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Abstract

We analyze the clustering problem through a flexible probabilistic model that
aims to identify an optimal partition on the sample X1, ..., X,,. We perform
exact clustering with high probability using a convex semidefinite estimator that
interprets as a corrected, relaxed version of K -means. The estimator is analyzed
through a non-asymptotic framework and showed to be optimal or near-optimal in
recovering the partition. Furthermore, its performances are shown to be adaptive
to the problem’s effective dimension, as well as to K the unknown number of
groups in this partition. We illustrate the method’s performances in comparison
to other classical clustering algorithms with numerical experiments on simulated
high-dimensional data.

1 Introduction

Clustering, a form of unsupervised learning, is the classical problem of assembling n observations
Xy, ..., X, from a p-dimensional space into K groups. Applied fields are craving for robust clus-
tering techniques, such as computational biology with genome classification, data mining or image
segmentation from computer vision. But the clustering problem has proven notoriously hard when
the embedding dimension is large compared to the number of observations (see for instance the recent
discussions from [2, 21]]).

A famous early approach to clustering is to solve for the geometrical estimator K-means [19} 13} [14].
The intuition behind its objective is that groups are to be determined in a way to minimize the total
intra-group variance. It can be interpreted as an attempt to "best" represent the observations by
K points, a form of vector quantization. Although the method shows great performances when
observations are homoscedastic, K-means is a NP-hard, ad-hoc method. Clustering with probabilistic
frameworks are usually based on maximum likelihood approaches paired with a variant of the EM
algorithm for model estimation, see for instance the works of Fraley & Raftery [11] and Dasgupta
& Schulman [9]. These methods are widespread and popular, but they tend to be very sensitive to
initialization and model misspecifications.

Several recent developments establish a link between clustering and semidefinite programming. Peng
& Wei [17] show that the K-means objective can be relaxed into a convex, semidefinite program,
leading Mixon et al. [16]] to use this relaxation under a subgaussian mixture model to estimate the
cluster centers. Yan and Sarkar [24]] use a similar semidefinite program in the context of covariate
clustering, when the network has nodes and covariates. Chrétien et al. 8] use a slightly different form
of a semidefinite program to recover the adjacency matrix of the cluster graph with high probability.
Lastly in the different context of variable clustering, Bunea et al. [6] present a semidefinite program
with a correction step to produce non-asymptotic exact recovery results.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



In this work, we build upon the work and context of [6], and transpose and adapt their ideas for point
clustering: we introduce a semidefinite estimator for point clustering inspired by the findings of [17/]]
with a correction component originally presented in [6]]. We show that it produces a very strong
contender for clustering recovery in terms of speed, adaptivity and robustness to model perturbations.
In order to do so we produce a flexible probabilistic model inducing an optimal partition of the data
that we aim to recover. Using the same structure of proof in a different context, we establish elements
of stochastic control (see for instance Lemma A.1 on the concentration of random subgaussian Gram
matrices in the supplementary material) to derive conditions of exact clustering recovery with high
probability and show optimal performances — including in high dimensions, improving on [16], as
well as adaptivity to the effective dimension of the problem. We also show that our results continue
to hold without knowledge of the number of structures given one single positive tuning parameter.
Lastly we provide evidence of our method’s efficiency and further insight from simulated data.

Notation. Throughout this work we use the convention 0/0 := 0 and [n] = {1,...,n}. We take
an < b, to mean that a,, is smaller than b,, up to an absolute constant factor. Let S;_; denote the
unit sphere in R%. For ¢ € N* U {400}, v € RY, ||, is the I,-norm and for M € Rdxd' |M|,,
|M|F and | M]|,), are respectively the entry-wise {,-norm, the Frobenius norm associated with scalar
product (., .) and the operator norm. | D|y is the variation semi-norm for a diagonal matrix D, the
difference between its maximum and minimum element. Let A > B mean that A — B is symmetric,
positive semidefinite.

