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Abstract

Inference using deep neural networks is often outsourced to the cloud since it is
a computationally demanding task. However, this raises a fundamental issue of
trust. How can a client be sure that the cloud has performed inference correctly?
A lazy cloud provider might use a simpler but less accurate model to reduce its
own computational load, or worse, maliciously modify the inference results sent to
the client. We propose SafetyNets, a framework that enables an untrusted server
(the cloud) to provide a client with a short mathematical proof of the correctness of
inference tasks that they perform on behalf of the client. Specifically, SafetyNets
develops and implements a specialized interactive proof (IP) protocol for verifiable
execution of a class of deep neural networks, i.e., those that can be represented
as arithmetic circuits. Our empirical results on three- and four-layer deep neural
networks demonstrate the run-time costs of SafetyNets for both the client and server
are low. SafetyNets detects any incorrect computations of the neural network by
the untrusted server with high probability, while achieving state-of-the-art accuracy
on the MNIST digit recognition (99.4%) and TIMIT speech recognition tasks
(75.22%).

1 Introduction

Recent advances in deep learning have shown that multi-layer neural networks can achieve state-of-
the-art performance on a wide range of machine learning tasks. However, training and performing
inference (using a trained neural network for predictions) can be computationally expensive. For this
reason, several commercial vendors have begun offering “machine learning as a service" (MLaaS)
solutions that allow clients to outsource machine learning computations, both training and inference,
to the cloud.

While promising, the MLaaS model (and outsourced computing, in general) raises immediate security
concerns, specifically relating to the integrity (or correctness) of computations performed by the
cloud and the privacy of the client’s data [16]. This paper focuses on the former, i.e., the question
of integrity. Specifically, how can a client perform inference using a deep neural network on an
untrusted cloud, while obtaining strong assurance that the cloud has performed inference correctly?

Indeed, there are compelling reasons for a client to be wary of a third-party cloud’s computations. For
one, the cloud has a financial incentive to be “lazy." A lazy cloud might use a simpler but less accurate
model, for instance, a single-layer instead of a multi-layer neural network, to reduce its computational
costs. Further the cloud could be compromised by malware that modifies the results sent back to
the client with malicious intent. For instance, the cloud might always mis-classify a certain digit in
a digit recognition task, or allow unauthorized access to certain users in a face recognition based
authentication system.

The security risks posed by cloud computing have spurred theoretical advances in the area of verifiable
computing (VC) [21]. The idea is to enable a client to provably (and cheaply) verify that an untrusted

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



server has performed computations correctly. To do so, the server provides to the client (in addition
to the result of computation) a mathematical proof of the correctness of the result. The client rejects,
with high probability, any incorrectly computed results (or proofs) provided by the server, while
always accepting correct results (and corresponding proofs) 1. VC techniques aim for the following
desirable properties: the size of the proof should be small, the client’s verification effort must be
lower than performing the computation locally, and the server’s effort in generating proofs should not
be too high.

The advantage of proof-based VC is that it provides unconditional, mathematical guarantees on the
integrity of computation performed by the server. Alternative solutions for verifiable execution require
the client to make trust assumptions that are hard for the client to independently verify. Trusted
platform modules [7], for instance, require the client to place trust on the hardware manufacturer, and
assume that the hardware is tamper-proof. Audits based on the server’s execution time [15] require
precise knowledge of the server’s hardware configuration and assume, for instance, that the server is
not over-clocked.
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Figure 1: High-level overview of the SafetyNets IP protocol.
In this example, an untrusted server intentionally changes
the classification output from 4 to 5.

The work in this paper leverages pow-
erful VC techniques referred to as in-
teractive proof (IP) systems [5, 9, 18,
19]. An IP system consists of two en-
tities, a prover (P), i.e., the untrusted
server, and a verifier (V), i.e., the
client. The framework is illustrated in
Figure 1. The verifier sends the prover
an input x, say a batch of test images,
and asks the prover to compute a func-
tion y = f(x). In our setting, f(.) is
a trained multi-layer neural network
that is known to both the verifier and

prover, and y is the neural network’s classification output for each image in the batch. The prover
performs the computation and sends the verifier a purported result y′ (which is not equal to y if the
prover cheats). The verifier and prover then engage in n rounds of interaction. In each round, the
verifier sends the prover a randomly picked challenge, and the prover provides a response based on
the IP protocol. The verifier accepts that y′ is indeed equal to f(x) if it is satisfied with the prover’s
response in each round, and rejects otherwise.

