
Statistical Cost Sharing

Eric Balkanski
Harvard University

ericbalkanski@g.harvard.edu

Umar Syed
Google NYC

usyed@google.com

Sergei Vassilvitskii
Google NYC

sergeiv@google.com

Abstract

We study the cost sharing problem for cooperative games in situations where the
cost function C is not available via oracle queries, but must instead be learned from
samples drawn from a distribution, represented as tuples (S,C(S)), for different
subsets S of players. We formalize this approach, which we call STATISTICAL
COST SHARING, and consider the computation of the core and the Shapley value.
Expanding on the work by Balcan et al. [2015], we give precise sample complexity
bounds for computing cost shares that satisfy the core property with high proba-
bility for any function with a non-empty core. For the Shapley value, which has
never been studied in this setting, we show that for submodular cost functions
with bounded curvature  it can be approximated from samples from the uniform
distribution to a

p
1�  factor, and that the bound is tight. We then define statis-

tical analogues of the Shapley axioms, and derive a notion of statistical Shapley
value and that these can be approximated arbitrarily well from samples from any
distribution and for any function.

1 Introduction

The cost sharing problem asks for an equitable way to split the cost of a service among all of the
participants. Formally, there is a cost function C defined over all subsets S ✓ N of a ground set of
elements, or players, and the objective is to fairly divide the cost of the ground set C(N) among the
players. Unlike traditional learning problems, the goal here is not to predict the cost of the service,
but rather learn which ways of dividing the cost among the players are equitable.

Cost sharing is central to cooperative game theory, and there is a rich literature developing the
key concepts and principles to reason about this topic. Two popular cost sharing concepts are
the core [Gillies, 1959], where no group of players has an incentive to deviate, and the Shapley
value [Shapley, 1953], which is the unique vector of cost shares satisfying four natural axioms.

While both the core and the Shapley value are easy to define, computing them poses additional
challenges. One obstacle is that the computation of the cost shares requires knowledge of costs in
myriad different scenarios. For example, computing the exact Shapley value requires one to look at
the marginal contribution of a player over all possible subsets of others. Recent work [Liben-Nowell
et al., 2012] shows that one can find approximate Shapley values for a restricted subset of cost
functions by looking at the costs for polynomially many specifically chosen subsets. In practice,
however, another roadblock emerges: one cannot simply query for the cost of an arbitrary subset.
Rather, the subsets are passively observed, and the costs of unobserved subsets are simply unknown.
We share the opinion of Balcan et al. [2016] that the main difficulty with using cost sharing methods
in concrete applications is the information needed to compute them.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Concretely, consider the following cost sharing applications.

Attributing Battery Consumption on Mobile Devices. A modern mobile phone or tablet is
typically running a number of distinct apps concurrently. In addition to foreground processes, a lot
of activity may be happening in the background: email clients may be fetching new mail, GPS may
be active for geo-fencing applications, messaging apps are polling for new notifications, and so on.
All of these activities consume power; the question is how much of the total battery consumption
should be attributed to each app? This problem is non-trivial because the operating system induces
cooperation between apps to save battery power. For example there is no need to activate the GPS
sensor twice if two different apps request the current location almost simultaneously.

Understanding Black Box Learning Deep neural networks are prototypical examples of black
box learning, and it is almost impossible to tease out the contribution of a particular feature to the
final output. Particularly in situations where the features are binary, cooperative game theory gives a
formal way to analyze and derive these contributions. While one can evaluate the objective function
on any subset of features, deep networks are notorious for performing poorly on certain out of sample
examples [Goodfellow et al., 2014, Szegedy et al., 2013], which may lead to misleading conclusions
when using traditional cost sharing methods.

We model these cost sharing questions as follows. Let N be the set of possible players (apps or
features), and for a subset S ✓ N , let C(S) denote the cost of S. This cost represents the total power
consumed over a standard period of time, or the rewards obtained by the learner. We are given ordered
pairs (S

1

, C(S
1

)), (S
2

, C(S
2

)), . . . , (Sm, C(Sm)), where each Si ✓ N is drawn independently
from some distribution D. The problem of STATISTICAL COST SHARING asks to look for reasonable
cost sharing strategies in this setting.

