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Abstract

Exponential family distributions are highly useful in machine learning since their
calculation can be performed efficiently through natural parameters. The exponen-
tial family has recently been extended to the t-exponential family, which contains
Student-t distributions as family members and thus allows us to handle noisy data
well. However, since the t-exponential family is defined by the deformed exponen-
tial, an efficient learning algorithm for the t-exponential family such as expectation
propagation (EP) cannot be derived in the same way as the ordinary exponential
family. In this paper, we borrow the mathematical tools of q-algebra from statisti-
cal physics and show that the pseudo additivity of distributions allows us to perform
calculation of t-exponential family distributions through natural parameters. We
then develop an expectation propagation (EP) algorithm for the t-exponential fam-
ily, which provides a deterministic approximation to the posterior or predictive
distribution with simple moment matching. We finally apply the proposed EP
algorithm to the Bayes point machine and Student-t process classification, and
demonstrate their performance numerically.

1 Introduction

Exponential family distributions play an important role in machine learning, due to the fact that their
calculation can be performed efficiently and analytically through natural parameters or expected
sufficient statistics [1]. This property is particularly useful in the Bayesian framework since a
conjugate prior always exists for an exponential family likelihood and the prior and posterior are
often in the same exponential family. Moreover, parameters of the posterior distribution can be
evaluated only through natural parameters.
As exponential family members, Gaussian distributions are most commonly used because their
moments, conditional distribution, and joint distribution can be computed analytically. Gaussian
processes are a typical Bayesian method based on Gaussian distributions, which are used for various
purposes such as regression, classification, and optimization [8]. However, Gaussian distributions are
sensitive to outliers and heavier-tailed distributions are often more preferred in practice. For example,
Student-t distributions and Student-t processes are good alternatives to Gaussian distributions [4]
and Gaussian processes [10], respectively.
A technical problem of the Student-t distribution is that it does not belong to the exponential family
unlike the Gaussian distribution and thus cannot enjoy good properties of the exponential family. To
cope with this problem, the exponential family was recently generalized to the t-exponential family [3],
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which contains Student-t distributions as family members. Following this line, the Kullback-Leibler
divergence was generalized to the t-divergence, and approximation methods based on t-divergence
minimization have been explored [2]. However, the t-exponential family does not allow us to employ
standard useful mathematical tricks, e.g., logarithmic transformation does not reduce the product of t-
exponential family functions into summation. For this reason, the t-exponential family unfortunately
does not inherit an important property of the original exponential family, that is, calculation can be
performed through natural parameters. Furthermore, while the dimensionality of sufficient statistics
is the same as that of the natural parameters in the exponential family and thus there is no need to
increase the parameter size to incorporate new information [9], this useful property does not hold in
the t-exponential family.
The purpose of this paper is to further explore mathematical properties of natural parameters of the
t-exponential family through pseudo additivity of distributions based on q-algebra used in statistical
physics [7, 11]. More specifically, our contributions in this paper are three-fold:
1. We show that, in the same way as ordinary exponential family distributions, q-algebra allows us
to handle the calculation of t-exponential family distributions through natural parameters.
2. Our q-algebra based method enables us to extend assumed density filtering (ADF) [2] and develop
an algorithm of expectation propagation (EP) [6] for the t-exponential family. In the same way as
the original EP algorithm for ordinary exponential family distributions, our EP algorithm provides
a deterministic approximation to the posterior or predictive distribution for t-exponential family
distributions with simple moment matching.
3. We apply the proposed EP algorithm to the Bayes point machine [6] and Student-t process classifi-
cation, and we demonstrate their usefulness as alternatives to the Gaussian approaches numerically.

