
Practical Data-Dependent Metric Compression with
Provable Guarantees

Piotr Indyk∗
MIT

Ilya Razenshteyn∗
MIT

Tal Wagner∗
MIT

Abstract

We introduce a new distance-preserving compact representation of multi-
dimensional point-sets. Given n points in a d-dimensional space where each
coordinate is represented using B bits (i.e., dB bits per point), it produces a rep-
resentation of size O(d log(dB/ε) + log n) bits per point from which one can
approximate the distances up to a factor of 1± ε. Our algorithm almost matches
the recent bound of [6] while being much simpler. We compare our algorithm
to Product Quantization (PQ) [7], a state of the art heuristic metric compression
method. We evaluate both algorithms on several data sets: SIFT (used in [7]),
MNIST [11], New York City taxi time series [4] and a synthetic one-dimensional
data set embedded in a high-dimensional space. With appropriately tuned parame-
ters, our algorithm produces representations that are comparable to or better than
those produced by PQ, while having provable guarantees on its performance.

1 Introduction

Compact distance-preserving representations of high-dimensional objects are very useful tools in
data analysis and machine learning. They compress each data point in a data set using a small number
of bits while preserving the distances between the points up to a controllable accuracy. This makes it
possible to run data analysis algorithms, such as similarity search, machine learning classifiers, etc, on
data sets of reduced size. The benefits of this approach include: (a) reduced running time (b) reduced
storage and (c) reduced communication cost (between machines, between CPU and RAM, between
CPU and GPU, etc). These three factors make the computation more efficient overall, especially on
modern architectures where the communication cost is often the dominant factor in the running time,
so fitting the data in a single processing unit is highly beneficial. Because of these benefits, various
compact representations have been extensively studied over the last decade, for applications such
as: speeding up similarity search [3, 5, 10, 19, 22, 7, 15, 18], scalable learning algorithms [21, 12],
streaming algorithms [13] and other tasks. For example, a recent paper [8] describes a similarity
search software package based on one such method (Product Quantization (PQ)) that has been used
to solve very large similarity search problems over billions of point on GPUs at Facebook.

The methods for designing such representations can be classified into data-dependent and data-
oblivious. The former analyze the whole data set in order to construct the point-set representation,
while the latter apply a fixed procedure individually to each data point. A classic example of the
data-oblivious approach is based on randomized dimensionality reduction [9], which states that
any set of n points in the Euclidean space of arbitrary dimension D can be mapped into a space of
dimension d = O(ε−2 log n), such that the distances between all pairs of points are preserved up to a
factor of 1± ε. This allows representing each point using d(B + logD) bits, where B is the number

∗Authors ordered alphabetically.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

of bits of precision in the coordinates of the original pointset. 2 More efficient representations are
possible if the goal is to preserve only the distances in a certain range. In particular, O(ε−2 log n) bits
are sufficient to distinguish between distances smaller than 1 and greater than 1 + ε, independently of
the precision parameter [10] (see also [16] for kernel generalizations). Even more efficient methods
are known if the coordinates are binary [3, 12, 18].

Data-dependent methods compute the bit representations of points “holistically", typically by solving
a global optimization problem. Examples of this approach include Semantic Hashing [17], Spectral
Hashing [22] or Product Quantization [7] (see also the survey [20]). Although successful, most of
the results in this line of research are empirical in nature, and we are not aware of any worst-case
accuracy vs. compression tradeoff bounds for those methods along the lines of the aforementioned
data oblivious approaches.

A recent work [6] shows that it is possible to combine the two approaches and obtain algorithms that
adapt to the data while providing worst-case accuracy/compression tradeoffs. In particular, the latter
paper shows how to construct representations of d-dimensional pointsets that preserve all distances up
to a factor of 1±εwhile using onlyO((d+log n) log(1/ε)+log(Bn)) bits per point. Their algorithm
uses hierarchical clustering in order to group close points together, and represents each point by a
displacement vector from a near by point that has already been stored. The displacement vector is
then appropriately rounded to reduce the representation size. Although theoretically interesting, that
algorithm is rather complex and (to the best of our knowledge) has not been implemented.

