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Abstract

The Łojasiewicz inequality shows that sharpness bounds on the minimum of convex
optimization problems hold almost generically. Sharpness directly controls the
performance of restart schemes, as observed by Nemirovskii and Nesterov [1985].
The constants quantifying error bounds are of course unobservable, but we show
that optimal restart strategies are robust, and searching for the best scheme only
increases the complexity by a logarithmic factor compared to the optimal bound.
Overall then, restart schemes generically accelerate accelerated methods.

Introduction

We study convex optimization problems of the form

minimize f(x) (P)

where f is a convex function defined on Rn. The complexity of these problems using first order
methods is generically controlled by smoothness assumptions on f such as Lipschitz continuity of its
gradient. Additional assumptions such as strong convexity or uniform convexity provide respectively
linear [Nesterov, 2013b] and faster polynomial [Juditski and Nesterov, 2014] rates of convergence.
However, these assumptions are often too restrictive to be applied. Here, we make a much weaker and
generic assumption that describes the sharpness of the function around its minimizers by constants
µ ≥ 0 and r ≥ 1 such that

µ

r
d(x,X∗)r ≤ f(x)− f∗, for every x ∈ K, (Sharp)

where f∗ is the minimum of f , K ⊂ Rn is a compact set, d(x,X∗) = miny∈X∗ ‖x − y‖ is the
distance from x to the set X∗ ⊂ K of minimizers of f 1 for the Euclidean norm ‖ · ‖. This defines a
lower bound on the function around its minimizers: for r = 1, f shows a kink around its minimizers
and the larger is r the flatter is the function around its minimizers. We tackle this property by restart
schemes of classical convex optimization algorithms.

Sharpness assumption (Sharp) is better known as a Hölderian error bound on the distance to the set
of minimizers. Hoffman [Hoffman, 1952] first introduced error bounds to study system of linear
inequalities. Natural extensions were then developed for convex optimization [Robinson, 1975;
Mangasarian, 1985; Auslender and Crouzeix, 1988], notably through the concept of sharp minima
[Polyak, 1979; Burke and Ferris, 1993; Burke and Deng, 2002]. But the most striking discovery was
made by Łojasiewicz [Łojasiewicz, 1963, 1993] who proved inequality (Sharp) for real analytic and
subanalytic functions. It has then been extended to non-smooth subanalytic convex functions by
Bolte et al. [2007]. Overall, since (Sharp) essentially measures the sharpness of minimizers, it holds
somewhat generically. On the other hand, this inequality is purely descriptive as we have no hope of
ever observing either r or µ, and deriving adaptive schemes is crucial to ensure practical relevance.

1We assume the problem feasible, i.e. X∗ 6= ∅.
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Łojasiewicz inequalities either in the form of (Sharp) or as gradient dominated properties [Polyak,
1979] led to new simple convergence results [Karimi et al., 2016], in particular for alternating and
splitting methods [Attouch et al., 2010; Frankel et al., 2015], even in the non-convex case [Bolte et al.,
2014]. Here we focus on Hölderian error bounds as they offer simple explanation of accelerated rates
of restart schemes.

Restart schemes were already studied for strongly or uniformly convex functions [Nemirovskii and
Nesterov, 1985; Nesterov, 2013a; Juditski and Nesterov, 2014; Lin and Xiao, 2014]. In particular,
Nemirovskii and Nesterov [1985] link a “strict minimum” condition akin to (Sharp) with faster
convergence rates using restart schemes which form the basis of our results, but do not study the
cost of adaptation and do not tackle the non-smooth case. In a similar spirit, weaker versions of this
strict minimum condition were used more recently to study the performance of restart schemes in
[Renegar, 2014; Freund and Lu, 2015; Roulet et al., 2015]. The fundamental question of a restart
scheme is naturally to know when must an algorithm be stopped and relaunched. Several heuristics
[O’Donoghue and Candes, 2015; Su et al., 2014; Giselsson and Boyd, 2014] studied adaptive restart
schemes to speed up convergence of optimal methods. The robustness of restart schemes was then
theoretically studied by Fercoq and Qu [2016] for quadratic error bounds, i.e. (Sharp) with r = 2,
that LASSO problem satisfies for example. Fercoq and Qu [2017] extended recently their work to
produce adaptive restarts with theoretical guarantees of optimal performance, still for quadratic error
bounds. Previous references focus on smooth problems, but error bounds appear also for non-smooth
ones, Gilpin et al. [2012] prove for example linear converge of restart schemes in bilinear matrix
games where the minimum is sharp, i.e. (Sharp) with r = 1.

