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Abstract

The Zap Q-learning algorithm introduced in this paper is an improvement of
Watkins’ original algorithm and recent competitors in several respects. It is a
matrix-gain algorithm designed so that its asymptotic variance is optimal. More-
over, an ODE analysis suggests that the transient behavior is a close match to a
deterministic Newton-Raphson implementation. This is made possible by a two
time-scale update equation for the matrix gain sequence. The analysis suggests
that the approach will lead to stable and efficient computation even for non-ideal
parameterized settings. Numerical experiments confirm the quick convergence,
even in such non-ideal cases.

1 Introduction

It is recognized that algorithms for reinforcement learning such as TD- and Q-learning can be slow
to converge. The poor performance of Watkins’ Q-learning algorithm was first quantified in [25],
and since then many papers have appeared with proposed improvements, such as [9, 1].

An emphasis in much of the literature is computation of finite-time PAC (probably almost correct)
bounds as a metric for performance. Explicit bounds were obtained in [25] for Watkins’ algorithm,
and in [1] for the “speedy” Q-learning algorithm that was introduced by these authors. A general
theory is presented in [18] for stochastic approximation algorithms.

In each of the models considered in prior work, the update equation for the parameter estimates can
be expressed

θn+1 = θn + αn[f(θn) + ∆n+1] , n ≥ 0 , (1)
in which {αn} is a positive gain sequence, and {∆n} is a martingale difference sequence. This
representation is critical in analysis, but unfortunately is not typical in reinforcement learning ap-
plications outside of these versions of Q-learning. For Markovian models, the usual transformation
used to obtain a representation similar to (1) results in an error sequence {∆n} that is the sum of a
martingale difference sequence and a telescoping sequence [15]. It is the telescoping sequence that
prevents easy analysis of Markovian models.

This gap in the research literature carries over to the general theory of Markov chains. Examples of
concentration bounds for i.i.d. sequences or martingale-difference sequences include the finite-time
bounds of Hoeffding and Bennett. Extensions to Markovian models either offer very crude bounds
[17], or restrictive assumptions [14, 11]; this remains an active area of research [20].

In contrast, asymptotic theory for stochastic approximation (as well as general state space Markov
chains) is mature. Large Deviations or Central Limit Theorem (CLT) limits hold under very general
assumptions [3, 13, 4]. The CLT will be a guide to algorithm design in the present paper. For a
typical stochastic approximation algorithm, this takes the following form: denoting {θ̃n := θn− θ∗ :

n ≥ 0} to be the error sequence, under general conditions the scaled sequence {√nθ̃n : n ≥ 1}
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converges in distribution to a Gaussian distribution, N (0,Σθ). Typically, the scaled covariance is
also convergent to the limit, which is known as the asymptotic covariance:

Σθ = lim
n→∞

nE[θ̃nθ̃
T
n] . (2)

An asymptotic bound such as (2) may not be satisfying for practitioners of stochastic optimization
or reinforcement learning, given the success of finite-n performance bounds in prior research. How-
ever, the fact that the asymptotic covariance Σθ has a simple representation, and can therefore be
easily improved or optimized, makes it a compelling tool to consider. Moreover, as the examples in
this paper suggest, the asymptotic covariance is often a good predictor of finite-time performance,
since the CLT approximation is accurate for reasonable values of n.

Two approaches are known for optimizing the asymptotic covariance. First is the remarkable aver-
aging technique introduced in [21, 22, 24] (also see [12]). Second is Stochastic Newton-Raphson,
based on a special choice of matrix gain for the algorithm [13, 23]. The algorithms proposed here
use the second approach.

Matrix gain variants of TD-learning [10, 19, 29, 30] and Q-learning [27] are available in the liter-
ature, but none are based on optimizing the asymptotic variance. It is a fortunate coincidence that
LSTD(λ) of [6] achieves this goal [8].

In addition to accelerating the convergence rate of the standard Q-learning algorithm, it is hoped
that this paper will lead to entirely new algorithms. In particular, there is little theory to support
Q-learning in non-ideal settings in which the optimal “Q-function” does not lie in the parameterized
function class. Convergence results have been obtained for a class of optimal stopping problems
[31], and for deterministic models [16]. There is now intense practical interest, despite an incomplete
theory. A stronger supporting theory will surely lead to more efficient algorithms.