2 t-exponential Family

In this section, we review the t-exponential family [3, 2], which is a generalization of the exponential
family.
The t-exponential family is defined as,

p(x; θ) = expt(⟨Φ(x), θ⟩ − gt(θ)), (1)
where expt(x) is the deformed exponential function defined as

expt(x) =

{
exp(x) if t = 1,

[1 + (1− t)x]
1

1−t otherwise,
(2)

and gt(θ) is the log-partition function that satisfies
∇θgt(θ) = Epes [Φ(x)]. (3)

The notation Epes denotes the expectation over pes(x), where pes(x) is the escort distribution of p(x)
defined as

pes(x) =
p(x)t∫
p(x)tdx

. (4)

We call θ a natural parameter and Φ(x) sufficient statistics.
Let us express the k-dimensional Student-t distribution with v degrees of freedom as

St(x; v, µ,Σ) =
Γ((v + k)/2)

(πv)k/2Γ(v/2)|Σ|1/2

(
1 + (x− µ)⊤(vΣ)−1(x− µ)

)− v+k
2

, (5)

where Γ(x) is the gamma function, |A| is the determinant of matrix A, and A⊤ is the transpose of
matrix A. We can confirm that the Student-t distribution is a member of the t-exponential family as
follows. First, we have

St(x; v, µ,Σ) =
(
Ψ+Ψ · (x− µ)⊤(vΣ)−1(x− µ)

) 1
1−t , (6)

where Ψ =

(
Γ((v + k)/2)

(πv)k/2Γ(v/2)|Σ|1/2

)1−t

. (7)
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Note that relation −(v + k)/2 = 1/(1− t) holds, from which we have

⟨Φ(x), θ⟩ =

(
Ψ

1− t

)
(x⊤Kx− 2µ⊤Kx), (8)

gt(θ) = −

(
Ψ

1− t

)
(µ⊤Kµ+ 1) +

1

1− t
, (9)

whereK = (vΣ)−1. Then, we can express the Student-t distribution as a member of the t-exponential
family as:

St(x; v, µ,Σ) =
(
1 + (1− t)⟨Φ(x), θ⟩ − gt(θ)

) 1
1−t = expt

(
⟨Φ(x), θ⟩ − gt(θ)

)
. (10)

If t = 1, the deformed exponential function is reduced to the ordinary exponential function, and
therefore the t-exponential family is reduced to the ordinary exponential family, which corresponds
to the Student-t distribution with infinite degrees of freedom. For t-exponential family distributions,
the t-divergence is defined as follows [2]:

Dt(p∥p̃) =
∫ (

pes(x) lnt p(x)− pes(x) lnt p̃(x)
)
dx, (11)

where lnt x := x1−t−1
1−t (x ≥ 0, t ∈ R+) and pes(x) is the escort function of p(x).

3 Assumed Density Filtering and Expectation Propagation

We briefly review the assumed density filtering (ADF) and expectation propagation (EP) [6].
Let D = {(x1, y1), . . . , (xi, yi)} be input-output paired data. We denote the likelihood for the i-th
data as li(w) and the prior distribution of parameter w as p0(w). The total likelihood is given as∏

i li(w) and the posterior distribution can be expressed as p(w|D) ∝ p0(w)
∏

i li(w).

3.1 Assumed Density Filtering

ADF is an online approximation method for the posterior distribution.
Suppose that i − 1 samples (x1, y1), . . . , (xi−1, yi−1) have already been processed and an approx-
imation to the posterior distribution, p̃i−1(w), has already been obtained. Given the i-th sample
(xi, yi), the posterior distribution pi(w) can be obtained as

pi(w) ∝ p̃i−1(w)li(w). (12)

Since the true posterior distribution pi(w) cannot be obtained analytically, it is approximated in ADF
by minimizing the Kullback-Leibler (KL) divergence from pi(w) to its approximation:

p̃i = arg min
p̃

KL(pi∥p̃). (13)

Note that if pi and p̃ are both exponential family members, the above calculation is reduced to
moment matching.