Our contribution here is to derive optimal scheduled restart schemes for general convex optimization
problems for smooth, non-smooth or Hölder smooth functions satisfying the sharpness assumption.
We then show that for smooth functions these schemes can be made adaptive with nearly optimal
complexity (up to a squared log term) for a wide array of sharpness assumptions. We also analyze
restart criterion based on a sufficient decrease of the gap to the minimum value of the problem, when
this latter is known in advance. In that case, restart schemes are shown ot be optimal without requiring
any additional information on the function.

1 Problem assumptions

1.1 Smoothness

Convex optimization problems (P) are generally divided in two classes: smooth problems, for which
f has Lipschitz continuous gradients, and non-smooth problems for which f is not differentiable.
Nesterov [2015] proposed to unify point of views by assuming generally that there exist constants
1 ≤ s ≤ 2 and L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖s−1, for all x, y ∈ Rn (Smooth)

where ∇f(x) is any sub-gradient of f at x if s = 1 (otherwise this implies differentiability of f ).
For s = 2, we retrieve the classical definition of smoothness [Nesterov, 2013b]. For s = 1 we get a
classical assumption made in non-smooth convex optimization, i.e., that sub-gradients of the function
are bounded. For 1 < s < 2, this assumes gradient of f to be Hölder Lipschitz continuous. In a
first step, we will analyze restart schemes for smooth convex optimization problems, then generalize
to general smoothness assumption (Smooth) using appropriate accelerated algorithms developed by
Nesterov [2015].

1.2 Error bounds

In general, an error bound is an inequality of the form

d(x,X∗) ≤ ω(f(x)− f∗),

where ω is an increasing function at 0, called the residual function, and x may evolve either in the
whole space or in a bounded set, see Bolte et al. [2015] for more details. We focus on Hölderian
Error Bounds (Sharp) as they are the most common in practice. They are notably satisfied by a
analytic and subanalytic functions but the proof (see e.g. Bierstone and Milman [1988, Theorem
6.4]) is shown using topological arguments that are far from constructive. Hence, outside of some
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particular cases (e.g. strong convexity), we cannot assume that the constants in (Sharp) are known,
even approximately.

Error bounds can generically be linked to Łojasiewicz inequality that upper bounds magnitude of the
gradient by values of the function [Bolte et al., 2015]. Such property paved the way to many recent
results in optimization [Attouch et al., 2010; Frankel et al., 2015; Bolte et al., 2014]. Here we will
see that (Sharp) is sufficient to acceleration of convex optimization algorithms by their restart. Note
finally that in most cases, error bounds are local properties hence the convergence results that follow
will generally be local.

1.3 Sharpness and smoothness

Let f be a convex function on Rn satisfying (Smooth) with parameters (s, L). This property ensures
that, f(x) ≤ f∗ + L

s ‖x − y‖
s, for given x ∈ Rn and y ∈ X∗. Setting y to be the projection of x

onto X∗, this yields the following upper bound on suboptimality

f(x)− f∗ ≤ L

s
d(x,X∗)s. (1)

Now, assume that f satisfies the error bound (Sharp) on a setK with parameters (r, µ). Combining (1)
and (Sharp) this leads for every x ∈ K,

sµ

rL
≤ d(x,X∗)s−r.

This means that necessarily s ≤ r by taking x → X∗. Moreover if s < r, this last inequality can
only be valid on a bounded set, i.e. either smoothness or error bound or both are valid only on a
bounded set. In the following, we write

κ , L
2
s /µ

2
r and τ , 1− s

r
(2)

respectively a generalized condition number for the function f and a condition number based on the
ratio of powers in inequalities (Smooth) and (Sharp). If r = s = 2, κ matches the classical condition
number of the function.