1.1 Our results

We build on the approach from Balcan et al. [2015], which studied STATISTICAL COST SHARING in
the context of the core, and assume that only partial data about the cost function is observed. The
authors showed that cost shares that are likely to respect the core property can be obtained for certain
restricted classes of functions. Our main result is an algorithm that generalizes these results for all
games where the core is non-empty and we derive sample complexity bounds showing exactly the
number of samples required to compute cost shares (Theorems 1 and 2). While the main approach
of Balcan et al. [2015] relied on first learning the cost function and then computing cost shares, we
show how to proceed directly, computing cost shares without explicitly learning a good estimate of
the cost function. This high level idea was independently discovered by Balcan et al. [2016]; our
approach here greatly improves the sample complexity bounds, culminating in a result logarithmic in
the number of players. We also show that approximately satisfying the core with probability one is
impossible in general (Theorem 3).

We then focus on the Shapley value, which has never been studied in the STATISTICAL COST
SHARING context. We obtain a tight

p
1�  multiplicative approximation of the Shapley values for

submodular functions with bounded curvature  over the uniform distribution (Theorems 4 and 11),
but show that they cannot be approximated by a bounded factor in general, even for the restricted
class of coverage functions, which are learnable, over the uniform distribution (Theorem 5). We
also introduce a new cost sharing method called data-dependent Shapley value which is the unique
solution (Theorem 6) satisfying four natural axioms resembling the Shapley axioms (Definition 7),
and which can be approximated arbitrarily well from samples for any bounded function and any
distribution (Theorem 7).

1.2 Related work

There are two avenues of work which we build upon. The first is the notion of cost sharing in
cooperative games, first introduced by Von Neumann and Morgenstern [1944]. We consider the
Shapley value and the core, two popular solution concepts for cost-sharing in cooperative games. The
Shapley value [Shapley, 1953] is studied in algorithmic mechanism design [Anshelevich et al., 2008,
Balkanski and Singer, 2015, Feigenbaum et al., 2000, Moulin, 1999]. For applications of the Shapley
value, see the surveys by Roth [1988] and Winter [2002]. A naive computation of the Shapley value
of a cooperative game would take exponential time; recently, methods for efficiently approximating

2

the Shapley value have been suggested [Bachrach et al., 2010, Fatima et al., 2008, Liben-Nowell
et al., 2012, Mann, 1960] for some restricted settings.

The core, introduced by Gillies [1959], is another well-studied solution concept for cooperative
games. Bondareva [1963] and Shapley [1967] characterized when the core is non-empty. The
core has been studied in the context of multiple combinatorial games, such as facility location
Goemans and Skutella [2004] and maximum flow Deng et al. [1999]. In cases with no solutions in
the core or when it is computationally hard to find one, the balance property has been relaxed to hold
approximately [Devanur et al., 2005, Immorlica et al., 2008]. In applications where players submit
bids, cross-monotone cost sharing, a concept stronger than the core that satisfies the group strategy
proofness property, has attracted a lot of attention [Immorlica et al., 2008, Jain and Vazirani, 2002,
Moulin and Shenker, 2001, Pál and Tardos, 2003]. We note that these applications are sufficiently
different from the ones we are studying in this work.

The second is the recent work in econometrics and computational economics that aims to estimate
critical concepts directly from a limited data set, and reason about the sample complexity of the
computational problems. Specifically, in all of the above papers, the algorithm must be able to query
or compute C(S) for an arbitrary set S ✓ N . In our work, we are instead given a collection of
samples from some distribution; importantly the algorithm does not know C(S) for sets S that were
not sampled. This approach was first introduced by Balcan et al. [2015], who showed how to compute
an approximate core for some families of games. Their main technique is to first learn the cost
function C from samples and then to use the learned function to compute cost shares. The authors
also showed that there exist games that are not PAC-learnable but that have an approximate core that
can be computed. Independently, in recent follow up work, the authors showed how to extend their
approach to compute a probably approximate core for all games with a non-empty core, and gave
weak sample complexity bounds [Balcan et al., 2016]. We improve upon their bounds, showing that a
logarithmic number of samples suffices when the spread of the cost function is bounded.