3.2 Expectation Propagation

Although ADF is an effective method for online learning, it is not favorable for non-online situations,
because the approximation quality depends heavily on the permutation of data [6]. To overcome this
problem, EP was proposed [6].
In EP, an approximation of the posterior that contains whole data terms is prepared beforehand,
typically as a product of data-corresponding terms:

p̃(w) =
1

Z

∏
i

l̃i(w), (14)
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where Z is the normalizing constant. In the above expression, factor l̃i(w), which is often called
a site approximation [9], corresponds to the local likelihood li(w). If each l̃i(w) is an exponential
family member, the total approximation also belongs to the exponential family.
Differently from ADF, EP has these site approximation with the following four steps, which is
iteratively updated. First, when we update site l̃j(w), we eliminate the effect of site j from the total
approximation as

p̃\j(w) =
p̃(w)

l̃j(w)
, (15)

where p̃\j(w) is often called a cavity distribution [9]. If an exponential family distribution is used, the
above calculation is reduced to subtraction of natural parameters. Second, we incorporate likelihood
lj(w) by minimizing the divergence KL(p̃\j(w)lj(w)/Z

\j∥p̃(w)), where Z\j is the normalizing
constant. Note that this minimization is reduced to moment matching for the exponential family.
After this step, we obtain p̃(w). Third, we exclude the effect of terms other than j, which is equivalent
to calculating a cavity distribution as l̃j(w)new ∝ p̃(w)

p̃\j(w)
. Finally, we update the site approximation

by replacing l̃j(w) by l̃j(w)
new.

Note again that calculation of EP is reduced to addition or subtraction of natural parameters for the
exponential family.

3.3 ADF for t-exponential Family

ADF for the t-exponential family was proposed in [2], which uses the t-divergence instead of the KL
divergence:

p̃ = arg min
p′

Dt(p∥p′) =
∫ (

pes(x) lnt p(x)− pes(x) lnt p
′(x; θ)

)
dx. (16)

When an approximate distribution is chosen from the t-exponential family, we can utilize the property
∇θgt(θ) = Ep̃es(Φ(x)), where p̃es is the escort function of p̃(x). Then, minimization of the
t-divergence yields

Epes [Φ(x)] = Ep̃es [Φ(x)]. (17)

This is moment matching, which is a celebrated property of the exponential family. Since the
expectation is taken with respect to the escort function, this is called escort moment matching.
As an example, let us consider the situation where the prior is the Student-t distribution and the
posterior is approximated by the Student-t distribution: p(w|D) ∼= p̃(w) = St(w; µ̃, Σ̃, v). Then the
approximated posterior p̃i(w) = St(w; µ̃(i), Σ̃i, v) can be obtained by minimizing the t-divergence
from pi(w) ∝ p̃i−1(w)l̃i(w) as

arg min
µ′,Σ′

Dt(pi(w)∥St(w;µ′,Σ′, v)). (18)

This allows us to obtain an analytical update expression for t-exponential family distributions.

4 Expectation Propagation for t-exponential Family

As shown in the previous section, ADF has been extended to EP (which resulted in moment matching
for the exponential family) and to the t-exponential family (which yielded escort moment matching
for the t-exponential family). In this section, we combine these two extensions and propose EP for
the t-exponential family.

4.1 Pseudo Additivity and q-Algebra

Differently from ordinary exponential functions, deformed exponential functions do not satisfy the
product rule:

expt(x) expt(y) ̸= expt(x+ y). (19)
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For this reason, the cavity distribution cannot be computed analytically for the t-exponential family.
On the other hand, the following equality holds for the deformed exponential functions:

expt(x) expt(y) = expt(x+ y + (1− t)xy), (20)
which is called pseudo additivity.
In statistical physics [7, 11], a special algebra called q-algebra has been developed to handle a system
with pseudo additivity. We will use the q-algebra for efficiently handling t-exponential distributions.

Definition 1 (q-product) Operation ⊗q called the q-product is defined as

x⊗q y :=

{
[x1−q + y1−q − 1]

1
1−q if x > 0, y > 0, x1−q + y1−q − 1 > 0,

0 otherwise.
(21)

Definition 2 (q-division) Operation ⊘q called the q-division is defined as

x⊘q y :=

{
[x1−q − y1−q − 1]

1
1−q if x > 0, y > 0, x1−q − y1−q − 1 > 0,

0 otherwise.
(22)

Definition 3 (q-logarithm) The q-logarithm is defined as

lnq x :=
x1−q − 1

1− q
(x ≥ 0, q ∈ R+). (23)

The q-division is the inverse of the q-product (and visa versa), and the q-logarithm is the inverse of
the q-exponential (and visa versa). From the above definitions, the q-logarithm and q-exponential
satisfy the following relations:

lnq(x⊗q y) = lnq x+ lnq y, (24)
expq(x)⊗q expq(y) = expq(x+ y), (25)

which are called the q-product rules. Also for the q-division, similar properties hold:
lnq(x⊘q y) = lnq x− lnq y, (26)

expq(x)⊘q expq(y) = expq(x− y), (27)
which are called the q-division rules.