Contributions A new class of Q-learning algorithms is proposed, called Zap Q-learning, designed
to more accurately mimic the classical Newton-Raphson algorithm. It is based on a two time-scale
stochastic approximation algorithm, constructed so that the matrix gain tracks the gain that would
be used in a deterministic Newton-Raphson method.
A full analysis is presented for the special case of a complete parameterization (similar to the setting
of Watkins’ algorithm [28]). It is found that the associated ODE has a remarkable and simple rep-
resentation, which implies consistency under suitable assumptions. Extensions to non-ideal param-
eterized settings are also proposed, and numerical experiments show dramatic variance reductions.
Moreover, results obtained from finite-n experiments show close solidarity with asymptotic theory.

The remainder of the paper is organized as follows. The new Zap Q-learning algorithm is introduced
in Section 2, which contains a summary of the theory from extended version of this paper [8].
Numerical results are surveyed in Section 3, and conclusions are contained in Section 4.

2 Zap Q-Learning

Consider an MDP model with state space X, action space U, cost function c : X × U → R, and
discount factor β ∈ (0, 1). It is assumed that the state and action space are finite: denote ` = |X|,
`u = |U|, and Pu the ` × ` conditional transition probability matrix, conditioned on u ∈ U. The
state-action process (X,U) is adapted to a filtration {Fn : n ≥ 0}, and Q1 is assumed throughout:
Q1: The joint process (X,U) is an irreducible Markov chain, with unique invariant pmf $.

The minimal value function is the unique solution to the discounted-cost optimality equation:

h∗(x) = min
u∈U

Q∗(x, u) := min
u∈U
{c(x, u) + β

∑
x′∈X

Pu(x, x′)h∗ (x′)} , x ∈ X.

The “Q-function” solves a similar fixed point equation:

Q∗(x, u) = c(x, u) + β
∑
x′∈X

Pu(x, x′)Q∗(x′) , x ∈ X, u ∈ U, (3)

in which Q(x) := minu∈UQ(x, u) for any function Q : X× U→ R.

Given any function ς : X × U → R, let Q(ς) denote the corresponding solution to the fixed point
equation (3), with c replaced by ς: The function q = Q(ς) is the solution to the fixed point equation,

q(x, u) = ς(x, u) + β
∑
x′

Pu(x, x′) min
u′

q(x′, u′) , x ∈ X, u ∈ U.
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The mappingQ is a bijection on the set of real-valued functions on X×U. It is also piecewise linear,
concave and monotone (See [8] for proofs and discussions).

It is known that Watkins’ Q-learning algorithm can be regarded as a stochastic approximation
method [26, 5] to obtain the solution θ∗ ∈ Rd to the steady-state mean equations,

E
[{
c(Xn, Un) + βQθ

∗
(Xn+1)−Qθ∗(Xn, Un)

}
ζn(i)

]
= 0, 1 ≤ i ≤ d (4)

where {ζn} are d-dimensional Fn-measurable functions and Qθ = θTψ for basis functions {ψi :
1 ≤ i ≤ d}. In Watkins’ algorithm ζn = ψ(Xn, Un), and the basis functions are indicator functions:
ψk(x, u) = I{x = xk, u = uk}, 1 ≤ k ≤ d, with d = `× `u the total number of state-action pairs
[26]. In this special case we identify Qθ

∗
= Q∗, and the parameter θ is identified with the estimate

Qθ. A stochastic approximation algorithm to solve (4) coincides with Watkins’ algorithm [28]:
θn+1 = θn + αn+1

{
c(Xn, Un) + βθn(Xn+1)− θn(Xn, Un)

}
ψ(Xn, Un) (5)

One very general technique that is used to analyze convergence of stochastic approximation al-
gorithms is to consider the associated limiting ODE, which is the continuous-time, deterministic
approximation of the original recursion [4, 5]. For (5), denoting the continuous time approximation
of {θn} to be {qt}, and under standard assumptions on the gain sequence {αn}, the associated ODE
is of the form

d
dtqt(x, u) = $(x, u)

{
c(x, u) + β

∑
x′

Pu(x, x′) min
u′

q(x′, u′)− qt(x, u)
}
. (6)

Under Q1, {qt} converges to Q∗: A key step in the proof of convergence of {θn} to the same limit.