2 Preliminaries

A cooperative game is defined by an ordered pair (N,C), where N is the ground set of elements, also
called players, and C : 2

N ! R�0

is the cost function mapping each coalition S ✓ N to its cost,
C(S). The ground set of size n = |N | is called the grand coalition and we denote the elements by
N = {1, . . . , n} = [n]. We assume that C(;) = 0, C(S) � 0 for all S ✓ N , and that maxS C(S)
is bounded by a polynomial in n, which are standard assumptions. We will slightly abuse notation
and use C(i) instead of C({i}) for i 2 N when it is clear from the context.

We recall three specific classes of functions. Submodular functions exhibit the property of diminishing
returns: CS(i) � CT (i) for all S ✓ T ✓ N and i 2 N where CS(i) is the marginal contribution of
element i to set S, i.e., CS(i) = C(S [{i})� C(S). Coverage functions are the canonical example
of submodular functions. A function is coverage if it can be written as C(S) = | [i2S Ti| where
Ti ✓ U for some universe U . Finally, we also consider the simple class of additive functions, such
that C(S) =

P

i2S C(i).

A cost allocation is a vector 2 Rn where i is the share of element i. We call a cost allocation
 balanced if

P

i2N i = C(N). Given a cooperative game (N,C) the goal in the cost sharing
literature is to find “desirable" balanced cost allocations. Most proposals take an axiomatic approach,
defining a set of axioms that a cost allocation should satisfy. These lead to the concepts of Shapley
value and the core, which we define next. A useful tool to describe and compute these cost sharing
concepts is permutations. We denote by � a uniformly random permutation of N and by S�<i the
players before i 2 N in permutation �.

2.1 The core

The core is a balanced cost allocation where no player has an incentive to deviate from the grand
coalition — for any subset of players the sum of their shares does not cover their collective cost.
Definition 1. A cost allocation is in the core of function C if the following properties are satisfied:

• Balance:

P

i2N i = C(N),

• Core property: for all S ✓ N ,
P

i2S i  C(S).

3

The core is a natural cost sharing concept. For example, in the battery blame scenario it translates to
the following assurance: No matter what other apps are running concurrently, an app is never blamed
for more battery consumption than if it were running alone. Given that app developers are typically
business competitors, and that a mobile device’s battery is a very scarce resource, such a guarantee
can rather neatly avoid a great deal of finger-pointing. Unfortunately, for a given cost function C
the core may not exist (we say the core is empty), or there may be multiple (or even infinitely many)
cost allocations in the core. For submodular functions C, the core is guaranteed to exist and one
allocation in the core can be computed in polynomial time. Specifically, for any permutation �, the
cost allocation such that i = C(S�<i [{i})� C(S�<i) is in the core.

2.2 The Shapley value

The Shapley value provides an alternative cost sharing method. For a game (N,C) we denote it by
�C , dropping the superscript when it is clear from the context. While the Shapley value may not
satisfy the core property, it satisfies the following four axioms:

• Balance:
P

i2N �i = C(N).

• Symmetry: For all i, j 2 N , if C(S [{i}) = C(S [{j}) for all S ✓ N \ {i, j} then
�i = �j .

• Zero element: For all i 2 N , if C(S [{i}) = C(S) for all S ✓ N then �i = 0.
• Additivity: For two games (N,C

1

) and (N,C
2

) with the same players, but different cost
functions C

1

and C
2

, let �1 and �2 be the respective cost allocations. Consider a new game
(N,C

1

+ C
2

), and let �0 be the cost allocation for this game. Then for all elements, i 2 N ,
�0i = �1i + �2i .

Each of these axioms is natural: balance ensures that the cost of the grand coalition is distributed
among all of the players. Symmetry states that two identical players should have equal shares. Zero
element verifies that a player that adds zero cost to any coalition should have zero share. Finally,
additivity just confirms that costs combine in a linear manner. It is surprising that the set of cost
allocations that satisfies all four axioms is unique. Moreover, the Shapley value � can be written as
the following summation:

�i = E

�
[C(S�<i [{i})� C(S�<i)] =

X

S✓N\{i}

|S|!(n� |S|� 1)!

n!
(C(S [{i})� C(S)).