Our results. The main contribution of this paper is QuadSketch (QS), a simple data-adaptive
algorithm, which is both provable and practical. It represents each point usingO(d log(dB/ε)+log n)
bits, where (as before) we can set d = O(ε−2 log n) using the Johnson-Lindenstrauss lemma. Our
bound significantly improves over the “vanilla” O(dB) bound (obtained by storing all d coordinates
to full precision), and comes close to bound of [6]. At the same time, the algorithm is quite simple
and intuitive: it computes a d-dimensional quadtree3 and appropriately prunes its edges and nodes.4

We evaluate QuadSketch experimentally on both real and synthetic data sets: a SIFT feature data
set from [7], MNIST [11], time series data reflecting taxi ridership in New York City [4] and a
synthetic data set (Diagonal) containing random points from a one-dimensional subspace (i.e., a line)
embedded in a high-dimensional space. The data sets are quite diverse: SIFT and MNIST data sets are
de-facto “standard” test cases for nearest neighbor search and distance preserving sketches, NYC taxi
data was designed to contain anomalies and “irrelevant” dimensions, while Diagonal has extremely
low intrinsic dimension. We compare our algorithms to Product Quantization (PQ) [7], a state of
the art method for computing distance-preserving sketches, as well as a baseline simple uniform
quantization method (Grid). The sketch length/accuracy tradeoffs for QS and PQ are comparable on
SIFT and MNIST data, with PQ having higher accuracy for shorter sketches while QS having better
accuracy for longer sketches. On NYC taxi data, the accuracy of QS is higher over the whole range
of sketch lengths . Finally, Diagonal exemplifies a situation where the low dimensionality of the data
set hinders the performance of PQ, while QS naturally adapts to this data set. Overall, QS performs
well on “typical” data sets, while its provable guarantees ensure robust performance in a wide range
of scenarios. Both algorithms improve over the baseline quantization method.

2 Formal Statement of Results

Preliminaries. Let X = {x1, . . . , xn} ⊂ Rd be a pointset in Euclidean space. A compression
scheme constructs from X a bit representation referred to as a sketch. Given the sketch, and
without access to the original pointset, one can decompress the sketch into an approximate pointset

2The bounds can be stated more generally in terms of the aspect ratio Φ of the point-set. See Section 2 for
the discussion.

3Traditionally, the term “quadtree” is used for the case of d = 2, while its higher-dimensional variants are
called “ hyperoctrees” [23]. However, for the sake of simplicity, in this paper we use the same term “quadtree”
for any value of d.

4We note that a similar idea (using kd-trees instead of quadtrees) has been earlier proposed in [1]. However,
we are not aware of any provable space/distortion tradeoffs for the latter algorithm.

2

X̃ = {x̃1, . . . , x̃n} ⊂ Rd. The goal is to minimize the size of the sketch, while approximately
preserving the geometric properties of the pointset, in particular the distances and near neighbors.

In the previous section we parameterized the sketch size in terms of the number of points n, the
dimension d, and the bits per coordinate B. In fact, our results are more general, and can be stated in
terms of the aspect ratio of the pointset, denoted by Φ and defined as the ratio between the largest to
smallest distance,

Φ =
max1≤i<j≤n‖xi − xj‖
min1≤i<j≤n‖xi − xj‖

.

Note that log(Φ) ≤ log d+B, so our bounds, stated in terms of log Φ, immediately imply analogous
bounds in terms of B.

We will use [n] to denote {1, . . . , n}, and Õ(f) to suppress polylogarithmic factors in f .

QuadSketch. Our compression algorithm, described in detail in Section 3, is based on a randomized
variant of a quadtree followed by a pruning step. In its simplest variant, the trade-off between the
sketch size and compression quality is governed by a single parameter Λ. Specifically, Λ controls
the pruning step, in which the algorithm identifies “non-important” bits among those stored in
the quadtree (i.e. bits whose omission would have little effect on the approximation quality), and
removes them from the sketch. Higher values of Λ result in sketches that are longer but have better
approximation quality.

Approximate nearest neighbors. Our main theorem provides the following guarantees for the
basic variant of QuadSketch: for each point, the distances from that point to all other points are
preserved up to a factor of 1± ε with a constant probability.