2 Probabilistic modeling of point clustering

Consider X7, ..., X,, and let v, = E [X,]. The variable X, can be decomposed into
Xoe=vo+FE,, a=1,..,n, (1)
with F, stochastic centered variables in RP.

Definition 1. For K > 1, p = (p1, ..., uxc) € (RP)X, § > 0and G = {G1, ..., G } a partition of
[n], we say X1, ..., X, are (G, , 0)-clustered if Vk € [K|,Va € Gy, |Vg — pii|2 < 6. We then call

A = mi — 2
(k) := min |y, — puf @)

the separation between the cluster means, and

p(G, . 6) := A(p)/6 3)
the discriminating capacity of (G, p, 0).

In this work we assume that X7, ..., X,, are (G, p, §)-clustered. Notice that this definition does not
impose any constraint on the data: for any given G, there exists a choice of p, means and radius ¢§
important enough so that X7, ..., X,, are (G, p, 6)-clustered. But we are interested in partitions with
greater discriminating capacity, i.e. that make more sense in terms of group separation. Indeed remark
that if p(G, p,d) < 2, the population clusters {v, }acGys - {Va acGy are not linearly separable,
but a high p(G, p, 0) implies that they are well-separated from each other. Furthermore, we have the
following result.

Proposition 1. Let (Gj;, nu*,6*) € argmaxp(G,p,9) for (G, u,0) such that X, ..., X,, are
(G, 1, 0)-clustered, and |G| = K. If p(Gy,*,0%) > 4 then G}, is the unique maximizer of
p(G, . 0).

So G} is the partition maximizing the discriminating capacity over partitions of size K. Therefore
in this work, we will assume that there is a K > 1 such that X1, ..., X, is (G, pu, §)-clustered with
|G| = K and p(G, p, §) > 4. By Proposition[l] G is then identifiable. It is the partition we aim to
recover.

We also assume that X7, ..., X, are independent observations with subgaussian behavior. Instead of
the classical isotropic definition of a subgaussian random vector (see for example [20]), we use a
more flexible definition that can account for anisotropy.

Definition 2. Let Y be a random vector in R, Y has a subgaussian distribution if there exist
Y € R¥*4 gych that Vx € RY,

E [e:z:T(YfEY)} < o Ta/2 (4)



We then call ¥ a variance-bounding matrix of random vector Y, and write shorthand Y ~ subg(X).
Note that Y ~ subg(X) implies Cov(Y') < ¥ in the semidefinite sense of the inequality. To sum-up
our modeling assumptions in this work:

Hypothesis 1. Let X1, ..., X,, be independent, subgaussian, (G, p, §)-clustered with p(G, ., 6) > 4.
Remark that the modelization of Hypothesis |l can be connected to another popular probabilistic

model: if we further ask that X, ..., X, are identically-distributed within a group (and hence = 0),
the model becomes a realization of a mixture model.

3 Exact partition recovery with high probability

Let G = {G1,...,Gk} and m := mingc[g] |G| denote the minimum cluster size. G can be
represented by its caracteristic matrix B* € R"*" defined as Vk, [ € [K]?,V(a,b) € Gy x G,
s [ UIG] k=
ab ™ 0 otherwise.

In what follows, we will demonstrate the recovery of G through recovering its caracteristic matrix
B*. We introduce the sets of square matrices

¢l = (Ber™ . BT = B,tx(B) = K, B, = 1,,, B = B} )

Cx :={BeR>": B" = B,tr(B) = K, Bl,, = 1,,, B = 0} (6)

c=J k. 7
KeN

We have: Ci(o’l} C Cx C Cand Cg is convex. Notice that B* € C}{(O’l}. A result by Peng, Wei
(2007) [L7] shows that the K-means estimator B can be expressed as

B = argmax(A, B) (8)
Becio

for A := ((Xas Xb))(a,p)em)> € R ™, the observed Gram matrix. Therefore a natural relaxation is
to consider the following estimator:

B := argmax(A, B). )
BeCx

Notice that EA = A + I for A := ((Vas b)) (apyelnyz € R™", and T := E[(Eq, Ep)] (4 pyeinpz =
diag (tr(Var(Ey)));<,c, € R™*". The following two results demonstrate that A is the signal

structure that lead the optimizations of (§) and (9) to recover B*, whereas T' is a bias term that can
hurt the process of recovery.