4.2 EP for t-exponential Family

The q-algebra allows us to recover many useful properties from the ordinary exponential family. For
example, the q-product of t-exponential family distributions yields an unnormalized t-exponential
distribution:

expt(⟨Φ(x), θ1⟩ − gt(θ1))⊗t expt(⟨Φ(x), θ2⟩ − gt(θ2))

= expt(⟨Φ(x), (θ1 + θ2)⟩ − g̃t(θ1, θ2)). (28)

Based on this q-product rule, we develop EP for the t-exponential family.

Consider the situation where prior distribution p(0)(w) is a member of the t-exponential family. As
an approximation to the posterior, we choose a t-exponential family distribution

p̃(w; θ) = expt(⟨Φ(w), θ⟩ − gt(θ)). (29)
In the original EP for the ordinary exponential family, we considered an approximate posterior of the
form

p̃(w) ∝ p(0)(w)
∏
i

l̃i(w), (30)

that is, we factorized the posterior to a product of site approximations corresponding to data. On the
other hand, in the case of the t-exponential family, we propose to use the following form called the
t-factorization:

p̃(w) ∝ p(0)(w)⊗t

∏
i

⊗t l̃i(w). (31)
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The t-factorization is reduced to the original factorization form when t = 1.
This t-factorization enables us to calculate EP update rules through natural parameters for the t-
exponential family in the same way as the ordinary exponential family. More specifically, consider
the case where factor j of the t-factorization is updated in four steps in the same way as original EP.
(I) First, we calculate the cavity distribution by using the q-division as

p̃\j(w) ∝ p̃(w)⊘t l̃j(w) ∝ p(0)(w)⊗t

∏
i ̸=j

⊗t l̃i(w). (32)

The above calculation is reduced to subtraction of natural parameters by using the q-algebra rules:

θ\j = θ − θ(j). (33)

(II) The second step is inclusion of site likelihood lj(w), which can be performed by p̃\j(w)lj(w).
The site likelihood lj(w) is incorporated to approximate the posterior by the ordinary product not the
q-product. Thus moment matching is performed to obtain a new approximation. For this purpose,
the following theorem is useful.

Theorem 1 The expected sufficient statistic,

η = ∇θgt(θ) = Ep̃es [Φ(w)], (34)

can be derived as

η = η\j +
1

Z2
∇θ\jZ1, (35)

where Z1 =

∫
p̃\j(w)(lj(w))

tdw, Z2 =

∫
p̃es

\j
(w)(lj(w))

tdw. (36)

A proof of Theorem 1 is given in Appendix A of the supplementary material. After moment matching,
we obtain an approximation, p̃new(w).
(III) Third, we exclude the effect of sites other than j. This is achieved by

l̃newj (w) ∝ p̃new(w)⊘t p̃
\j(w), (37)

which is reduced to subtraction of natural parameter

θ\jnew = θnew − θ\j . (38)

(IV) Finally, we update the site approximation by replacing l̃j(w) with l̃j(w)
new.

These four steps are our proposed EP method for the t-exponential family. As we have seen, these
steps are reduced to the ordinary EP steps if t = 1. Thus, the proposed method can be regarded as
an extention of the original EP to the t-exponential family.