A major criticism of IP systems (and, indeed, all existing VC techniques) when used for verifying
general-purpose computations is that the prover’s overheads are large, often orders of magnitude
more than just computing f(x) [21]. Recently, however, Thaler [18] showed that certain types of
computations admit IP protocols with highly efficient verifiers and provers, which lays the foundations
for the specialized IP protocols for deep neural networks that we develop in this paper.

Paper Contributions. This paper introduces SafetyNets, a new (and to the best of our knowledge,
the first) approach for verifiable execution of deep neural networks on untrusted clouds. Specifically,
SafetyNets composes a new, specialized IP protocol for the neural network’s activation layers with
Thaler’s IP protocol for matrix multiplication to achieve end-to-end verifiability, dramatically reducing
the bandwidth costs versus a naive solution that verifies the execution of each layer of the neural
network separately.

SafetyNets applies to a certain class of neural networks that can be represented as arithmetic circuits
that perform computations over finite fields (i.e., integers modulo a large prime p). Our implementa-
tion of SafetyNets addresses several practical challenges in this context, including the choice of the
prime p, its relationship to accuracy of the neural network, and to the verifier and prover run-times.

Empirical evaluations on the MNIST digit recognition and TIMIT speech recognition tasks illustrate
that SafetyNets enables practical, low-cost verifiable outsourcing of deep neural network execution
without compromising classification accuracy. Specifically, the client’s execution time is 8×-80×
lower than executing the network locally, the server’s overhead in generating proofs is less than 5%,
and the client/server exchange less than 8 KBytes of data during the IP protocol. SafetyNets’ security

1Note that the SafetyNets is not intended to and cannot catch any inherent mis-classifications due to the
model itself, only those that result from incorrect computations of the model by the server.
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guarantees ensure that a client can detect any incorrect computations performed by a malicious
server with probability vanishingly close to 1. At the same time, SafetyNets achieves state-of-the-art
classification accuracies of 99.4% and 75.22% on the MNIST and TIMIT datasets, respectively.

2 Background

In this section, we begin by reviewing necessary background on IP systems, and then describe the
restricted class of neural networks (those that can be represented as arithmetic circuits) that SafetyNets
handles.

2.1 Interactive Proof Systems

Existing IP systems proposed in literature [5, 9, 18, 19] use, at their heart, a protocol referred to as
the sum-check protocol [13] that we describe here in some detail, and then discuss its applicability in
verifying general-purpose computations expressed as arithmetic circuits.

Sum-check Protocol Consider a d-degree n-variate polynomial g(x1, x2, . . . , xn), where each
variable xi ∈ Fp (Fp is the set of all natural numbers between zero and p− 1, for a given prime p)
and g : Fn

p → Fp. The prover P seeks to prove the following claim:

y =
∑

x1∈{0,1}

∑
x2∈{0,1}

. . .
∑

xn∈{0,1}

g(x1, x2, . . . , xn) (1)

that is, the sum of g evaluated at 2n points is y. P and V now engage in a sum-check protocol to
verify this claim. In the first round of the protocol, P sends the following unidimensional polynomial

h(x1) =
∑

x2∈{0,1}

∑
x3∈{0,1}

. . .
∑

xn∈{0,1}

g(x1, x2, . . . , xn) (2)

to V in the form of its coefficients. V checks if h(0) + h(1) = y. If yes, it proceeds, otherwise
it rejects P’s claim. Next, V picks a random value q1 ∈ Fp and evaluates h(q1) which, based on
Equation 2, yields a new claim:

h(q1) =
∑

x2∈{0,1}

∑
x3∈{0,1}

. . .
∑

xn∈{0,1}

g(q1, x2, . . . , xn). (3)

V now recursively calls the sum-check protocol to verify this new claim. By the final round of the
sum-check protocol, P returns the value g(q1, q2, . . . , qn) and the V checks if this value is correct by
evaluating the polynomial by itself. If so, V accepts the original claim in Equation 1, otherwise it
rejects the claim.
Lemma 2.1. [2] V rejects an incorrect claim by P with probability greater than (1− ε) where
ε = nd

p is referred to as the soundness error.