Proposition 2. There exist co > 1 absolute constant such that if p*(G, p,8) > co(6 + /n/m) and
mA2(p) > 8|T|y, then we have

argmax(A + I', B) = B* = argmax(A + T, B). (10)
Beci>t BeCk

This proposition shows that the B estimator, as well as the K-means estimator, would recover partition
G on the population Gram matrix if the variation semi-norm of I" were sufficiently small compared to
the cluster separation. Notice that to recover the partition on the population version, we require the
discriminating capacity to grow as fast as 1 + (y/n/m)'/? instead of simply 1 from Hypothesis
The following proposition demonstrates that if the condition on the variation semi-norm of I" is not
met, G may not even be recovered on the population version.

Proposition 3. There exist G, p, § and T such that p*(G, p, §) = ~+00 but we have mA?(u) < 2|T|y

and
B* ¢ argmax(A+T,B) and B* ¢ argmax(A+T,B). (11)
Becio BeCxk



So Proposition [3] shows that even if the population clusters are perfectly discriminated, there is a
configuration for the variances of the noise that makes it impossible to recover the right clustering by
K-means. This shows that K-means may fail when the random variable homoscedasticity assumption
is violated, and that it is important to correct for I' = diag(tr(Var(E,)))1<agn-

Suppose we produce such an estimator I'°°"". Then substracting I'“°"" from A can be interpreted as a

correcting term, i.e. a way to de-bias A as an estimator of A. Hence the previous results demonstrate
the interest of studying the following semi-definite estimator of the projection matrix B*, let

Beorr = arg max(K — fcom’, B). (12)
BeCk
In order to demonstrate the recovery of B* by this estimator, we introduce different quantitative

measures of the "spread" of our stochastic variables, that affect the quality of the recovery. By
Hypothesis|[I] there exist X, ..., ¥, such that Va € [n], X, ~ subg(%,). Let

0% :=max|Sglop, V?i=max|S,|p, 7°:=maxtr(X,) (13)
a€[n) a€(n] a€(n]

We now produce T, Since there is no relation between the variances of the points in our model,
there is very little hope of estimating Var(E,). As for our quantity of interest tr(Var(E,)), a
form of volume, a rough estimation is challenging but possible. The estimator from [6] can be

adapted to our context. For (a,b) € [n]?let V(a,b) := MaX (¢, d)e([n]\{a,b})2 |<Xa — X, %)

)

by = arg min, e, 103 V(a,b) and by := arg ming . (o5, V(@ 0). Then for a € [n], let

Teorr .— diag ((Xa - X5 Xa - X32>a€[n]) . (14)

Proposition 4. Assume that m > 2. For cg, cy > 0 absolute constants, with probability larger than
1 — ¢g/n we have

|fcorr *F|oo < 07(0210gn+(5+0\/@)7+52), (15)

So apart from the radius ¢ terms, that come from generous model assumptions, a proxy for I is
produced at a o2 log n rate that we could not expect to improve on. Nevertheless, this control on I is
key to attain the optimal rates below. It is general and completely independent of the structure of G,
as there is no relation between G and .

We are now ready to introduce this paper’s main result: a condition on the separation between the
cluster means sufficient for ensuring recovery of B* with high probability.

Theorem 1. Assume that m > 2. For c1,co > 0 absolute constants, if

mA*(p) > ca(0?(n+ mlogn) + V*(/n+mlogn) + y(oy/logn + &) + 6*(v/n+m)),
(16)

then with probability larger than 1 — ¢1 /n we have Beorr = B*, and therefore Georr = G.

