. Jordan. Kernel independent component analysis. Journal
of Machine Learning Research, 3(Jul):1–48, 2002.

[BW09] Mohamed-Ali Belabbas and Patrick J. Wolfe. Spectral methods in machine learning:
New strategies for very large datasets. Proceedings of the National Academy of Sci-
ences of the USA, 106:369–374, 2009.

[CEM+15] Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina
Persu. Dimensionality reduction for k-means clustering and low rank approximation.
In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC),
pages 163–172, 2015.

[CKS11] Andrew Cotter, Joseph Keshet, and Nathan Srebro. Explicit approximations of the
Gaussian kernel. arXiv:1109.4603, 2011.

[CMM17] Michael B. Cohen, Cameron Musco, and Christopher Musco. Input sparsity time low-
rank approximation via ridge leverage score sampling. In Proceedings of the 28th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1758–1777,
2017.

[CW13] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression
in input sparsity time. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), pages 81–90, 2013.

[CW17] Kenneth L. Clarkson and David P. Woodruff. Low-rank PSD approximation in input-
sparsity time. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2061–2072, 2017.

[DM05] Petros Drineas and Michael W Mahoney. On the Nyström method for approximat-
ing a Gram matrix for improved kernel-based learning. Journal of Machine Learning
Research, 6:2153–2175, 2005.

[FS02] Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank kernel repre-
sentations. Journal of Machine Learning Research, 2:243–264, 2002.

[FT07] Shmuel Friedland and Anatoli Torokhti. Generalized rank-constrained matrix approxi-
mations. SIAM Journal on Matrix Analysis and Applications, 29(2):656–659, 2007.

[GM13] Alex Gittens and Michael Mahoney. Revisiting the Nyström method for improved
large-scale machine learning. In Proceedings of the 30th International Conference on
Machine Learning (ICML), pages 567–575, 2013. Full version at arXiv:1303.1849.

[GU17] François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. arXiv:1708.05622, 2017.

[HDC+01] Ingrid Hedenfalk, David Duggan, Yidong Chen, Michael Radmacher, Michael Bit-
tner, Richard Simon, Paul Meltzer, Barry Gusterson, Manel Esteller, Mark Raffeld,
et al. Gene-expression profiles in hereditary breast cancer. New England Journal of
Medicine, 344(8):539–548, 2001.

[JDMP11] Asif Javed, Petros Drineas, Michael W Mahoney, and Peristera Paschou. Efficient
genomewide selection of PCA-correlated tSNPs for genotype imputation. Annals of
Human Genetics, 75(6):707–722, 2011.

[KPW16] Michael Kapralov, Vamsi Potluru, and David Woodruff. How to fake multiply by a
Gaussian matrix. In Proceedings of the 33rd International Conference on Machine
Learning (ICML), pages 2101–2110, 2016.

10

http://arxiv.org/abs/1109.4603
http://arxiv.org/abs/1303.1849
http://arxiv.org/abs/1708.05622

[LG12] François Le Gall. Faster algorithms for rectangular matrix multiplication. In Pro-
ceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 514–523, 2012.

[LG14] François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings
of the 39th international symposium on symbolic and algebraic computation, pages
296–303. ACM, 2014.

[LSS13] Quoc Le, Tamás Sarlós, and Alexander Smola. Fastfood - Computing Hilbert space
expansions in loglinear time. In Proceedings of the 30th International Conference on
Machine Learning (ICML), pages 244–252, 2013.

[MM16] Cameron Musco and Christopher Musco. Recursive sampling for the Nyström method.
In Advances in Neural Information Processing Systems 30 (NIPS), 2016.

[MW17] Cameron Musco and David P Woodruff. Sublinear time low-rank approximation of
positive semidefinite matrices. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2017.

[NN13] Jelani Nelson and Huy L Nguyên. OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proceedings of the 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS), pages 117–126, 2013.

[RR07] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
In Advances in Neural Information Processing Systems 20 (NIPS), pages 1177–1184,
2007.

[SS00] Alex J Smola and Bernhard Schökopf. Sparse greedy matrix approximation for ma-
chine learning. In Proceedings of the 17th International Conference on Machine Learn-
ing (ICML), pages 911–918, 2000.

[WS01] Christopher Williams and Matthias Seeger. Using the Nyström method to speed up
kernel machines. In Advances in Neural Information Processing Systems 14 (NIPS),
pages 682–688, 2001.

[WZ13] Shusen Wang and Zhihua Zhang. Improving CUR matrix decomposition and the Nys-
tröm approximation via adaptive sampling. Journal of Machine Learning Research,
14:2729–2769, 2013.

[ZTK08] Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved Nyström low-rank approx-
imation and error analysis. In Proceedings of the 25th International Conference on
Machine Learning (ICML), pages 1232–1239, 2008.

11