This expression is the expected marginal contribution C(S [{i})� C(S) of i over a set of players
S who arrived before i in a random permutation of N . As the summation is over exponentially many
terms, the Shapley value generally cannot be computed exactly in polynomial time. However, several
sampling approaches have been suggested to approximate the Shapley value for specific classes of
functions Bachrach et al. [2010], Fatima et al. [2008], Liben-Nowell et al. [2012], Mann [1960].

2.3 Statistical cost sharing

With the sole exception of Balcan et al. [2015], previous work in cost-sharing critically assumes
that the algorithm is given oracle access to C, i.e., it can query, or determine, the cost C(S) for any
S ✓ N . In this paper, we aim to (approximately) compute the Shapley value and other cost allocations
from samples, without oracle access to C, and with a number of samples that is polynomial in n.
Definition 2. Consider a cooperative game with players N and cost function C. In the STATISTICAL
COST SHARING problem we are given pairs (S

1

, C(S
1

)), (S
2

, C(S
2

)), . . . , (Sm, C(Sm)) where
each Si is drawn i.i.d. from a distribution D over 2N . The goal is to find a cost allocation 2 Rn.

In what follows we will often refer to an individual (S,C(S)) pair as a sample. It is tempting to
reduce STATISTICAL COST SHARING to classical cost sharing by simply collecting enough samples
to use known algorithms. For example, Liben-Nowell et al. [2012] showed how to approximate the
Shapley value with polynomially many queries C(S). However, if the distribution D is not aligned
with these specific queries, which is the case even for the uniform distribution, emulating these

4

algorithms in our setting requires exponentially many samples. Balcan et al. [2015] showed how to
instead first learn an approximation to C from the given samples and then compute cost shares for
the learned function, but their results hold only for a limited number of games and cost functions C.
We show that a more powerful approach is to compute cost shares directly from the data, without
explicitly learning the cost function first.

3 Approximating the Core from Samples

In this section, we consider the problem of finding cost allocations from samples that satisfy relax-
ations of the core. A natural approach to this problem is to first learn the underlying model, C, from
the data and to then compute a cost allocation for the learned function. As shown in Balcan et al.
[2015], this approach works if C is PAC-learnable, but there exist functions C that are not PAC-
learnable and for which a cost allocation that approximately satisfies the core can still be computed.
The main result of this section shows that a cost allocation that approximates the core property can be
computed from samples for any function with a non-empty core. We first give a sample complexity
bound that is linear in the number n of players, a result which was independently discovered by
Balcan et al. [2016]. With a more intricate analysis, we then improve this sample complexity to be
logarithmic in n, but at the cost of a weaker relaxation. Our algorithm, which runs in polynomial
time, directly computes a cost allocation that empirically satisfies the core property, i.e., it satisfies
the core property on all of the samples. We argue, by leveraging VC-dimension and Rademacher
complexity-based generalization bounds, that the same cost allocation will likely satisfy the core
property on newly drawn samples as well. We also propose a stronger notion of the approximate core,
and prove that it cannot be computed by any algorithm. This hardness result is information theoretic
and is not due to running time limitations. The proofs in this section are deferred to Appendix B.

We begin by defining three notions of the approximate core: the probably approximately stable
(Balcan et al. [2016]), mostly approximately stable, and probably mostly approximately stable cores.
Definition 3. Given �, ✏ > 0, a cost allocation such that

P

i2N i = C(N) is in

• the probably approximately stable core if PrS⇠D
⇥

P

i2S i  C(S)
⇤ � 1 � � for all D

(see Balcan et al. [2015]),

• the mostly approximately stable core over D if (1� ✏)
P

i2S i  C(S) for all S ✓ N ,

• the probably mostly approximately stable core if PrS⇠D
⇥

(1� ✏)
P

i2S i  C(S)
⇤ �

1� � for all D,

For each of these notions, our goal is to efficiently compute a cost allocation in the approximate core,
in the following sense.
Definition 4. A cost allocation is efficiently computable for the class of functions C over distri-
bution D, if for all C 2 C and any �, �, ✏ > 0, given C(N) and m = poly(n, 1/�, 1/�, 1/✏) samples
(Sj , C(Sj)) with each Sj drawn i.i.d. from distribution D, there exists an algorithm that computes
with probability at least 1�� over both the samples and the choices of the algorithm.