2 Scheduled restarts for smooth convex problems

In this section, we seek to solve (P) assuming that the function f is smooth, i.e. satisfies (Smooth)
with s = 2 and L > 0. Without further assumptions on f , an optimal algorithm to solve the smooth
convex optimization problem (P) is Nesterov’s accelerated gradient method [Nesterov, 1983]. Given
an initial point x0, this algorithm outputs, after t iterations, a point x = A(x0, t) such that

f(x)− f∗ ≤ cL

t2
d(x0, X

∗)2, (3)

where c > 0 denotes a universal constant (whose value will be allowed to vary in what follows, with
c = 4 here). We assume without loss of generality that f(x) ≤ f(x0). More details about Nesterov’s
algorithm are given in Supplementary Material.

In what follows, we will also assume that f satisfies (Sharp) with parameters (r, µ) on a set K ⊇ X∗,
which means

µ

r
d(x,X∗)r ≤ f(x)− f∗, for every x ∈ K. (Sharp)

As mentioned before if r > s = 2, this property is necessarily local, i.e. K is bounded. We assume
then that given a starting point x0 ∈ Rn, sharpness is satisfied on the sublevel set {x| f(x) ≤ f(x0)}.
Remark that if this property is valid on an open set K ⊃ X∗, it will also be valid on any compact set
K ′ ⊃ K with the same exponent r but a potentially lower constant µ. The scheduled restart schemes
we present here rely on a global sharpness hypothesis on the sublevel set defined by the initial point
and are not adaptive to constant µ on smaller sublevel sets. On the other hand, restarts on criterion
that we present in Section 4, assuming that f∗ is known, adapt to the value of µ. We now describe a
restart scheme exploiting this extra regularity assumption to improve the computational complexity
of solving problem (P) using accelerated methods.
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2.1 Scheduled restarts

Here, we schedule the number of iterations tk made by Nesterov’s algorithm between restarts, with
tk the number of (inner) iterations at the kth algorithm run (outer iteration). Our scheme is described
in Algorithm 1 below.

Algorithm 1 Scheduled restarts for smooth convex minimization
Inputs : x0 ∈ Rn and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

xk := A(xk−1, tk)
end for
Output : x̂ := xR

The analysis of this scheme and the following ones relies on two steps. We first choose schedules that
ensure linear convergence in the iterates xk at a given rate. We then adjust this linear rate to minimize
the complexity in terms of the total number of iterations.

We begin with a technical lemma which assumes linear convergence holds, and connects the growth
of tk, the precision reached and the total number of inner iterations N .
Lemma 2.1. Let xk be a sequence whose kth iterate is generated from the previous one by an
algorithm that runs tk iterations and write N =

∑R
k=1 tk the total number of iterations to output a

point xR. Suppose setting tk = Ceαk, k = 1, . . . , R for some C > 0 and α ≥ 0 ensures that outer
iterations satisfy

f(xk)− f∗ ≤ νe−γk, (4)
for all k ≥ 0 with ν ≥ 0 and γ ≥ 0. Then precision at the output is given by,

f(xR)− f∗ ≤ ν exp(−γN/C), when α = 0,

and
f(xR)− f∗ ≤

ν

(αe−αC−1N + 1)
γ
α

, when α > 0.

Proof. When α = 0, N = RC, and inserting this in (4) at the last point xR yields the desired
result. On the other hand, when α > 0, we have N =

∑R
k=1 tk = Ceα e

αR−1
eα−1 , which gives

R = log
(
eα−1
eαC N + 1

)
/α. Inserting this in (4) at the last point, we get

f(xR)− f∗ ≤ ν exp
(
− γ
α log

(
eα−1
eαC N + 1

))
≤ ν

(αe−αC−1N+1)
γ
α
,

where we used ex − 1 ≥ x. This yields the second part of the result.

The last approximation in the case α > 0 simplifies the analysis that follows without significantly
affecting the bounds. We also show in Supplementary Material that using t̃k = dtke does not
significantly affect the bounds above. Remark that convergence bounds are generally linear or
polynomial such that we can extract a subsequence that converges linearly. Therefore our approach
does not restrict the analysis of our scheme. It simplifies it and can be used for other algorithms like
the gradient descent as detailed in Supplementary Material.