We call the right hand side of (I6) the separating rate. Notice that we can read two kinds of
requirements coming from the separating rate: requirements on the radius J, and requirements
on 02,2, ~ dependent on the distributions of observations. It appears as if § + o+/logn can be
interpreted as a geometrical width of our problem. If we ask that ¢ is of the same order as o+/logn,
a maximum gaussian deviation for n variables, then all conditions on § from @I) can be removed.
Thus for convenience of the following discussion we will now assume 6 < o+/log n.

How optimal is the result from Theorem[I]? Notice that our result is adapted to anisotropy in the noise,
but to discuss optimality it is easier to look at the isotropic scenario: V? = \/@72 and v2 = po?.
Therefore A%(u)/o? represents a signal-to-noise ratio. For simplicity let us also assume that all
groups have equal size, thatis |G1| = ... = |Gk| = m so that n = mK and the sufficient condition

(T6) becomes
A2 K
U(zu) 2 (K +logn) + 1/ (K—Hogn)p?. (17)




Optimality. To discuss optimality, we distinguish between low and high dimensional setups.

In the low-dimensional setup n V mlogn 2 p, we obtain the following condition:

A%(p)

pe (K+1ogn). (18)

Discriminating with high probability between n observations from two gaussians in dimension 1
would require a separating rate of at least o2 log n. This implies that when K < log n, our result is
minimax. Otherwise, to our knowledge the best clustering result on approximating mixture center
is from [[16], and on the condition that A?(u)/0? > K?. Furthermore, the K > logn regime is
known in the stochastic-block-model community as a hard regime where a gap is surmised to exist
between the minimal information-theoretic rate and the minimal achievable computational rate (see
for example [7]).

In the high-dimensional setup n V mlogn < p, condition becomes:

2
AT(w) > (K +1ogn)PE. (19)
o2 n

There are few information-theoretic bounds for high-dimension clustering. Recently, Banks, Moore,
Vershynin, Verzelen and Xu (2017) [3] proved a lower bound for Gaussian mixture clustering
detection, namely they require a separation of order /K (log K)p/n. When K < logn, our
condition is only different in that it replaces log(K') by log(n), a price to pay for going from detecting
the clusters to exactly recovering the clusters. Otherwise when K grows faster than log n there might
exist a gap between the minimal possible rate and the achievable, as discussed previously.

Adaptation to effective dimension. We can analyse further the condition (I6) by introducing an
effective dimension r,., measuring the largest volume repartition for our variance-bounding matrices
31, ...y 2p. We will show that our estimator adapts to this effective dimension. Let

¥? maxgep) tr(X,)

Ty 1= = (20)

o ? maxae[n] ‘Ea|op ’

7, can also be interpreted as a form of global effective rank of matrices . Indeed, define Re(X) :=
tr(X)/[%]op, then we have 7. < max, e[, Re(X,) < max,ep,) rank(X,) < p.

Now using V? < /7,02 and v = /7.0, condition (T6) can be written as

A%(p)

o2

K
2 (K +logn) + (K—l—logn)rn . (21)

By comparing this equation to (17), notice that r, is in place of p, indeed playing the role of an
effective dimension for the problem. This shows that our estimator adapts to this effective dimension,
without the use of any dimension reduction step. In consequence, equation (21 distinguishes between
an actual high-dimensional setup: n vV mlogn < r, and a "low" dimensional setup . < nV mlogn

under which, regardless of the actual value of p, our estimators recovers under the near-minimax
condition of (I8).

This informs on the effect of correcting term [ in the theorem above when n + m logn < 7y.
The un-corrected version of the semi-definite program (9) has a leading separating rate of v2/m =

o7, /m, but with the T'eo™ correction on the other hand, (Z1) has leading separating factor smaller
than 02/ (K + log n)r./m = o%\/n + mlogn x \/7~/m. This proves that in a high-dimensional
setup, our correction enhances the separating rate of at least a factor 1/ (n + mlogn)/r..