While Watkins’ Q-learning (5) is consistent, it is argued in [8] that the asymptotic covariance of this
algorithm is typically infinite. This conclusion is complementary to the finite-n analysis of [25]:
Theorem 2.1. Watkins’ Q-learning algorithm with step-size αn ≡ 1/n is consistent under Assump-
tion Q1. Suppose that in addition max

x,u
$(x, u) ≤ 1

2 (1 − β)−1, and the conditional variance of

h∗(Xt) is positive: ∑
x,x′,u

$(x, u)Pu(x, x′)[h∗(x′)− Puh∗ (x)]2 > 0

Then the asymptotic covariance is infinite: lim
n→∞

nE[‖θn − θ∗‖2] =∞.

The assumption maxx,u$(x, u) ≤ 1
2 (1− β)−1 is satisfied whenever β ≥ 1

2 .

Matrix-gain stochastic approximation algorithms have appeared in previous literature. In particular,
matrix gain techniques have been used to speed-up the rate of convergence of Q-learning (see [7]
and the second example in Section 3). The generalG-Q(λ) algorithm is described as follows, based
on a sequence of d × d matrices G = {Gn} and λ ∈ [0, 1]: For initialization θ0 , ζ0 ∈ Rd, the
sequence of estimates are defined recursively:

θn+1 = θn + αn+1Gn+1ζndn+1

dn+1 = c(Xn, Un) + βQθn(Xn+1)−Qθn(Xn, Un)

ζn+1 = λβζn + ψ(Xn+1, Un+1)

(7)

The special case based on stochastic Newton-Raphson is Zap Q(λ)-learning:

Algorithm 1 Zap Q(λ)-learning

Input: θ0 ∈ Rd, ζ0 = ψ(X0, U0), Â0 ∈ Rd×d, n = 0, T ∈ Z+ . Initialization
1: repeat
2: φn(Xn+1) := arg minuQ

θn(Xn+1, u);
3: dn+1 := c(Xn, Un) + βQθn(Xn+1, φn(Xn+1))−Qθn(Xn, Un); . Temporal difference
4: An+1 := ζn

[
βψ(Xn+1, φn(Xn+1))− ψ(Xn, Un)

]T
;

5: Ân+1 = Ân + γn+1

[
An+1 − Ân

]
; . Matrix gain update rule

6: θn+1 = θn − αn+1Â
−1
n+1ζndn+1; . Zap-Q update rule

7: ζn+1 := λβζn + ψ(Xn+1, Un+1); . Eligibility vector update rule
8: n = n+ 1
9: until n ≥ T

3



A special case is considered in the analysis here: the basis is chosen as in Watkins’ algorithm, λ = 0,
and αn ≡ 1/n. An equivalent representation for the parameter recursion is thus

θn+1 = θn − αn+1Â
−1
n+1

{
Ψnc+An+1θn

}
,

in which c and θn are treated as d-dimensional vectors rather than functions on X × U, and Ψn =
ψ(Xn, Un)ψ(Xn, Un)T.

Part of the analysis is based on a recursion for the following d-dimensional sequence:

Ĉn = −Π−1Ânθn , n ≥ 1 ,

where Π is the d× d diagonal matrix with entries $ (the steady-state distribution of (X,U)). The
sequence {Ĉn} admits a very simple recursion in the special case γ ≡ α:

Ĉn+1 = Ĉn + αn+1[Π−1Ψnc− Ĉn] . (8)

It follows that Ĉn converges to c as n → ∞, since (8) is essentially a Monte-Carlo average of
{Π−1Ψnc : n ≥ 0}. Analysis for this case is complicated since Ân is obtained as a uniform average
of {An}.
The main contributions of this paper concern a two time-scale implementation for which∑

γn =∞
∑

γ2n <∞ and lim
n→∞

αn
γn

= 0 . (9)

In our analysis, we restrict to γn ≡ 1/nρ, for some fixed ρ ∈ ( 1
2 , 1). Through ODE analysis, it is

argued that the Zap Q-learning algorithm closely resembles an implementation of Newton-Raphson
in this case. This analysis suggests that {Ân} more closely tracks the mean of {An}. Theorem 2.2
summarizes the main results under Q1, and the following additional assumptions:

Q2: The optimal policy φ∗ is unique.

Q3: The sequence of policies {φn} satisfy
∞∑
n=1

γnI{φn+1 6= φn} <∞ , a.s..

The assumption Q3 is used to address the discontinuity in the recursion for {Ân} resulting from the
dependence of An+1 on φn.
Theorem 2.2. Suppose that Assumptions Q1–Q3 hold, and the gain sequences α and γ satisfy:

αn = n−1 , γn = n−ρ , n ≥ 1 ,

for some fixed ρ ∈ ( 1
2 , 1). Then,

(i) The parameter sequence {θn} obtained using the Zap-Q algorithm converges to Q∗ a.s..