We now analyze restart schedules tk that ensure linear convergence. Our choice of tk will heavily
depend on the ratio between r and s (with s = 2 for smooth functions here), incorporated in the
parameter τ = 1− s/r defined in (2). Below, we show that if τ = 0, a constant schedule is sufficient
to ensure linear convergence. When τ > 0, we need a geometrically increasing number of iterations
for each cycle.
Proposition 2.2. Let f be a smooth convex function satisfying (Smooth) with parameters (2, L)
and (Sharp) with parameters (r, µ) on a set K. Assume that we are given x0 ∈ Rn such that
{x| f(x) ≤ f(x0)} ⊂ K. Run Algorithm 1 from x0 with iteration schedule tk = C∗κ,τe

τk, for
k = 1, . . . , R, where

C∗κ,τ , e1−τ (cκ)
1
2 (f(x0)− f∗)−

τ
2 , (5)
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with κ and τ defined in (2) and c = 4e2/e here. The precision reached at the last point x̂ is given by,

f(x̂)− f∗ ≤ exp
(
−2e−1(cκ)− 1

2N
)
(f(x0)− f∗) = O

(
exp(−κ− 1

2N)
)
, when τ = 0, (6)

while,

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(f(x0)− f∗)

τ
2 (cκ)−

1
2N + 1

) 2
τ

= O
(
N−

2
τ

)
, when τ > 0, (7)

where N =
∑R
k=1 tk is the total number of iterations.

Proof. Our strategy is to choose tk such that the objective is linearly decreasing, i.e.

f (xk)− f∗ ≤ e−γk(f(x0)− f∗), (8)

for some γ ≥ 0 depending on the choice of tk. This directly holds for k = 0 and any γ ≥ 0.
Combining (Sharp) with the complexity bound in (3), we get

f (xk)− f∗ ≤ cκ
t2k
(f (xk−1)− f∗)

2
r ,

where c = 4e2/e using that r2/r ≤ e2/e. Assuming recursively that (8) is satisfied at iteration k − 1
for a given γ, we have

f (xk)− f∗ ≤ cκe−γ
2
r
(k−1)

t2k
(f(x0)− f∗)

2
r ,

and to ensure (8) at iteration k, we impose

cκe−γ
2
r
(k−1)

t2k
(f(x0)− f∗)

2
r ≤ e−γk(f(x0)− f∗).

Rearranging terms in this last inequality, using τ defined in (2), we get

tk ≥ e
γ(1−τ)

2 (cκ)
1
2 (f(x0)− f∗)−

τ
2 e

τγ
2 k. (9)

For a given γ ≥ 0, we can set tk = Ceαk where

C = e
γ(1−τ)

2 (cκ)
1
2 (f(x0)− f∗)−

τ
2 and α = τγ/2, (10)

and Lemma 2.1 then yields,

f(x̂)− f∗ ≤ exp
(
−γe−

γ
2 (cκ)−

1
2N
)
(f(x0)− f∗),

when τ = 0, while

f(x̂)− f∗ ≤ (f(x0)−f∗)(
τ
2 γe

− γ
2 (cκ)−

1
2 (f(x0)−f∗)

τ
2 N+1

) 2
τ
,

when τ > 0. These bounds are minimal for γ = 2, which yields the desired result.

When τ = 0, bound (6) matches the classical complexity bound for smooth strongly convex func-
tions [Nesterov, 2013b]. When τ > 0 on the other hand, bound (7) highlights a much faster
convergence rate than accelerated gradient methods. The sharper the function (i.e. the smaller r), the
faster the convergence. This matches the lower bounds for optimizing smooth and sharp functions
functions [Arjevani and Shamir, 2016; Nemirovskii and Nesterov, 1985, Page 6] up to constant
factors. Also, setting tk = C∗κ,τe

τk yields continuous bounds on precision, i.e. when τ → 0, bound
(7) converges to bound (6), which also shows that for τ near zero, constant restart schemes are almost
optimal.
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2.2 Adaptive scheduled restart

The previous restart schedules depend on the sharpness parameters (r, µ) in (Sharp). In general of
course, these values are neither observed nor known a priori. Making our restart scheme adaptive is
thus crucial to its practical performance. Fortunately, we show below that a simple logarithmic grid
search strategy on these parameters is enough to guarantee nearly optimal performance.