4 Adaptation to the unknown number of group K

It is rarely the case that K is known, but we can proceed without it. We produce an estimator adaptive
to the number of groups K: let kK € R, we now study the following adaptive estimator:

B := arg max(A — I B) — Rtr(B). (22)
BeC



Theorem 2. Suppose that m > 2 and (10)) is satisfied. For c3, cq, c5 > 0 absolute constants suppose
that the following condition on K is satisfied

Cq (V2\/ﬁ +o?*n +y(oy/logn +0) + 62\/5) < sk < mA% (), (23)
then we have B°™™ = B* with probability larger than 1 — c3/n

Notice that condition (23] essentially requires % to be seated between mA? () and some components
of the right-hand side of (I6). So under (23), the results from the previous section apply to the

adaptive estimator Beor as well and this shows that it is not necessary to know K in order to
perform well for recovering G. Finding an optimized, data-driven parameter x using some form of
cross-validation is outside of the scope of this paper.

5 Numerical experiments

We illustrate our method on simulated Gaussian data in two challenging, high-dimensional setup
experiments for comparing clustering estimators. Our sample of n = 100 points are drawn from
K = 5 identically-sized, perfectly discriminated non-isovolumic clusters of Gaussians - that is we
have Vk € [K],Va € Gy, E, ~ N(0,3}) such that |G1| = ... = |Gk| = 20. The distributions are
chosen to be isotropic, and the ratio between the lowest and the highest standard deviation is of 1 to 10.
We draw points of a R? space in two different scenarii. In (S7), for a given dimension space p = 500
and a fixed isotropic noise level, we report the algorithm’s performances as the signal-to-noise ratio
A?(p)/o? is increased from 1 to 15. In (S2) we impose a fixed signal to noise ratio and observe the
algorithm’s decay in performance as the space dimension p is increased from 102 to 10° (logarithmic
scale). All reported points of the simulated space represent a hundred simulations, and indicate a
median value with asymmetric standard deviations in the form of errorbars.

Solving for estimator Beor is a hard problem as n grows. For this task we implemented an ADMM
solver from the work of Boyd et al. [4] with multiple stopping criterions including a fixed number of
iterations of "= 1000. The complexity of the optimization is then roughly O |ﬁTn3). For reference,

we compare the recovering capacities of G°°'", labeled *pecok’ in Figure |1| with other classical
clustering algorithm. We chose three different but standard clustering procedures: Lloyd’s K-means
algorithm [13]] with a thousand K-means++ initialization of [I]] (although in scenario (Sz), the
algorithm is too slow to converge as p grows so we do not report it), Ward’s method for Hierarchical
Clustering [23]] and the low-rank clustering algorithm applied to the Gram matrix, a spectral method
appearing in McSherry [15]]. Lastly we include the CORD algorithm from Bunea et al. [3].

We measure the performances of estimators by computing the adjusted mutual information (see for

instance [22]) between the truth and its estimate. In the two experiments, the results of G°™" are
markedly better than that of other methods. Scenario (S ) shows it can achieve exact recovery with a
lesser signal to noise ratio than its competitors, whereas scenario (S2) shows its performances start to
decay much later than the other methods as the space dimension is increased exponentially.

Table|l|summarizes the simulations in a different light: for different parameter value on each line, we
count the number of experiments (out of a hundred) that had an adjusted mutual information score
equal to 0.9 or higher. This accounts for exact recoveries, or approximate recoveries that reasonably

reflected the underlying truth. In this table it is also evident that Georr performs uniformly better, be
it for exact or approximate recovery: it manages to recover the underlying truth much sooner in terms
of signal-to-noise ratio, and for a given signal-to-noise ratio it will represent the truth better as the
embedding dimension increases.