We refer to the number of samples required to compute approximate cores as the sample complexity
of the algorithm. We first present our result for computing a probably approximately stable core with
sample complexity that is linear in the number of players, which was also independently discovered
by Balcan et al. [2016].
Theorem 1. The class of functions with a non-empty core has cost shares in the probably approxi-
mately stable core that are efficiently computable. The sample complexity is

O

✓

n+ log(1/�)

�

◆

.

The full proof of Theorem 1 is in Appendix B, and can be summarized as follows: We define a class
of halfspaces which contains the core. Since we assume that C has a non-empty core, there exists a
cost allocation in this class of halfspaces that satisfies both the core property on all the samples
and the balance property. Given a set of samples, such a cost allocation can be computed with a
simple linear program. We then use the VC-dimension of the class of halfspaces to show that the
performance on the samples generalizes well to the performance on the distribution D.

5

We next show that the sample complexity dependence on n can be improved from linear to logarithmic
if we relax the goal from computing a cost allocation in the probably approximately stable core to
computing one in the probably mostly approximately stable core instead. The sample complexity
of our algorithm also depends on the spread of the function C, defined as maxS C(S)

minS 6=; C(S)

(we assume
minS 6=; C(S) > 0).
Theorem 2. The class of functions with a non-empty core has cost allocations in the probably mostly
approximately stable core that are efficiently computable with sample complexity
✓

1� ✏

✏�

◆

2

�

128⌧(C)

2

log(2n) + 8⌧(C)

2

log(2/�)

�

= O

✓

⌧(C)

✏�

◆

2

(log n+ log(1/�))

!

.

where ⌧(C) =

maxS C(S)

minS 6=; C(S)

is the spread of C.

The full proof of Theorem 2 is in Appendix B. Its main steps are:

1. We find a cost allocation which satisfies the core property on all samples, restricting the
search to cost allocations with bounded `

1

-norm. Such a cost allocation can be found
efficiently since the space of such cost allocations is convex.

2. The analysis begins by bounding the `
1

-norm of any vector in the core (Lemma 3). Combined
with the assumption that the core is non-empty, this implies that a cost allocation satisfying
the previous conditions exists.

3. Let [x]
+

denote the function x 7! max(x, 0). Consider the following “loss" function:


P

i2S i

C(S)
� 1

�

+

This loss function is convenient since it is equal to 0 if and only if the core property is
satisfied for S and it is 1-Lipschitz, which is used in the next step.

4. Next, we bound the difference between the empirical loss and the expected loss for all
with a known result using the Rademacher complexity of linear predictors with low `

1

norm
over ⇢-Lipschitz loss functions (Theorem 10).

5. Finally, given which approximately satisfies the core property in expectation, we show that
 is in the probably mostly approximately stable core by Markov’s inequality (Lemma 4).

Since we obtained a probably mostly approximately stable core, a natural question is if it is possible
to compute cost allocations that are mostly approximately stable over natural distributions. The
answer is negative in general: even for the restricted class of monotone submodular functions, which
always have a solution in the core, the core cannot be mostly approximated from samples, even over
the uniform distribution. The full proof of this impossibility theorem is in Appendix B.
Theorem 3. Cost allocations in the (1/2 + ✏)-mostly approximately stable core, i.e., such that for
all S,

✓

1

2

+ ✏

◆

·
X

i2S

 i  C(S),

cannot be computed for monotone submodular functions over the uniform distribution, for any
constant ✏ > 0.

4 Approximating the Shapley Value from Samples

We turn our attention to the STATISTICAL COST SHARING problem in the context of the Shapley
value. Since the Shapley value exists and is unique for all functions, a natural relaxation is to simply
approximate this value from samples. The distributions we consider in this section are the uniform
distribution, and more generally product distributions, which are the standard distributions studied in
the learning literature for combinatorial functions Balcan and Harvey [2011], Balcan et al. [2012],
Feldman and Kothari [2014], Feldman and Vondrak [2014]. It is easy to see that we need some
restrictions on the distribution D (for example, if the empty set if drawn with probability one, the
Shapley value cannot be approximated).