IPs for Verifying Arithmetic Circuits In their seminal work, Goldwasser et al. [9] demonstrated
how sum-check can be used to verify the execution of arithmetic circuits using an IP protocol now
referred to as GKR. An arithmetic circuit is a directed acyclic graph of computation over elements of
a finite field Fp in which each node can perform either addition or multiplication operations (modulo
p). While we refer the reader to [9] for further details of GKR, one important aspect of the protocol
bears mention.

GKR organizes nodes of an arithmetic circuit into layers; starting with the circuit inputs, the outputs
of one layer feed the inputs of the next. The GKR proof protocol operates backwards from the circuit
outputs to its inputs. Specifically, GKR uses sum-check to reduce the prover’s assertion about the
circuit output into an assertion about the inputs of the output layer. This assertion is then reduced to
an assertion about the inputs of the penultimate layer, and so on. The protocol continues iteratively till
the verifier is left with an assertion about the circuit inputs, which it checks on its own. The layered
nature of GKR’s prover aligns almost perfectly with the structure of a multi-layer neural network and
motivates the use of an IP system based on GKR for SafetyNets.
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2.2 Neural Networks as Arithmetic Circuits

As mentioned before, SafetyNets applies to neural networks that can be expressed as arithmetic
circuits. This requirement places the following restrictions on the neural network layers.

Quadratic Activations The activation functions in SafetyNets must be polynomials with integer
coefficients (or, more precisely, coefficients in the field Fp). The simplest of these is the element-wise
quadratic activation function whose output is simply the square of its input. Other commonly used
activation functions such as ReLU, sigmoid or softmax activations are precluded, except in the final
output layer. Prior work has shown that neural networks with quadratic activations have the same
representation power as networks with threshold activations and can be efficiently trained [6, 12].

Sum Pooling Pooling layers are commonly used to reduce the network size, to prevent overfitting
and provide translation invariance. SafetyNets uses sum pooling, wherein the output of the pooling
layer is the sum of activations in each local region. However, techniques such as max pooling [10]
and stochastic pooling [22] are not supported since max and divisions operations are not easily
represented as arithmetic circuits.

Finite Field Computations SafetyNets supports computations over elements of the field Fp, that
is, integers in the range {−p−1

2 , . . . , 0, . . . , p−12 }. The inputs, weights and all intermediate values
computed in the network must lie in this range. Note that due to the use of quadratic activations
and sum pooling, the values in the network can become quite large. In practice, we will pick large
primes to support these large values. We note that this restriction applies to the inference phase only;
the network can be trained with floating point inputs and weights. The inputs and weights are then
re-scaled and quantized, as explained in Section 3.3, to finite field elements.

We note that the restrictions above are shared by a recently proposed technique, CryptoNets [8], that
seeks to perform neural network based inference on encrypted inputs so as to guarantee data privacy.
However, Cryptonets does not guarantee integrity and compared to SafetyNets, incurs high costs
for both the client and server (see Section 4.3 for a comparison). Conversely, SafetyNets is targeted
towards applications where integrity is critical, but does not provide privacy.

2.3 Mathematical Model

An L layer neural network with the constraints discussed above can be modeled, without loss of
generality, as follows. The input to the network is x ∈ Fn0×b

p , where n0 is the dimension of each
input and b is the batch size. Layer i ∈ [1, L] has ni output neurons2, and is specified using a weight
matrix wi−1 ∈ Fni×ni−1

p , and biases bi−1 ∈ Fni
p .

The output of Layer i ∈ [1, L], yi ∈ Fni×b
p is:

yi = σquad(wi−1.yi−1 + bi−11
T ) ∀i ∈ [1, L− 1]; yL = σout(wL−1.yL−1 + bL−11

T ), (4)

where σquad(.) is the quadratic activation function, σout(.) is the activation function of the output
layer, and 1 ∈ Fb

p is the vector of all ones. We will typically use softmax activations in the output
layer. We will also find it convenient to introduce the variable zi ∈ Fni+1×b

p defined as

zi = wi.yi + bi1
T ∀i ∈ [0, L− 1]. (5)

The model captures both fully connected and convolutional layers; in the latter case the weight matrix
is sparse. Further, without loss of generality, all successive linear transformations in a layer, for
instance sum pooling followed by convolutions, are represented using a single weight matrix.