Theorem 1. Given ε, δ > 0, let Λ = O(log(d log Φ/εδ)) and L = log Φ + Λ. QuadSketch runs in
time Õ(ndL) and produces a sketch of size O(ndΛ + n log n) bits, with the following guarantee:
For every i ∈ [n],

Pr
[
∀j∈[n]‖x̃i − x̃j‖ = (1± ε)‖xi − xj‖

]
≥ 1− δ.

In particular, with probability 1− δ, if x̃i∗ is the nearest neighbor of x̃i in X̃ , then xi∗ is a (1 + ε)-
approximate nearest neighbor of xi in X .

Note that the theorem allows us to compress the input point-set into a sketch and then decompress it
back into a point-set which can be fed to a black box similarity search algorithm. Alternatively, one
can decompress only specific points and approximate the distance between them.

For example, if d = O(ε−2 log n) and Φ is polynomially bounded in n, then Theorem 1 uses
Λ = O(log log n+ log(1/ε)) bits per coordinate to preserve (1 + ε)-approximate nearest neighbors.

The full version of QuadSketch, described in Section 3, allows extra fine-tuning by exposing additional
parameters of the algorithm. The guarantees for the full version are summarized by Theorem 3 in
Section 3.

Maximum distortion. We also show that a recursive application of QuadSketch makes it possible
to approximately preserve the distances between all pairs of points. This is the setting considered
in [6]. (In contrast, Theorem 1 preserves the distances from any single point.)

Theorem 2. Given ε > 0, let Λ = O(log(d log Φ/ε)) and L = log Φ + Λ. There is a randomized
algorithm that runs in time Õ(ndL) and produces a sketch of size O(ndΛ + n log n) bits, such that
with high probability, every distance ‖xi − xj‖ can be recovered from the sketch up to distortion
1± ε.

Theorem 2 has smaller sketch size than that provided by the “vanilla” bound, and only slightly
larger than that in [6]. For example, for d = O(ε−2 log n) and Φ = poly(n), it improves over the
“vanilla” bound by a factor of O(log n/ log log n) and is lossier than the bound of [6] by a factor
of O(log log n). However, compared to the latter, our construction time is nearly linear in n. The
comparison is summarized in Table 1.

3

Table 1: Comparison of Euclidean metric sketches with maximum distortion 1 ± ε, for d =
O(ε−2 log n) and log Φ = O(log n).

REFERENCE BITS PER POINT CONSTRUCTION TIME

“Vanilla” bound O(ε−2 log2 n) –

Algorithm of [6] O(ε−2 logn log(1/ε)) Õ(n1+α + ε−2n) for α ∈ (0, 1]

Theorem 2 O(ε−2 logn (log logn + log(1/ε))) Õ(ε−2n)

We remark that Theorem 2 does not let us recover an approximate embedding of the pointset,
x̃1, . . . , x̃n, as Theorem 1 does. Instead, the sketch functions as an oracle that accepts queries of the
form (i, j) and return an approximation for the distance ‖xi − xj‖.

3 The Compression Scheme

The sketching algorithm takes as input the pointset X , and two parameters L and Λ that control the
amount of compression.

Step 1: Randomly shifted grid. The algorithm starts by imposing a randomly shifted axis-parallel
grid on the points. We first enclose the whole pointset in an axis-parallel hypercube H . Let
∆′ = maxi∈[n]‖x1 − xi‖, and ∆ = 2dlog ∆′e. Set up H to be centered at x1 with side length 4∆.
Now choose σ1, . . . , σd ∈ [−∆,∆] independently and uniformly at random, and shift H in each
coordinate j by σj . By the choice of side length 4∆, one can see that H after the shift still contains
the whole pointset. For every integer ` such that −∞ < ` ≤ log(4∆), let G` denote the axis-parallel
grid with cell side 2` which is aligned with H .

Note that this step can be often eliminated in practice without affecting the empirical performance of
the algorithm, but it is necessary in order to achieve guarantees for arbitrary pointsets.