6

For submodular functions with bounded curvature, we prove approximation bounds when samples
are drawn from the uniform or a bounded product distribution, and also show that the bound for
the uniform distribution is tight. However, we show that the Shapley value cannot be approximated
from samples even for coverage functions (which are a special case of submodular functions) and
the uniform distribution. Since coverage functions are learnable from samples, this implies the
counter-intuitive observation that learnability does not imply that the Shapley value is approximable
from samples. We defer the full proofs to Appendix C.
Definition 5. An algorithm ↵-approximates, ↵ 2 (0, 1], the Shapley value of cost functions C over
distribution D, if, for all C 2 C and all � > 0, given poly(n, 1/�, 1/1�↵) samples from D, it computes
Shapley value estimates ˜�C such that ↵�i  ˜�i  1

↵�i for all i 2 N such that �i � 1/ poly(n)1with
probability at least 1� � over both the samples and the choices made by the algorithm.

We consider submodular functions with bounded curvature, a common assumption in the submodular
maximization literature Iyer and Bilmes [2013], Iyer et al. [2013], Sviridenko et al. [2015], Vondrák
[2010]. Intuitively, the curvature of a submodular function bounds by how much the marginal
contribution of an element can decrease. This property is useful since the Shapley value of an element
can be written as a weighted sum of its marginal contributions over all sets.
Definition 6. A monotone submodular function C has curvature  2 [0, 1] if CN\{i}(i) � (1 �
)C(i) for all i 2 N . This curvature is bounded if  < 1.

An immediate consequence of this definition is that CS(i) � (1 � )CT (i) for all S, T such that
i 62 S [T by monotonicity and submodularity. The main tool used is estimates ṽi of expected
marginal contributions vi = ES⇠D|i 62S [CS(i)] where ṽi = avg(Si) � avg(S�i) is the difference
between the average value of samples containing i and the average value of samples not containing i.
Theorem 4. Monotone submodular functions with bounded curvature  have Shapley value that isp
1� � ✏ approximable from samples over the uniform distribution, which is tight, and 1� � ✏

approximable over any bounded product distribution for any constant ✏ > 0.

Consider the algorithm which computes ˜�i = ṽi. Note that �i = E

�
[C(A�<i [{i})� C(A�<i)] �

(1 � )vi >
1�
1+✏ ṽi > (1 �  � ✏)ṽi where the first inequality is by curvature and the second by

Lemma 5 which shows that the estimates ṽi of vi are arbitrarily good. The other direction follows
similarly. The

p
1�  result is the main technical component of the upper bound. We describe two

main steps:

1. The expected marginal contribution ES⇠U|i 62S,|S|=j [CS(i)] of i to a uniformly random set
S of size j is decreasing in j, which is by submodularity.

2. Since a uniformly random set has size concentrated close to n/2, this implies that roughly
half of the terms in the summation �i = (

Pn�1

j=0

ES⇠Uj |i 62S [CS(i)])/n are greater than vi
and the other half of the terms are smaller.

For the tight lower bound, we show that there exists two functions that cannot be distinguished from
samples w.h.p. and that have an element with Shapley value which differs by an ↵2 factor.

We show that the Shapley value of coverage (and submodular) functions are not approximable from
samples in general, even though coverage functions are PMAC-learnable (Balcan and Harvey [2011])
from samples over any distribution Badanidiyuru et al. [2012].
Theorem 5. There exists no constant ↵ > 0 such that coverage functions have Shapley value that is
↵-approximable from samples over the uniform distribution.

5 Data Dependent Shapley Value

The general impossibility result for computing the Shapley value from samples arises from the fact
that the concept was geared towards the query model, where the algorithm can ask for the cost of any
set S ✓ N . In this section, we develop an analogue that is distribution-dependent. We denote it by
�C,D with respect to both C and D. We define four natural distribution-dependent axioms resembling

1See Appendix C for general definition.

7

the Shapley value axioms, and then prove that our proposed value is the unique solution satisfying
them. This value can be approximated arbitrarily well in the statistical model for all functions. The
proofs are deferred to Appendix D. We start by stating the four axioms.
Definition 7. The data-dependent axioms for cost sharing functions are:

• Balance:

P

i2N �Di = ES⇠D[C(S)],

• Symmetry: for all i and j, if PrS⇠D [|S \ {i, j}| = 1] = 0 then �Di = �Dj ,

• Zero element: for all i, if PrS⇠D [i 2 S] = 0 then �Di = 0,

• Additivity: for all i, if D
1

, D
2

, ↵, and � such that ↵+ � = 1, �↵D1

+�D
2

i = ↵�D1

i + ��D2

i
where Pr [S ⇠ ↵D

1

+ �D
2

] = ↵ · Pr [S ⇠ D
1

] + � · Pr [S ⇠ D
2

].