We run several schemes with a fixed number of inner iterations N to perform a log-scale grid search
on τ and κ. We define these schemes as follows.{

Si,0 : Algorithm 1 with tk = Ci,
Si,j : Algorithm 1 with tk = Cie

τjk, (11)

where Ci = 2i and τj = 2−j . We stop these schemes when the total number of inner algorithm
iterations has exceed N , i.e. at the smallest R such that

∑R
k=1 tk ≥ N . The size of the grid search in

Ci is naturally bounded as we cannot restart the algorithm after more than N total inner iterations,
so i ∈ [1, . . . , blog2Nc]. We will also show that when τ is smaller than 1/N , a constant schedule
performs as well as the optimal geometrically increasing schedule, which crucially means we can
also choose j ∈ [1, . . . , dlog2Ne] and limits the cost of grid search. The following result details the
convergence of this method, its notations are the same as in Proposition 2.2 and its technical proof
can be found in Supplementary Material.
Proposition 2.3. Let f be a smooth convex function satisfying (Smooth) with parameters (2, L)
and (Sharp) with parameters (r, µ) on a set K. Assume that we are given x0 ∈ Rn such that
{x| f(x) ≤ f(x0)} ⊂ K and denote N a given number of iterations. Run schemes Si,j defined in
(11) to solve (P) for i ∈ [1, . . . , blog2Nc] and j ∈ [0, . . . , dlog2Ne], stopping each time after N
total inner algorithm iterations i.e. for R such that

∑R
k=1 tk ≥ N .

Assume N is large enough, so N ≥ 2C∗κ,τ , and if 1
N > τ > 0, C∗κ,τ > 1.

If τ = 0, there exists i ∈ [1, . . . , blog2Nc] such that scheme Si,0 achieves a precision given by

f(x̂)− f∗ ≤ exp
(
−e−1(cκ)− 1

2N
)
(f(x0)− f∗).

If τ > 0, there exist i ∈ [1, . . . , blog2Nc] and j ∈ [1, . . . , dlog2Ne] such that scheme Si,j achieves
a precision given by

f(x̂)− f∗ ≤ f(x0)−f∗(
τe−1(cκ)−

1
2 (f(x0)−f∗)

τ
2 (N−1)/4+1

) 2
τ
.

Overall, running the logarithmic grid search has a complexity (log2N)2 times higher than running
N iterations using the optimal (oracle) scheme.

As showed in Supplementary Material, scheduled restart schemes are theoretically efficient only if
the algorithm itself makes a sufficient number of iterations to decrease the objective value. Therefore
we need N large enough to ensure the efficiency of the adaptive method. If τ = 0, we naturally
have C∗κ,0 ≥ 1, therefore if 1

N > τ > 0 and N is large, assuming C∗κ,τ ≈ C∗κ,0, we get C∗κ,τ ≥ 1.
This adaptive bound is similar to the one of Nesterov [2013b] to optimize smooth strongly convex
functions in the sense that we lose approximately a log factor of the condition number of the function.
However our assumptions are weaker and we are able to tackle all regimes of the sharpness property,
i.e. any exponent r ∈ [2,+∞], not just the strongly convex case.

In the supplementary material we also analyze the simple gradient descent method under the sharpness
(Sharp) assumption. It shows that simple gradient descent achieves a O(ε−τ ) complexity for a given
accuracy ε. Therefore restarting accelerated gradient methods reduces complexity to O(ε−τ/2)
compared to simple gradient descent. This result is similar to the acceleration of gradient descent. We
extend now this restart scheme to solve non-smooth or Hölder smooth convex optimization problem
under the sharpness assumption.

3 Universal scheduled restarts for convex problems

In this section, we use the framework introduced by Nesterov [2015] to describe smoothness of a
convex function f , namely, we assume that there exist s ∈ [1, 2] and L > 0 on a set J ⊂ Rn, i.e.

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖s−1, for every x, y ∈ J.
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Without further assumptions on f , the optimal rate of convergence for this class of functions is
bounded as O(1/Nρ), where N is the total number of iterations and

ρ = 3s/2− 1, (12)
which gives ρ = 2 for smooth functions and ρ = 1/2 for non-smooth functions. The universal
fast gradient method [Nesterov, 2015] achieves this rate by requiring only a target accuracy ε and a
starting point x0. It outputs after t iterations a point x , U(x0, ε, t), such that

f(x)− f∗ ≤ ε

2
+
cL

2
s d(x0, X

∗)2

ε
2
s t

2ρ
s

ε

2
, (13)

where c is a constant (c = 2
4s−2
s ). More details about the universal fast gradient method are given in

Supplementary Material.