Step 2: Quadtree construction. The 2d-ary quadtree on the nested grids G` is naturally defined
by associating every grid cell c in G` with the tree node at level `, such that its children are the 2d

grid cells in G`−1 which are contained in c. The edge connecting a node v to a child v′ is labeled
with a bitstring of length d defined as follows: the jth bit is 0 if v′ coincides with the bottom half of
v along coordinate j, and 1 if v′ coincides with the upper half along that coordinate.

In order to construct the tree, we start with H as the root, and bucket the points contained in it into
the 2d children cells. We only add child nodes for cells that contain at least one point of X . Then we
continue by recursing on the child nodes. The quadtree construction is finished after L levels. We
denote the resulting edge-labeled tree by T ∗. A construction for L = 2 is illustrated in Figure 1.

Figure 1: Quadtree construction for points x, y, z. The x and y coordinates are written as binary
numbers.

4

We define the level of a tree node with side length 2` to be ` (note that ` can be negative). The degree
of a node in T ∗ is its number of children. Since all leaves are located at the bottom level, each point
xi ∈ X is contained in exactly one leaf, which we henceforth denote by vi.

Step 3: Pruning. Consider a downward path u0, u1, . . . , uk in T ∗, such that u1, . . . , uk−1 are
nodes with degree 1, and u0, uk are nodes with degree other than 1 (uk may be a leaf). For every
such path in T ∗, if k > Λ + 1, we remove the nodes uΛ+1, . . . , uk−1 from T ∗ with all their adjacent
edges (and edge labels). Instead we connect uk directly to uΛ as its child. We refer to that edge as
the long edge, and label it with the length of the path it replaces (k − Λ). The original edges from T ∗

are called short edges. At the end of the pruning step, we denote the resulting tree by T .

The sketch. For each point xi ∈ X the sketch stores the index of the leaf vi that contains it. In
addition it stores the structure of the tree T , encoded using the Eulerian Tour Technique5. Specifically,
starting at the root, we traverse T in the Depth First Search (DFS) order. In each step, DFS either
explores the child of the current node (downward step), or returns to the parent node (upward step).
We encode a downward step by 0 and an upward step by 1. With each downward step we also store
the label of the traversed edge (a length-d bitstring for a short edge or the edge length for a long edge,
and an additional bit marking if the edge is short or long).

Decompression. Recovering x̃i from the sketch is done simply by following the downward path
from the root of T to the associated leaf vi, collecting the edge labels of the short edges, and placing
zeros instead of the missing bits of the long edges. The collected bits then correspond to the binary
expansion of the coordinates of x̃i.

More formally, for every node u (not necessarily a leaf) we define c(u) ∈ Rd as follows: For
j ∈ {1, . . . , d}, concatenate the jth bit of every short edge label traversed along the downward path
from the root to u. When traversing a long edge labeled with length k, concatenate k zeros.6 Then,
place a binary floating point in the resulting bitstring, after the bit corresponding to level 0. (Recall
that the levels in T are defined by the grid cell side lengths, and T might not have any nodes in level
0; in this case we need to pad with 0’s either on the right or on the left until we have a 0 bit in the
location corresponding to level 0.) The resulting binary string is the binary expansion of the jth
coordinate of c(u). Now x̃i is defined to be c(vi).

Block QuadSketch. We can further modify QuadSketch in a manner similar to Product Quantiza-
tion [7]. Specifically, we partition the d dimensions into m blocks B1 . . . Bm of size d/m each, and
apply QuadSketch separately to each block. More formally, for each Bi, we apply QuadSketch to the
pointset (x1)Bi

. . . (xn)Bi
, where xB denotes the m/d-dimensional vector obtained by projecting x

on the dimensions in B.

The following statement is an immediate corollary of Theorem 1.

Theorem 3. Given ε, δ > 0, and m dividing d, set the pruning parameter Λ to O(log(d log Φ/εδ))

and the number of levels L to log Φ + Λ. The m-block variant of QuadSketch runs in time Õ(ndL)
and produces a sketch of size O(ndΛ + nm log n) bits, with the following guarantee: For every
i ∈ [n],

Pr
[
∀j∈[n]‖x̃i − x̃j‖ = (1± ε)‖xi − xj‖

]
≥ 1−mδ.