With this model in place, the goal of SafetyNets is to enable the client to verify that yL was correctly
computed by the server. We note that as in prior work [19], SafetyNets amortizes the prover and
verifier costs over batches of inputs. If the server incorrectly computes the output corresponding to
any input in a batch, the verifier rejects the entire batch of computations.

2The 0th layer is defined to be input layer and thus y0 = x.
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3 SafetyNets

We now describe the design and implementation of our end-to-end IP protocol for verifying execution
of deep networks. The SafetyNets protocol is a specialized form of the IP protocols developed by
Thaler [18] for verifying “regular" arithmetic circuits, that themselves specialize and refine prior
work [5]. The starting point for the protocol is a polynomial representation of the network’s inputs
and parameters, referred to as a multilinear extension.

Multilinear Extensions Consider a matrix w ∈ Fn×n
p . Each row and column of w can be

referenced using m = log2(n) bits, and consequently one can represent w as a function W :
{0, 1}m × {0, 1}m → Fp. That is, given Boolean vectors t,u ∈ {0, 1}m, the function W (t,u)
returns the element of w at the row and column specified by Boolean vectors t and u, respectively.

A multi-linear extension of W is a polynomial function W̃ : Fm
p × Fm

p → Fp that has the following
two properties: (1) given vectors t,u ∈ Fm

p such that W̃ (t,u) =W (t,u) for all points on the unit
hyper-cube, that is, for all t,u ∈ {0, 1}m; and (2) W̃ has degree 1 in each of its variables. In the
remainder of this discussion, we will use X̃ , Ỹi and Z̃i and W̃i to refer to multi-linear extensions of
x, yi, zi, and wi, respectively, for i ∈ [1, L]. We will also assume, for clarity of exposition, that
the biases, bi are zero for all layers. The supplementary draft describes how biases are incorporated.
Consistent with the IP literature, the description of our protocol refers to the client as the verifier and
the server as the prover.

Protocol Overview The verifier seeks to check the result yL provided by the prover corresponding
to input x. Note that yL is the output of the final activation layer which, as discussed in Section 2.2,
is the only layer that does not use quadratic activations, and is hence not amenable to an IP.

Instead, in SafetyNets, the prover computes and sends zL−1 (the input of the final activation layer) as a
result to the verifier. zL−1 has the same dimensions as yL and therefore this refinement has no impact
on the server to client bandwidth. Furthermore, the verifier can easily compute yL = σout(zL−1)
locally.

Now, the verifier needs to check whether the prover computed zL−1 correctly. As noted by Vu
et al. [19], this check can be replaced by a check on whether the multilinear extension of zL−1 is
correctly computed at a randomly picked point in the field, with minimal impact on the soundness
error. That is, the verifier picks two vectors, qL−1 ∈ Flog(nL)

p and rL−1 ∈ Flog(b)
p at random,

evaluates Z̃L−1(qL−1, rL−1), and checks whether it was correctly computed using a specialized
sum-check protocol for matrix multiplication due to Thaler [18] (described in Section 3.1).

Since zL−1 depends on wL−1 and yL−1, sum-check yields assertions on the values of
W̃L−1(qL−1, sL−1) and ỸL−1(sL−1, rL−1), where sL−1 ∈ Flog(nL−1)

p is another random vector
picked by the verifier during sum-check.

W̃L−1(qL−1, sL−1) is an assertion about the weight of the final layer. This is checked by the verifier
locally since the weights are known to both the prover and verifier. Finally, the verifier uses our
specialized sum-check protocol for activation layers (described in Section 3.2) to reduce the assertion
on ỸL−1(sL−1, rL−1) to an assertion on Z̃L−2(qL−2, sL−2). The protocol repeats till it reaches the
input layer and produces an assertion on X̃(s0, r0), the multilinear extension of the input x. The
verifier checks this locally. If at any point in the protocol, the verifier’s checks fail, it rejects the
prover’s computation. Next, we describe the sum-check protocols for matrix multiplication and
activation that SafetyNets uses.