Lastly TableE] provides the median computing time in seconds for each method over the entire

experiment. G°°"" comes with important computatlon times because L™ is very costly to compute.
Our method is computationally intensive but it is of polynomial order. The solving of a semidefinite
program is a vastly developing field of Operational Research and even though we used the classical
ADMM method of [4] that proved effective, this instance of the program could certainly have seen a
more profitable implementation in the hands of a domain expert. All of the compared methods have a
very hard time reaching high sample sizes n in the high dimensional context.

The PYTHON3 implementation of the method used is found in open access here: martinroyer/pecok
(18]


http://doi.org/10.5281/zenodo.1026575
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Figure 1: Performance comparison for clustering estimators and G corr labeled ’pecok4’ in reference
to [6]. The adjusted mutual information equals 1 when the clusterings are identical, O when they are
independent.

hierarchical kmeans++ lowrank-spectral pecok4 cord
90% SNR=4.75 0 0 0 51 0
90% SNR=6 0 0 0 100 0
(81) 90% SNR=7.25 18 0 12 100 26
90% SNR=8.5 100 0 100 100 76
med time (s) 0.01 2.76 0.23 1.84 (+18.92)!  0.76
90% dim=102 100 / 100 100 94
90% dim=103 0 / 0 100 31
(S2)  90% dim=5.103 0 / 0 100 0
90% dim=10* 0 / 0 49 0
med time (s) 0.14 00 0.19 1.94 (+68.12)'  0.68

Table 1: Approximate recovery result for experiment (S;) and (S2): number of experiments that had
a score superior to 90%, out of a hundred, and computing times over the experiments

!The median time in parenthesis is the time to compute T as opposed to the main time for performing
the SDP. Indeed the T'°"" is very time consuming, its cost is roughly O(n*p). It must be noted that much
faster alternatives, such as the one presented in [6], perform equally well (there is no significant difference in
performance) for the recovery of G, but this is outside the scope of this paper.

6 Conclusion

In this paper we analyzed a new semidefinite positive algorithm for point clustering within the context
of a flexible probabilistic model and exhibit the key quantities that guarantee non-asymptotic exact
recovery. It implies an essential bias-removing correction that significanty improves the recovering
rate in the high-dimensional setup. Hence we showed the estimator to be near-minimax, adapted to an
effective dimension of the problem. We also demonstrated that our estimator can be optimally adapted
to a data-driven choice of K, with a single tuning parameter. Lastly we illustrated on high-dimensional
experiments that our approach is empirically stronger than other classical clustering methods. The
I'¢°™ correction step of the algorithm, it can be interpreted as an independent, denoising step for
the Gram matrix, and we recommend using such a procedure where the probabilistic framework we
developed seems appropriate.



In practice, it is generally more realistic to look at approximate clustering results, but in this work we
chose the point of view of exact clustering for investigating theoretical properties of our estimator.
Our experimental results provide evidence that this choice is not restrictive, i.e. that our findings
translate very well to approximate recovery. We expect our results to hold with similar speeds
for approximate clustering, up to some logarithmic terms. One could think of adapting works on
community detection by Guédon and Vershynin [[12] based on Grothendieck’s inequality, or work by
Fei and Chen [10] from the stochastic-block-model community on similar semidefinite programs. In
fact, referring to a detection bound by Banks, Moore, Vershynin, Verzelen and Xu (2017) [3], our
only margin for improvement on the separation speed is to transform the logarithmic factor v/logn
into v/log K when the number of clusters K is of order O(log n) — otherwise the problem is rather
open.

As for the robustness of this procedure, a few aspects are to be considered: the algorithm we studied
solves for a convexified objective, therefore its performances are empirically more stable than that of
an objective that would prove non-convex, especially in the high-dimensional context. In this work
we also benefit from a permissive probabilistic framework that allows for multiple deviations from the
classical gaussian cluster model, and come at no price in terms of the performance of our estimator.
Points from a same cluster are allowed to have significantly different means or fluctuations, and the
results for exact recovery with high probability are unchanged, near-minimax and adaptive. Likewise
on simulated data the estimator proves the most efficient in exact as well as approximate recovery.
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