It can be seen that increasing the number of blocks m up to a certain threshold (dΛ/ log n) does
not affect the asymptotic bound on the sketch size. Although we cannot prove that varying m allows
to improve the accuracy of the sketch, this seems to be the case empirically, as demonstrated in the
experimental section.

5See e.g., https://en.wikipedia.org/wiki/Euler_tour_technique.
6This is the “lossy” step in our sketching method: the original bits could be arbitrary, but they are replaced

with zeros.

5

Table 2: Datasets used in our empirical evaluation. The aspect ratio of SIFT and MNIST is estimated
on a random sample.

Dataset Points Dimension Aspect ratio (Φ)
SIFT 1, 000, 000 128 ≥ 83.2
MNIST 60, 000 784 ≥ 9.2
NYC Taxi 8, 874 48 49.5
Diagonal (synthetic) 10, 000 128 20, 478, 740.2

4 Experiments

We evaluate QuadSketch experimentally and compare its performance to Product Quantization
(PQ) [7], a state-of-the-art compression scheme for approximate nearest neighbors, and to a baseline
of uniform scalar quantization, which we refer to as Grid. For each dimension of the dataset, Grid
places k equally spaced landmark scalars on the interval between the minimum and the maximum
values along that dimension, and rounds each coordinate to the nearest landmark.

All three algorithms work by partitioning the data dimensions into blocks, and performing a quanti-
zation step in each block independently of the other ones. QuadSketch and PQ take the number of
blocks as a parameter, and Grid uses blocks of size 1. The quantization step is the basic algorithm
described in Section 3 for QuadSketch, k-means for PQ, and uniform scalar quantization for Grid.

We test the algorithms on four datasets: The SIFT data used in [7], MNIST [11] (with all vectors
normalized to 1), NYC Taxi ridership data [4], and a synthetic dataset called Diagonal, consisting of
random points on a line embedded in a high-dimensional space. The properties of the datasets are
summarized in Table 2. Note that we were not able to compute the exact diameters for MNIST and
SIFT, hence we only report estimates for Φ for these data sets, obtained via random sampling.

The Diagonal dataset consists of 10, 000 points of the form (x, x, . . . , x), where x is chosen inde-
pendently and uniformly at random from the interval [0..40000]. This yields a dataset with a very
large aspect ratio Φ, and on which partitioning into blocks is not expected to be beneficial since all
coordinates are maximally correlated.

For SIFT and MNIST we use the standard query set provided with each dataset. For Taxi and
Diagonal we use 500 queries chosen at random from each dataset. For the sake of consistency, for all
data sets, we apply the same quantization process jointly to both the point set and the query set, for
both PQ and QS. We note, however, that both algorithms can be run on “out of sample” queries.

For each dataset, we enumerate the number of blocks over all divisors of the dimension d. For
QuadSketch, L ranges in 2, . . . , 20, and Λ ranges in 1, . . . , L− 1. For PQ, the number of k-means
landmarks per block ranges in 25, 26, . . . , 212. For both algorithms we include the results for all
combinations of the parameters, and plot the envelope of the best performing combinations.

We report two measures of performance for each dataset: (a) the accuracy, defined as the fraction of
queries for which the sketch returns the true nearest neighbor, and (b) the average distortion, defined
as the ratio between the (true) distances from the query to the reported near neighbor and to the true
nearest neighbor. The sketch size is measured in bits per coordinate. The results appear in Figures 2
to 5. Note that the vertical coordinate in the distortion plots corresponds to the value of ε, not 1 + ε.

For SIFT, we also include a comparison with Cartesian k-Means (CKM) [14], in Figure 6.

4.1 QuadSketch Parameter Setting

We plot how the different parameters of QuadSketch effect its performance. Recall that L determines
the number of levels in the quadtree prior to the pruning step, and Λ controls the amount of pruning.
By construction, the higher we set these parameters, the larger the sketch will be and with better
accuracy. The empirical tradeoff for the SIFT dataset is plotted in Figure 7.

6

Figure 2: Results for the SIFT dataset.

Figure 3: Results for the MNIST dataset.

Figure 4: Results for the Taxi dataset.

Figure 5: Results for the Diagonal dataset.