The similarity to the original Shapley value axioms is readily apparent. The main distinction is that
we expect these to hold with regard to D, which captures the frequency with which different coalitions
S occur. Interpreting the axioms one by one, the balance property ensures that the expected cost is
always accounted for. The symmetry axiom states that if two elements always occur together, they
should have the same share, since they are indistinguishable. If an element is never observed, then it
should have zero share. Finally costs should combine in a linear manner according to the distribution.

The data-dependent Shapley value is

�Di :=

X

S : i2S

Pr [S ⇠ D] · C(S)

|S| .

Informally, for all set S, the cost C(S) is divided equally between all elements in S and is weighted
with the probability that S occurs according to D. The main appeal of this cost allocation is the
following theorem.
Theorem 6. The data-dependent Shapley value is the unique value satisfying the four data-dependent
axioms.

The data-dependent Shapley value can be approximated from samples with the following empirical
data-dependent Shapley value:

˜�Di =

1

m

X

Sj : i2Sj

C(Sj)

|Sj | .

These estimates are arbitrarily good with arbitrarily high probability.
Theorem 7. The empirical data-dependent Shapley value approximates the data-dependent Shapley
value arbitrarily well, i.e.,

|˜�Di � �Di | < ✏

with poly(n, 1/✏, 1/�) samples and with probability at least 1� � for any �, ✏ > 0.

6 Discussion and Future Work

We follow a recent line of work that studies classical algorithmic problems from a statistical per-
spective, where the input is restricted to a collection of samples. Our results fall into two categories,
we give results for approximating the Shapley value and the core and propose new cost sharing
concepts that are tailored for the statistical framework. We use techniques from multiple fields that
encompass statistical machine learning, combinatorial optimization, and, of course, cost sharing. The
cost sharing literature being very rich, the number of directions for future work are considerable. Ob-
vious avenues include studying other cost sharing methods in this statistical framework, considering
other classes of functions to approximate known methods, and improving the sample complexity
of previous algorithms. More conceptually, an exciting modeling question arises when designing
“desirable" axioms from data. Traditionally these axioms only depended on the cost function, whereas
in this model they can depend on both the cost function and the distribution, providing an interesting
interplay.

8

References
Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, and Tim Rough-

garden. The price of stability for network design with fair cost allocation. SIAM Journal on
Computing, 38(4):1602–1623, 2008.

Yoram Bachrach, Evangelos Markakis, Ezra Resnick, Ariel D Procaccia, Jeffrey S Rosenschein, and
Amin Saberi. Approximating power indices: theoretical and empirical analysis. Autonomous
Agents and Multi-Agent Systems, 20(2):105–122, 2010.

Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan, and Tim
Roughgarden. Sketching valuation functions. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 1025–1035. Society for Industrial and Applied
Mathematics, 2012.

Maria-Florina Balcan and Nicholas JA Harvey. Learning submodular functions. In Proceedings of
the forty-third annual ACM symposium on Theory of computing, pages 793–802. ACM, 2011.

Maria-Florina Balcan, Florin Constantin, Satoru Iwata, and Lei Wang. Learning valuation functions.
In COLT, volume 23, pages 4–1, 2012.

Maria-Florina Balcan, Ariel D. Procaccia, and Yair Zick. Learning cooperative games. In Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos
Aires, Argentina, July 25-31, 2015, pages 475–481, 2015.

Maria-Florina Balcan, Ariel D Procaccia, and Yair Zick. Learning cooperative games. arXiv preprint
arXiv:1505.00039v2, 2016.

Eric Balkanski and Yaron Singer. Mechanisms for fair attribution. In Proceedings of the Sixteenth
ACM Conference on Economics and Computation, pages 529–546. ACM, 2015.

Olga N Bondareva. Some applications of linear programming methods to the theory of cooperative
games. Problemy kibernetiki, 10:119–139, 1963.