We will again assume that f is sharp with parameters (r, µ) on a set K ⊇ X∗, i.e.
µ

r
d(x,X∗)r ≤ f(x)− f∗, for every x ∈ K. (Sharp)

As mentioned in Section 1.2, if r > s, smoothness or sharpness are local properties, i.e. either J or
K or both are bounded, our analysis is therefore local. In the following we assume for simplicity,
given an initial point x0, that smoothness and sharpness are satisfied simultaneously on the sublevel
set {x| f(x) ≤ f(x0)}. The key difference with the smooth case described in the previous section is
that here we schedule both the target accuracy εk used by the algorithm and the number of iterations
tk made at the kth run of the algorithm. Our scheme is described in Algorithm 2.

Algorithm 2 Universal scheduled restarts for convex minimization
Inputs : x0 ∈ Rn, ε0 ≥ f(x0)− f∗, γ ≥ 0 and a sequence tk for k = 1, . . . , R.
for k = 1, . . . , R do

εk := e−γεk−1, xk := U(xk−1, εk, tk)
end for
Output : x̂ := xR

Our strategy is to choose a sequence tk that ensures
f(xk)− f∗ ≤ εk,

for the geometrically decreasing sequence εk. The overall complexity of our method will then depend
on the growth of tk as described in Lemma 2.1. The proof is similar to the smooth case and can be
found in Supplementary Material.
Proposition 3.1. Let f be a convex function satisfying (Smooth) with parameters (s, L) on a set J and
(Sharp) with parameters (r, µ) on a set K. Given x0 ∈ Rn assume that {x|f(x) ≤ f(x0)} ⊂ J ∩K.
Run Algorithm 2 from x0 for a given ε0 ≥ f(x0)− f∗ with

γ = ρ, tk = C∗κ,τ,ρe
τk, where C∗κ,τ,ρ , e1−τ (cκ)

s
2ρ ε
− τρ
0

where ρ is defined in (12), κ and τ are defined in (2) and c = 8e2/e here. The precision reached at
the last point x̂ is given by,

f(x̂)− f∗ ≤ exp
(
−ρe−1(cκ)−

s
2ρN

)
ε0 = O

(
exp(−κ−

s
2ρN)

)
, when τ = 0,

while,

f(x̂)− f∗ ≤ ε0(
τe−1(cκ)−

s
2ρ ε

τ
ρ

0 N + 1
)− ρτ = O

(
κ
s
2τN−

ρ
τ

)
, when τ > 0,

where N =
∑R
k=1 tk is total number of iterations.

This bound matches the lower bounds for optimizing smooth and sharp functions [Nemirovskii and
Nesterov, 1985, Page 6] up to constant factors. Notice that, compared to Nemirovskii and Nesterov
[1985], we can tackle non-smooth convex optimization by using the universal fast gradient algorithm
of Nesterov [2015]. The rate of convergence in Proposition 3.1 is controlled by the ratio between τ
and ρ. If these are unknown, a log-scale grid search won’t be able to reach the optimal rate, even if ρ
is known since we will miss the optimal rate by a constant factor. If both are known, in the case of
non-smooth strongly convex functions for example, a grid-search on C recovers nearly the optimal
bound. Now we will see that if f∗ is known, restart produces adaptive optimal rates.
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4 Restart with termination criterion

Here, we assume that we know the optimum f∗ of (P), or have an exact termination criterion. This is
the case for example in zero-sum matrix games problems or non-degenerate least-squares without
regularization. We assume again that f satisfies (Smooth) with parameters (s, L) on a set J and
(Sharp) with parameters (r, µ) on a set K. Given an initial point x0 we assume that smoothness and
sharpness are satisfied simultaneously on the sublevel set {x| f(x) ≤ f(x0)}. We use again the
universal gradient method U . Here however, we can stop the algorithm when it reaches the target
accuracy as we know the optimum f∗, i.e. we stop after tε inner iterations such that x = U(x0, ε, tε)
satisfies f(x)− f∗ ≤ ε, and write x , C(x0, ε) the output of this method.

Here we simply restart this method and decrease the target accuracy by a constant factor after each
restart. Our scheme is described in Algorithm 3.