3.1 Sum-check for Matrix Multiplication

Since zi = wi.yi (recall we assumed zero biases for clarity), we can check an assertion about the
multilinear extension of zi evaluated at randomly picked points qi and ri by expressing Z̃i(qi, ri)
as [18]:

Z̃i(qi, ri) =
∑

j∈{0,1}log(ni)

W̃i(qi, j).Ỹi(j, ri) (6)
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Note that Equation 6 has the same form as the sum-check problem in Equation 1. Consequently the
sum-check protocol described in Section 2.1 can be used to verify this assertion. At the end of the
sum-check rounds, the verifier will have assertions on W̃i which it checks locally, and Ỹi which is
checked using the sum-check protocol for quadratic activations described in Section 3.2.

The prover run-time for running the sum-check protocol in layer i is O(ni(ni−1 + b)), the verifier’s
run-time is O(nini−1) and the prover/verifier exchange 4 log(ni) field elements.

3.2 Sum-check for Quadratic Activation

In this step, we check an assertion about the output of quadratic activation layer i, Ỹi(si, ri), by
writing it in terms of the input of the activation layer as follows:

Ỹi(si, ri) =
∑

j∈{0,1}log(ni),k∈{0,1}log(b)
Ĩ(si, j)Ĩ(ri,k)Z̃

2
i−1(j,k), (7)

where Ĩ(., .) is the multilinear extension of the identity matrix. Equation 7 can also be verified using
the sum-check protocol, and yields an assertion about Z̃i−1, i.e., the inputs to the activation layer.
This assertion is in turn checked using the protocol described in Section 3.1.

The prover run-time for running the sum-check protocol in layer i is O(bni), the verifier’s run-
time is O(log(bni)) and the prover/verifier exchange 5 log(bni) field elements. This completes the
theoertical description of the SafetyNets specialized IP protocol.
Lemma 3.1. The SafetyNets verifier rejects incorrect computations with probability greater than
(1− ε) where ε = 3b

∑L
i=0 ni

p is the soundness error.

In practice, with p = 261 − 1 the soundness error < 1
230 for practical network parameters and batch

sizes.

3.3 Implementation

The fact that SafetyNets operates only on elements in a finite field Fp during inference imposes a
practical challenge. That is, how do we convert floating point inputs and weights from training into
field elements, and how do we select the size of the field p?

Let w′
i ∈ Rni−1×ni and b′i ∈ Rni be the floating point parameters obtained from training for

each layer i ∈ [1, L]. We convert the weights to integers by multiplying with a constant β > 1 and
rounding, i.e., wi = bβw′

ie. We do the same for inputs with a scaling factor α, i.e., x = bαx′e. Then,
to ensure that all values in the network scale isotropically, we must set bi = bα2i−1

β(2i−1+1)b′ie.
While larger α and β values imply lower quantization errors, they also result in large values in the
network, especially in the layers closer to the output. Similar empirical observations were made
by the CryptoNets work [8]. To ensure accuracy the values in the network must lie in the range
[−p−1

2 , p−12 ]; this influences the choice of the prime p. On the other hand, we note that large primes
increase the verifier and prover run-time because of the higher cost of performing modular additions
and multiplications.

As in prior works [5, 18, 19], we restrict our choice of p to Mersenne primes since they afford efficient
modular arithmetic implementations, and specifically to the primes p = 261 − 1 and p = 2127 − 1.
For a given p, we explore and different values of α and β and use the validation dataset to the pick the
ones that maximize accuracy while ensuring that the values in the network lie within [−p−1

2 , p−12 ].

4 Empirical Evaluation

In this section, we present empirical evidence to support our claim that SafetyNets enables low-cost
verifiable execution of deep neural networks on untrusted clouds without compromising classification
accuracy.
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Figure 2: Evolution of training and test error for the MNIST, MNIST-Back-Rand and TIMIT tasks.