7

Figure 6: Additional results for the SIFT dataset.

Figure 7: On the left, L varies from 2 to 11 for a fixed setting of 16 blocks and Λ = L − 1 (no
pruning). On the right, Λ varies from 1 to 9 for a fixed setting of 16 blocks and L = 10. Increasing Λ
beyond 6 does not have further effect on the resulting sketch.

The optimal setting for the number of blocks is not monotone, and generally depends on the specific
dataset. It was noted in [7] that on SIFT data an intermediate number of blocks gives the best results,
and this is confirmed by our experiments. Figure 8 lists the performance on the SIFT dataset for a
varying number of blocks, for a fixed setting of L = 6 and Λ = 5. It shows that the sketch quality
remains essentially the same, while the size varies significantly, with the optimal size attained at 16
blocks.

Blocks Bits per coordinate Accuracy Average distortion
1 5.17 0.719 1.0077
2 4.523 0.717 1.0076
4 4.02 0.722 1.0079
8 3.272 0.712 1.0079
16 2.795 0.712 1.008
32 3.474 0.712 1.0082
64 4.032 0.713 1.0081
128 4.079 0.72 1.0078

Figure 8: QuadSketch accuracy on SIFT data by number of blocks, with L = 6 and Λ = 5.

8

References
[1] R. Arandjelović and A. Zisserman. Extremely low bit-rate nearest neighbor search using a set

compression tree. IEEE transactions on pattern analysis and machine intelligence, 36(12):2396–
2406, 2014.

[2] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic applications. In
Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages
184–193. IEEE, 1996.

[3] A. Z. Broder. On the resemblance and containment of documents. In Compression and
Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[4] S. Guha, N. Mishra, G. Roy, and O. Schrijvers. Robust random cut forest based anomaly
detection on streams. In International Conference on Machine Learning, pages 2712–2721,
2016.

[5] P. Indyk and R. Motwani. Approximate nearest neighbors: towards removing the curse of
dimensionality. In Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pages 604–613. ACM, 1998.

[6] P. Indyk and T. Wagner. Near-optimal (euclidean) metric compression. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 710–723. SIAM,
2017.

[7] H. Jegou, M. Douze, and C. Schmid. Product quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine intelligence, 33(1):117–128, 2011.

[8] J. Johnson, M. Douze, and H. Jégou. Billion-scale similarity search with gpus. CoRR,
abs/1702.08734, 2017.

[9] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

[10] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient search for approximate nearest neighbor
in high dimensional spaces. SIAM Journal on Computing, 30(2):457–474, 2000.

[11] Y. LeCun and C. Cortes. The mnist database of handwritten digits, 1998.

[12] P. Li, A. Shrivastava, J. L. Moore, and A. C. König. Hashing algorithms for large-scale learning.
In Advances in neural information processing systems, pages 2672–2680, 2011.

[13] S. Muthukrishnan et al. Data streams: Algorithms and applications. Foundations and Trends R©
in Theoretical Computer Science, 1(2):117–236, 2005.

[14] M. Norouzi and D. J. Fleet. Cartesian k-means. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 3017–3024, 2013.

[15] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov. Hamming distance metric learning. In
Advances in neural information processing systems, pages 1061–1069, 2012.

[16] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from shift-invariant kernels. In
Advances in neural information processing systems, pages 1509–1517, 2009.

[17] R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of Approximate
Reasoning, 50(7):969–978, 2009.

[18] A. Shrivastava and P. Li. Densifying one permutation hashing via rotation for fast near neighbor
search. In ICML, pages 557–565, 2014.

[19] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE, 2008.

9

[20] J. Wang, W. Liu, S. Kumar, and S.-F. Chang. Learning to hash for indexing big data: a survey.
Proceedings of the IEEE, 104(1):34–57, 2016.

[21] K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for
large scale multitask learning. In Proceedings of the 26th Annual International Conference on
Machine Learning, pages 1113–1120. ACM, 2009.

[22] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in neural information
processing systems, pages 1753–1760, 2009.

[23] M.-M. Yau and S. N. Srihari. A hierarchical data structure for multidimensional digital images.
Communications of the ACM, 26(7):504–515, 1983.

10