Algorithm 3 Restart on criterion
Inputs : x0 ∈ Rn, f∗, γ ≥ 0, ε0 = f(x0)− f∗
for k = 1, . . . , R do

εk := e−γεk−1, xk := C(xk−1, εk)
end for
Output : x̂ := xR

The following result describes the convergence of this method. It relies on the idea that it cannot do
more iterations than the best scheduled restart to achieve the target accuracy at each iteration. Its
proof can be found in Supplementary Material.
Proposition 4.1. Let f be a convex function satisfying (Smooth) with parameters (s, L) on a set J
and (Sharp) with parameters (r, µ) on a set K. Given x0 ∈ Rn assume that {x, f(x) ≤ f(x0)} ⊂
J ∩K. Run Algorithm 3 from x0 with parameter γ = ρ. The precision reached at the last point x̂ is
given by,

f(x̂)− f∗ ≤ exp
(
−ρe−1(cκ)−

s
2ρN

)
(f(x0)− f∗) = O

(
exp(−κ−

s
2ρN)

)
, when τ = 0,

while,

f(x̂)− f∗ ≤ f(x0)− f∗(
τe−1(cκ)−

s
2ρ (f(x0)− f∗)

τ
ρN + 1

) ρ
τ

= O
(
κ
s
2τN−

ρ
τ

)
, when τ > 0,

whereN is the total number of iterations, ρ is defined in (12), κ and τ are defined in (2) and c = 8e2/e

here.

Therefore if f∗ is known, this method is adaptive, contrary to the general case in Proposition 3.1.
It can even adapt to the local values of L or µ as we use a criterion instead of a preset schedule.
Here, stopping using f(xk) − f∗ implicitly yields optimal choices of C and τ . A closer look at
the proof shows that the dependency in γ of this restart scheme is a factor h(γ) = γe−γ/ρ of
the number of iterations. Taking γ = 1, leads then to a suboptimal constant factor of at most
h(ρ)/h(1) ≤ e/2 ≈ 1.3 for ρ ∈ [1/2, 2], so running this scheme with γ = 1 makes it parameter-free
while getting nearly optimal bounds.

5 Numerical Results

We illustrate our results by testing our adaptive restart methods, denoted Adap and Crit, introduced
respectively in Sections 2.2 and 4 on several problems and compare them against simple gradient
descent (Grad), accelerated gradient methods (Acc), and the restart heuristic enforcing monotonicity
(Mono in [O’Donoghue and Candes, 2015]). For Adap we plot the convergence of the best method
found by grid search to compare with the restart heuristic. This implicitly assumes that the grid
search is run in parallel with enough servers. For Crit we use the optimal f∗ found by another solver.
This gives an overview of its performance in order to potentially approximate it along the iterations
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in a future work as done with Polyak steps [Polyak, 1987]. All restart schemes were done using the
accelerated gradient with backtracking line search detailed in the Supplementary Material, with large
dots representing restart iterations.

The results focused on unconstrained problems but our approach can directly be extended to composite
problems by using the proximal variant of the gradient, accelerated gradient and universal fast gradient
methods [Nesterov, 2015] as detailed in the Supplementary Material. This includes constrained
optimization as a particular case by adding the indicator function of the constraint set to the objective
(as in the SVM example below).

In Figure 1, we solve classification problems with various losses on the UCI Sonar data set [Asuncion
and Newman, 2007]. For least square loss on sonar data set, we observe much faster convergence
of the restart schemes compared to the accelerated method. These results were already observed by
O’Donoghue and Candes [2015]. For logistic loss, we observe that restart does not provide much
improvement. The backtracking line search on the Lipschitz constant may be sufficient to capture
the geometry of the problem. For hinge loss, we regularized by a squared norm and optimize the
dual, which means solving a quadratic problem with box constraints. We observe here that the
scheduled restart scheme convergences much faster, while restart heuristics may be activated too
late. We observe similar results for the LASSO problem. In general Crit ensures the theoretical
accelerated rate but Adap exhibits more consistent behavior. This highlights the benefits of a sharpness
assumption for these last two problems. Precisely quantifying sharpness from data/problem structure
is a key open problem.
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Figure 1: From left to right: least square loss, logistic loss, dual SVM problem and LASSO. We use
adaptive restarts (Adap), gradient descent (Grad), accelerated gradient (Acc) and restart heuristic
enforcing monotonicity (Mono). Large dots represent the restart iterations. Regularization parameters
for dual SVM and LASSO were set to one.
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