Xiaotie Deng, Toshihide Ibaraki, and Hiroshi Nagamochi. Algorithmic aspects of the core of
combinatorial optimization games. Mathematics of Operations Research, 24(3):751–766, 1999.

Nikhil R Devanur, Milena Mihail, and Vijay V Vazirani. Strategyproof cost-sharing mechanisms for
set cover and facility location games. Decision Support Systems, 39(1):11–22, 2005.

Shaheen S Fatima, Michael Wooldridge, and Nicholas R Jennings. A linear approximation method
for the shapley value. Artificial Intelligence, 172(14):1673–1699, 2008.

Joan Feigenbaum, Christos Papadimitriou, and Scott Shenker. Sharing the cost of muliticast trans-
missions (preliminary version). In Proceedings of the thirty-second annual ACM symposium on
Theory of computing, pages 218–227. ACM, 2000.

Vitaly Feldman and Pravesh Kothari. Learning coverage functions and private release of marginals.
In COLT, pages 679–702, 2014.

Vitaly Feldman and Jan Vondrak. Optimal bounds on approximation of submodular and xos functions
by juntas. In Information Theory and Applications Workshop (ITA), 2014, pages 1–10. IEEE, 2014.

Donald B Gillies. Solutions to general non-zero-sum games. Contributions to the Theory of Games,
4(40):47–85, 1959.

Michel X Goemans and Martin Skutella. Cooperative facility location games. Journal of Algorithms,
50(2):194–214, 2004.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. CoRR, abs/1412.6572, 2014. URL http://arxiv.org/abs/1412.6572.

Nicole Immorlica, Mohammad Mahdian, and Vahab S Mirrokni. Limitations of cross-monotonic
cost-sharing schemes. ACM Transactions on Algorithms (TALG), 4(2):24, 2008.

9

http://arxiv.org/abs/1412.6572

Rishabh K Iyer and Jeff A Bilmes. Submodular optimization with submodular cover and submodular
knapsack constraints. In Advances in Neural Information Processing Systems, pages 2436–2444,
2013.

Rishabh K Iyer, Stefanie Jegelka, and Jeff A Bilmes. Curvature and optimal algorithms for learning
and minimizing submodular functions. In Advances in Neural Information Processing Systems,
pages 2742–2750, 2013.

Kamal Jain and Vijay V Vazirani. Equitable cost allocations via primal-dual-type algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages 313–321.
ACM, 2002.

David Liben-Nowell, Alexa Sharp, Tom Wexler, and Kevin Woods. Computing shapley value in
supermodular coalitional games. In International Computing and Combinatorics Conference,
pages 568–579. Springer, 2012.

Irwin Mann. Values of large games, IV: Evaluating the electoral college by Montecarlo techniques.
Rand Corporation, 1960.

Hervé Moulin. Incremental cost sharing: Characterization by coalition strategy-proofness. Social
Choice and Welfare, 16(2):279–320, 1999.

Hervé Moulin and Scott Shenker. Strategyproof sharing of submodular costs: budget balance versus
efficiency. Economic Theory, 18(3):511–533, 2001.

Martin Pál and Éva Tardos. Group strategy proof mechanisms via primal-dual algorithms. In
Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, pages
584–593. IEEE, 2003.

Alvin E Roth. The Shapley value: essays in honor of Lloyd S. Shapley. Cambridge University Press,
1988.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. 2014.

Lloyd S Shapley. On balanced sets and cores. Naval research logistics quarterly, 14(4):453–460,
1967.

LS Shapley. A value for n-person games1. 1953.

Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for submodular and
supermodular optimization with bounded curvature. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1134–1148. SIAM, 2015.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian J. Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. CoRR, abs/1312.6199, 2013. URL
http://arxiv.org/abs/1312.6199.

John Von Neumann and Oskar Morgenstern. Theory of games and economic behavior. 1944.

Jan Vondrák. Submodularity and curvature: the optimal algorithm. RIMS Kokyuroku Bessatsu B, 23:
253–266, 2010.

Eyal Winter. The shapley value. Handbook of game theory with economic applications, 3:2025–2054,
2002.

10

http://arxiv.org/abs/1312.6199