4.1 Setup

Datasets We evaluated SafetyNets on three classifications tasks. (1) Handwritten digit recognition
on the MNIST dataset, using 50,000 training, 10,000 validation and 10,000 test images. (2) A
more challenging version of digit recognition, MNIST-Back-Rand, an artificial dataset generated
by inserting a random background into MNIST image [1]. The dataset has 10,000 training, 2,000
validation and 50,000 test images. ZCA whitening is applied to the raw dataset before training and
testing [4]. (3) Speech recognition on the TIMIT dataset, split into a training set with 462 speakers,
a validation set with 144 speakers and a testing set with 24 speakers. The raw audio samples are
pre-processed as described by [3]. Each example includes its preceding and succeeding 7 frames,
resulting in a 1845-dimensional input in total. During testing, all labels are mapped to 39 classes [11]
for evaluation.

Neural Networks For the two MNIST tasks, we used a convolutional neural network same as [23]
with 2 convolutional layers with 5 × 5 filters, a stride of 1 and a mapcount of 16 and 32 for the
first and second layer respectively. Each convolutional layer is followed by quadratic activations
and 2 × 2 sum pooling with a stride of 2. The fully connected layer uses softmax activation. We
refer to this network as CNN-2-Quad. For TIMIT, we use a four layer network described by [3]
with 3 hidden, fully connected layers with 2000 neurons and quadratic activations. The output layer
is fully connected with 183 output neurons and softmax activation. We refer to this network as
FcNN-3-Quad. Since quadratic activations are not commonly used, we compare the performance
of CNN-2-Quad and FcNN-3-Quad with baseline versions in which the quadratic activations are
replaced by ReLUs. The baseline networks are CNN-2-ReLU and FcNN-3-ReLU.

The hyper-parameters for training are selected based on the validation datasets. The Adam Optimizer
is used for CNNs with learning rate 0.001, exponential decay and dropout probability 0.75. The
AdaGrad optimizer is used for FcNNs with a learning rate of 0.01 and dropout probability 0.5. We
found that norm gradient clipping was required for training the CNN-2-Quad and FcNN-3-Quad
networks, since the gradient values for quadratic activations can become large.

Our implementation of SafetyNets uses Thaler’s code for the IP protocol for matrix multiplication
[18] and our own implementation of the IP for quadratic activations. We use an Intel Core i7-4600U
CPU running at 2.10 GHz for benchmarking.

4.2 Classification Accuracy of SafetyNets

SafetyNets places certain restrictions on the activation function (quadratic) and requires weights
and inputs to be integers (in field Fp). We begin by analyzing how (and if) these restrictions impact
classification accuracy/error. Figure 2 compares training and test error of CNN-2-Quad/FcNN-3-Quad
versus CNN-2-ReLU/FcNN-3-ReLU. For all three tasks, the networks with quadratic activations are
competitive with networks that use ReLU activations. Further, we observe that the networks with
quadratic activations appear to converge faster during training, possibly because their gradients are
larger despite gradient clipping.

Next, we used the scaling and rounding strategy proposed in Section 3.3 to convert weights and
inputs to integers. Table 1 shows the impact of scaling factors α and β on the classification error and
maximum values observed in the network during inference for MNIST-Back-Rand. The validation
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Table 1: Validation error and maximum value observed in the network for MNIST-Rand-Back and
different values of scaling parameters, α and β. Shown in bold red font are values of α and β that are
infeasible because the maximum value exceeds that allowed by prime p = 261 − 1.

α = 4 α = 8 α = 16 α = 32 α = 64
β Err Max Err Max Err Max Err Max Err Max
4 0.188 4.0× 108 0.073 4.0× 1010 0.042 5.5× 1012 0.039 6.6× 1014 0.04 8.8× 1016

8 0.194 6.1× 109 0.072 6.9× 1011 0.039 8.3× 1013 0.038 1.0× 1016 0.037 1.3× 1018

16 0.188 9.4× 1010 0.072 1.1× 1013 0.036 1.3× 1015 0.037 1.6× 1017 0.035 2.1× 1019

32 0.186 1.5× 1012 0.073 1.7× 1014 0.038 2.1× 1016 0.037 2.6× 1018 0.036 3.5× 1020

64 0.185 2.5× 1013 0.073 2.8× 1015 0.038 3.4× 1017 0.037 4.2× 1019 0.036 5.6× 1021

error drops as α and β are increased. On the other hand, for p = 261 − 1, the largest value allowed is
1.35× 1018; this rules out α and β greater than 64, as shown in the table. For MNIST-Back-Rand,
we pick α = β = 16 based on validation data, and obtain a test error of 4.67%. Following a similar
methodology, we obtain a test error of 0.63% for MNIST (p = 261 − 1) and 25.7% for TIMIT
(p = 2127 − 1). We note that SafetyNets does not support techniques such as Maxout [10] that have
demonstrated lower error on MNIST (0.45%). Ba et al. [3] report an error of 18.5% for TIMIT using
an ensemble of nine deep neural networks, which SafetyNets might be able to support by verifying
each network individually and performing ensemble averaging at the client-side.