(ii) The asymptotic covariance (2) is minimized over all G-Q(0) matrix gain versions of
Watkins’ Q-learning algorithm.

(iii) An ODE approximation holds for the sequence {θn, Ĉn}, by continuous functions (q, ς)
satisfying

qt = Q(ςt) ,
d
dt ςt = −ςt + c (10)

This ODE approximation is exponentially asymptotically stable, with lim
t→∞

qt = Q∗.

The ODE result (10) is an important aspect of this work. It says that the sequence {qt}, a continuous
time approximation of the parameter estimates {θn} that are obtained using the Zap Q-learning
algorithm, evolves as the Q-function of some time-varying cost function ςt. Furthermore, this time-
varying cost function ςt has dynamics independent of qt, and converges to c; the cost function defined
in the MDP model. Convergence follows from the continuity of the mapping Q:

lim
n→∞

θn = lim
t→∞

qt = lim
t→∞

Q(ςt) = Q(c) = Q∗ .

The reader is referred to [8] for complete proofs and technical details.

3 Numerical Results

Results from numerical experiments are surveyed here to illustrate the performance of the Zap Q-
learning algorithm.
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Figure 1: Graph for MDP

Finite state-action MDP Consider first a simple path-finding problem.
The state space X = {1, . . . , 6} coincides with the six nodes on the un-
directed graph shown in Fig. 1. The action space U = {ex,x′}, x, x′ ∈ X,
consists of all feasible edges along which the agent can travel, including
each “self-loop”, u = ex,x. The goal is to reach the state x∗ = 6 and
maximize the time spent there. The reader is referred to [8] for details
on the cost function and other modeling assumptions.

Six variants of Q-learning were tested: Watkins’ algorithm (5), Watkins’
algorithm with Ruppert-Polyak-Juditsky (RPJ) averaging [21, 22, 24],
Watkins’ algorithm with a “polynomial learning rate” αn ≡ n−0.6 [9],
Speedy Q-learning [1], and two versions of Zap Q-learning: γn ≡ αn ≡
n−1, and γn ≡ α0.85

n ≡ n−0.85.

Fig. 2 shows the normalized trace of the asymptotic covariance of Watkins’ algorithm with step-
size αn = g/n, as a function of g > 0. Based on this observation or on Theorem 2.1, it follows
that the asymptotic covariance is not finite for the standard Watkins’ algorithm with αn ≡ 1/n. In
simulations it was found that the parameter estimates are not close to θ∗ even after many millions of
iterations.
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g

Figure 2: Normalized trace of the asymp-
totic covariance

It was also found that Watkins’ algorithm performed
poorly in practice for any scalar gain. For example, more
than half of the 103 experiments using β = 0.8 and
g = 70 resulted in values of θn(15) exceeding θ∗(15)
by 104 (with θ∗(15) ≈ 500), even with n = 106. The
algorithm performed well with the introduction of pro-
jection (to ensure that the parameter estimates evolve on
a bounded set) in the case β = 0.8. With β = 0.99, the
performance was unacceptable for any scalar gain, even
with projection.

Fig. 3 shows normalized histograms of {W i
n(k) =√

n(θin(k) − θn(k)) : 1 ≤ i ≤ N} for the projected
Watkins Q-learning with gain g = 70, and the Zap algo-
rithm, γn ≡ α0.85

n . The theoretical predictions were based on the solution to a Lyapunov equation
[8]. Results for β = 0.99 contained in [8] show similar solidarity with asymptotic theory.
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Figure 3: Asymptotic variance for Watkins’ g = 70 and Zap Q-learning, γn ≡ α0.85
n ; β = 0.8

Bellman Error The Bellman error at iteration n is denoted:
Bn(x, u) = θn(x, u)− r(x, u)− β

∑
x′∈X

Pu(x, x′) max
u′∈U

θn(x′, u′) .

This is identically zero if and only if θn = Q∗. Fig. 4 contains plots of the maximal error Bn =
maxx,u |Bn(x, u)| for the six algorithms.