4.3 Verifier and Prover Run-times
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Figure 3: Run-time of verifier, prover
and baseline execution time for the arith-
metic circuit representation of FcNN-
Quad-3 versus input batch size.

The relevant performance metrics for SafetyNets are (1)
the client’s (or verifier’s) run-time, (2) the server’s run-
time which includes baseline time to execute the neural
network and overhead of generating proofs, and (3) the
bandwidth required by the IP protocol. Ideally, these quan-
tities should be small, and importantly, the client’s run-
time should be smaller than the case in which it executes
the network by itself. Figure 3 plots run-time data over
input batch sizes ranging from 256 to 2048 for FcNN-
Quad-3.

For FcNN-Quad-3, the client’s time for verifying proofs
is 8× to 82× faster than the baseline in which it executes
FcNN-Quad-3 itself, and decreases with batch size. The
increase in the server’s execution time due to the over-
head of generating proofs is only 5% over the baseline
unverified execution of FcNN-Quad-3. The prover and

verifier exchange less than 8 KBytes of data during the IP protocol for a batch size of 2048, which is
negligible (less than 2%) compared to the bandwidth required to communicate inputs and outputs
back and forth. In all settings, the soundness error ε, i.e., the chance that the verifier fails to detect
incorrect computations by the server is less than 1

230 , a negligible value. We note SafetyNets has
significantly lower bandwidth costs compared to an approach that separately verifies the execution of
each layer using only the IP protocol for matrix multiplication.

A closely related technique, CryptoNets [8], uses homomorphic encryption to provide privacy, but not
integrity, for neural networks executing in the cloud. Since SafetyNets and CryptoNets target different
security goals a direct comparison is not entirely meaningful. However, from the data presented in
the CryptoNets paper, we note that the client’s run-time for MNIST using a CNN similar to ours and
an input batch size b = 4096 is about 600 seconds, primarily because of the high cost of encryptions.
For the same batch size, the client-side run-time of SafetyNets is less than 10 seconds. Recent work
has also looked at how neural networks can be trained in the cloud without compromising the user’s
training data [14], but the proposed techniques do not guarantee integrity. We expect that SafetyNets
can be extended to address the verifiable neural network training problem as well.

5 Conclusion
In this paper, we have presented SafetyNets, a new framework that allows a client to provably verify
the correctness of deep neural network based inference running on an untrusted clouds. Building
upon the rich literature on interactive proof systems for verifying general-purpose and specialized
computations, we designed and implemented a specialized IP protocol tailored for a certain class
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of deep neural networks, i.e., those that can be represented as arithmetic circuits. We showed that
placing these restrictions did not impact the accuracy of the networks on real-world classification
tasks like digit and speech recognition, while enabling a client to verifiably outsource inference
to the cloud at low-cost. For our future work, we will apply SafetyNets to deeper networks and
extend it to address both integrity and privacy. There are VC techniques [17] that guarantee both, but
typically come at higher costs. Further, building on prior work on the use of IPs to build verifiable
hardware [20], we intend to deploy the SafetyNets protocol in the design of a verifiable hardware
accelerator for neural network inference.

References
[1] Variations on the MNIST digits. http://www.iro.umontreal.ca/~lisa/twiki/bin/

view.cgi/Public/MnistVariations.

[2] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge University
Press, 2009.

[3] J. Ba and R. Caruana. Do deep nets really need to be deep? In Advances in Neural Information
Processing Systems, pages 2654–2662, 2014.

[4] A. Coates, A. Ng, and H. Lee. An analysis of single-layer networks in unsupervised feature
learning. In International Conference on Artificial Intelligence and Statistics, pages 215–223,
2011.

[5] G. Cormode, J. Thaler, and K. Yi. Verifying computations with streaming interactive proofs.
Proceedings of the Very Large Database Endowment, pages 25–36, 2011.

[6] A. Gautier, Q. N. Nguyen, and M. Hein. Globally optimal training of generalized polynomial
neural networks with nonlinear spectral methods. In Advances in Neural Information Processing
Systems, pages 1687–1695, 2016.

[7] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing: Outsourcing
computation to untrusted workers. Annual Cryptology Conference, pages 465–482, 2010.

[8] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing. Cryptonets:
Applying neural networks to encrypted data with high throughput and accuracy. In International
Conference on Machine Learning, pages 201–210, 2016.

[9] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation: interactive proofs for
muggles. Symposium on Theory of Computing, pages 113–122, 2008.

[10] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks.
arXiv preprint arXiv:1302.4389, 2013.

[11] K. Lee and H. Hon. Speaker-independent phone recognition using hidden markov models.
IEEE Transactions on Acoustics, Speech, and Signal Processing, pages 1641–1648, 1989.

[12] R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training neural
networks. In Advances in Neural Information Processing Systems, pages 855–863, 2014.

[13] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems.
Journal of the ACM, pages 859–868, 1992.

[14] P. Mohassel and Y. Zhang. Secureml: A system for scalable privacy-preserving machine
learning. IACR Cryptology ePrint Archive, 2017.

[15] F. Monrose, P. Wyckoff, and A. D. Rubin. Distributed execution with remote audit. In Network
and Distributed System Security Symposium, pages 3–5, 1999.

[16] N. Papernot, P. McDaniel, A. Sinha, and M. Wellman. Towards the science of security and
privacy in machine learning. arXiv preprint arXiv:1611.03814, 2016.

[17] B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical verifiable
computation. In Symposium on Security and Privacy, pages 238–252, 2013.

9

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/MnistVariations


[18] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In International Cryptology
Conference, pages 71–89, 2013.

[19] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for interactive verifiable
computation. In Symposium on Security and Privacy, pages 223–237, 2013.

[20] R. S. Wahby, M. Howald, S. Garg, A. Shelat, and M. Walfish. Verifiable asics. In Symposium
on Security and Privacy, pages 759–778, 2016.

[21] M. Walfish and A. J. Blumberg. Verifying computations without reexecuting them. Communi-
cations of the ACM, pages 74–84, 2015.

[22] M. D. Zeiler and R. Fergus. Stochastic pooling for regularization of deep convolutional neural
networks. arXiv preprint arXiv:1301.3557, 2013.

[23] Y. Zhang, P. Liang, and M. J. Wainwright. Convexified convolutional neural networks. arXiv
preprint arXiv:1609.01000, 2016.

Proof of Lemma 3.1

Lemma 3.1 The SafetyNets verifier rejects incorrect computations with probability greater than
(1− ε) where ε = 3b

∑L
i=0 ni

p is the soundness error.

Proof. Verifying a multi-linear extension of the output sampled at a random point, instead of each
value adds a soundness error of ε = bnL

p . Each instance of the sum-check protocol adds to the

soundness error [19]. The IP protocol for matrix multiplication adds a soundness error of ε = 2ni−1

p

in Layer i [18]. Finally, the IP protocol for quadratic activations adds a soundness error of ε = 3bni

p

in Layer i [18]. Summing together we get a total soundness error of 2
∑L−1

i=0 ni+3
∑L−1

i=1 bni+bnL

p . The
final result is an upper bound on this value.

Handling Bias Variables

We assumed that the bias variables were zero, allowing us to write bmzi = wi.yi while it should be
bmzi = wi.yi + bi1

T . Let z′
i = wi.yi We seek to convert an assertion on Z̃i(qi, ri) to an assertion

on Z̃ ′i. We can do so by noting that:

Z̃i(qi, ri) =
∑

j∈{0,1}log(ni)

Ĩ(j, qi)(Z̃ ′i(j, ri) + B̃i(j)) (8)

which can be reduced to sum-check and thus yields an assertion on B̃i which the verifier checks
locally and Z̃ ′i, which is passed to the IP protocol for matrix multiplication.
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