Though all six algorithms perform reasonably well when β = 0.8, Zap Q-learning is the only one
that achieves near zero Bellman error within n = 106 iterations in the case β = 0.99. Moreover, the
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performance of the two time-scale algorithm is clearly superior to the one time-scale algorithm. It
is also observed that the Watkins algorithm with an optimized scalar gain (i.e., step-size αn ≡ g∗/n
with g∗ chosen so that the asymptotic variance is minimized) has the best performance among scalar-
gain algorithms.
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Figure 4: Maximum Bellman error {Bn : n ≥ 0} for the six Q-learning algorithms

Fig. 4 shows only the typical behavior — repeated trials were run to investigate the range of possible
outcomes. Plots of the mean and 2σ confidence intervals of Bn are shown in Fig. 5 for β = 0.99.
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Figure 5: Simulation-based 2σ confidence intervals for the six Q-learning algorithms for the case β = 0.99

Finance model The next example is taken from [27, 7]. The reader is referred to these references
for complete details of the problem set-up and the reinforcement learning architecture used in this
prior work. The example is of interest because it shows how the Zap Q-learning algorithm can be
used with a more general basis, and also how the technique can be extended to optimal stopping
time problems.

The Markovian state process for the model evolves in X = R100. The “time to exercise” is modeled
as a discrete valued stopping time τ . The associated expected reward is defined as E[βτr(Xτ )],
where β ∈ (0, 1), r(Xn) := Xn(100) = p̃n/p̃n−100, and {p̃t : t ∈ R} is a geometric Brownian
motion (derived from an exogenous price-process). The objective of finding a policy that maximizes
the expected reward is modeled as an optimal stopping time problem.

The value function is defined to be the supremum over all stopping times:
h∗(x) = sup

τ>0
E[βτr(Xτ ) | X0 = x].

This solves the Bellman equation: For each x ∈ X,
h∗(x) = max

(
r(x), βE[h∗(Xn+1) | Xn = x]

)
.

The associated Q-function is denoted Q∗(x) := βE[h∗(Xn+1) | Xn = x], and solves a similar fixed
point equation:

Q∗(x) = βE[max(r(Xn+1), Q∗(Xn+1)) | Xn = x].
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The Q(0)-learning algorithm considered in [27] is defined as follows:

θn+1 = θn + αn+1ψ(Xn)
[
βmax

(
Xn+1(100), Qθn(Xn+1)

)
−Qθn(Xn)

]
, n ≥ 0 .

In [7] the authors attempt to improve the performance of the Q(0) algorithm through the use of a
sequence of matrix gains, which can be regarded as an instance of the G-Q(0)-learning algorithm
defined in (7). For details see this prior work as well as the extended version of this paper [8].

A gain sequence {Gn} was introduced in [7] to improve performance. Denoting G and A to be
the steady state means of {Gn} and {An} respectively, the eigenvalues corresponding to the matrix
GA are shown on the right hand side of Fig. 6. It is observed that the sufficient condition for a
finite asymptotic covariance are “just” satisfied in this algorithm: the maximum eigenvalue of GA
is approximately λ ≈ −0.525 < − 1

2 (see Theorem 2.1 of [8]). It is worth stressing that the finite
asymptotic covariance was not a design goal in this prior work. It is only now on revisiting this
paper that we find that the sufficient condition λ < − 1

2 is satisfied.

The Zap Q-learning algorithm for this example is defined by the following recursion:

θn+1 = θn − αn+1Â
−1
n+1ψ(Xn)

[
βmax

(
Xn+1(100), Qθn(Xn+1)

)
−Qθn(Xn)

]
,

Ân+1 = Ân + γn[An+1 − Ân], An+1 = ψ(Xn)ϕT(θn, Xn+1) ,

ϕ(θn, Xn+1) = βψ(Xn+1)I{Qθn(Xn+1) ≥ Xn+1(100)} − ψ(Xn).

High performance despite ill-conditioned matrix gain The real part of the eigenvalues of A are
shown on a logarithmic scale on the left-hand side of Fig. 6. These eigenvalues have a wide spread:
the ratio of the largest to the smallest real parts of the eigenvalues is of the order 104. This presents a
challenge in applying any method. In particular, it was found that the performance of any scalar-gain
algorithm was extremely poor, even with projection of parameter estimates.

i
0 1 2 3 4 5 6 7 8 9 10

-100

-10-1

-10-2

-10-3

-10-4

-10-5

-10-6

-0.525-30 -25 -20 -15 -10 -5
-10

-5

0

5

10

Re (λ(GA))

C
o
(λ
(G

A
))

λi(GA)Realλi(A)

Figure 6: Eigenvalues of A and GA for the finance example
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Figure 7: Theoretical and empirical variance for the finance example

In applying the Zap Q-learning algorithm it was found that the estimates {Ân} defined in the
above recursion are nearly singular. Despite the unfavorable setting for this approach, the perfor-
mance of the algorithm was better than any alternative that was tested. Fig. 7 contains normalized
histograms of {W i

n(k) =
√
n(θin(k) − θn(k)) : 1 ≤ i ≤ N} for the Zap-Q algorithm, with

γn ≡ α0.85
n ≡ n−0.85. The variance for finite n is close to the theoretical predictions based on the

optimal asymptotic covariance. The histograms were generated for two values of n, and k = 1, 7.
Of the d = 10 possibilities, the histogram for k = 1 had the worst match with theoretical predic-
tions, and k = 7 was the closest. The histograms for theG-Q(0) algorithm contained in [8] showed
extremely high variance, and the experimental results did not match theoretical predictions.
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Figure 8: Histograms of average reward: G-Q(0) learning and Zap-Q-learning, γn ≡ αρn ≡ n−ρ

n 2e4 2e5 2e6

G-Q(0) g = 100 82.7 77.5 68
G-Q(0) g = 200 82.4 72.5 55.9
Zap-Q ρ = 1.0 35.7 0 0
Zap-Q ρ = 0.8 0.17 0.03 0
Zap-Q ρ = 0.85 0.13 0.03 0

(a) Percentage of runs with hθn(x) ≤ 0.999

2e4 2e5 2e6

81.1 75.5 65.4
80.6 70.6 53.7
0.55 0 0
0 0 0
0 0 0

(b) hθn(x) ≤ 0.95

2e4 2e5 2e6

54.5 49.7 39.5
64.1 51.8 39
0 0 0
0 0 0
0 0 0

(c) hθn(x) ≤ 0.5

Table 1: Percentage of outliers observed in N = 1000 runs. Each table represents the percentage of runs
which resulted in an average reward below a certain value

Histograms of the average reward hθn(x) obtained from N = 1000 simulations is contained in
Fig. 8, for n = 2× 104, 2× 105 and 2× 106, and x(i) = 1, 1 ≤ i ≤ 100. Omitted in this figure are
outliers: values of the reward in the interval [0, 1). Table 1 lists the number of outliers for each run.
The asymptotic covariance of the G-Q(0) algorithm was not far from optimal (its trace is about 15
times larger than obtained using Zap Q-learning). However, it is observed that this algorithm suffers
from much larger outliers.

4 Conclusions
Watkins’ Q-learning algorithm is elegant, but subject to two common and valid complaints: it can
be very slow to converge, and it is not obvious how to extend this approach to obtain a stable
algorithm in non-trivial parameterized settings (i.e., without a look-up table representation for the Q-
function). This paper addresses both concerns with the new Zap Q(λ) algorithms that are motivated
by asymptotic theory of stochastic approximation.

The potential complexity introduced by the matrix gain is not of great concern in many cases, be-
cause of the dramatic acceleration in the rate of convergence. Moreover, the main contribution of
this paper is not a single algorithm but a class of algorithms, wherein the computational complexity
can be dealt with separately. For example, in a parameterized setting, the basis functions can be
intelligently pruned via random projection [2].

There are many avenues for future research. It would be valuable to find an alternative to Assumption
Q3 that is readily verified. Based on the ODE analysis, it seems likely that the conclusions of
Theorem 2.2 hold without this additional assumption. No theory has been presented here for non-
ideal parameterized settings. It is conjectured that conditions for stability of Zap Q(λ)-learning will
hold under general conditions. Consistency is a more challenging problem.

In terms of algorithm design, it is remarkable to see how well the scalar-gain algorithms perform,
provided projection is employed and the ratio of largest to smallest real parts of the eigenvalues ofA
is not too large. It is possible to estimate the optimal scalar gain based on estimates of the matrix A
that is central to this paper. How to do so without introducing high complexity is an open question.

On the other hand, the performance of RPJ averaging is unpredictable. In many experiments it is
found that the asymptotic covariance is a poor indicator of finite-n performance. There are many
suggestions in the literature for improving this technique. The results in this paper suggest new
approaches that we hope will simultaneously

(i) Reduce complexity and potential numerical instability of matrix inversion,
(ii) Improve transient performance, and

(iii) Maintain optimality of the asymptotic covariance
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