4.3 Marginal Likelihood for t-exponential Family

In the above, we omitted the normalization term of the site approximation to simplify the derivation.
Here, we derive the marginal likelihood, which requires us to explicitly take into account the
normalization term C̃i:

l̃i(w|C̃i, µ̃i, σ̃
2
i ) = C̃i ⊗t expt(⟨Φ(w), θ⟩). (39)

We assume that this normalizer corresponds to Z1, which is the same assumption as that for the
ordinary EP. To calculate Z1, we use the following theorem (its proof is available in Appendix B of
the supplementary material):

Theorem 2 For the Student-t distribution, we have∫
expt(⟨Φ(w), θ⟩ − g)dw =

(
expt(gt(θ)/Ψ− g/Ψ)

) 3−t
2

, (40)

where g is a constant, g(θ) is the log-partition function and Ψ is defined in (7).
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Figure 1: Boundaries obtained by ADF (left two, with different sample orders) and EP (right).

This theorem yields

logt Z
2

3−t

1 = gt(θ)/Ψ− g
\j
t (θ)/Ψ+ logt C̃j/Ψ, (41)

and therefore the marginal likelihood can be calculated as follows (see Appendix C for details):

ZEP =

∫
p(0)(w)⊗t

∏
i

⊗t l̃i(w)dw

=

(
expt

(∑
i

logt C̃i/Ψ+ gt(θ)/Ψ− gpriort (θ)/Ψ
)) 3−t

2

. (42)

By substituting C̃i in Eq.(42), we obtain the marginal likelihood. Note that, if t = 1, the above
expression of ZEP is reduced to the ordinary marginal likelihood expression [9]. Therefore, this
marginal likelihood can be regarded as a generalization of the ordinary exponential family marginal
likelihood to the t-exponential family.
In Appendices D and E of the supplementary material, we derive specific EP algorithms for the
Bayes point machine (BPM) and Student-t process classification.

5 Numerical Experiments

In this section, we numerically illustrate the behavior of our proposed EP applied to BPM and Student-
t process classification. Suppose that data (x1, y1), . . . , (xn, yn) are given, where yi ∈ {+1,−1}
expresses a class label for covariate xi. We consider a model whose likelihood term can be expressed
as

li(w) = p(yi|xi, w) = ϵ+ (1− 2ϵ)Θ(yi⟨w, xi⟩), (43)

where Θ(x) is the step function taking 1 if x > 0 and 0 otherwise.

5.1 BPM

We compare EP and ADF to confirm that EP does not depend on data permutation. We gen-
erate a toy dataset in the following way: 1000 data points x are generated from Gaussian mix-
ture model 0.05N(x; [1, 1]⊤, 0.05I) + 0.25N(x; [−1, 1]⊤, 0.05I) + 0.45N(x; [−1,−1]⊤, 0.05I) +
0.25N(x; [1,−1]⊤, 0.05I), where N(x;µ,Σ) denotes the Gaussian density with respect to x with
mean µ and covariance matrix Σ, and I is the identity matrix. For x, we assign label y = +1 when
x comes from N(x; [1, 1]⊤, 0.05I) or N(x; [1,−1]⊤, 0.05I) and label y = −1 when x comes from
N(x; [−1, 1]⊤, 0.05I) or N(x; [−1,−1]⊤, 0.05I). We evaluate the dependence of the performance
of BPM (see Appendix D of the supplementary material for details) on data permutation.
Fig.1 shows labeled samples by blue and red points, decision boundaries by black lines which are
derived from ADF and EP for the Student-t distribution with v = 10 by changing data permutations.
The top two graphs show obvious dependence on data permutation by ADF (to clarify the dependence
on data permutation, we showed the most different boundary in the figure), while the bottom graph
exhibits almost no dependence on data permutations by EP.
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Figure 2: Classification boundaries.

5.2 Student-t Process Classification

We compare the robustness of Student-t process classification (STC) and Gaussian process classifi-
cation (GPC) visually.
We apply our EP method to Student-t process binary classification, where the latent function follows
the Student-t process (see Appendix E of the supplementary material for details). We compare this
model with Gaussian process binary classification with the likelihood expressed Eq.(43). This kind
of model is called robust Gaussian process classification [5]. Since the posterior distribution cannot
be obtained analytically even for the Gaussian process, we use EP for the ordinary exponential family
to approximate the posterior.
We use a two-dimensional toy dataset, where we generate a two-dimensional data point xi

(i = 1, . . . , 300) following the normal distributions: p(x|yi = +1) = N(x; [1.5, 1.5]⊤, 0.5I)
and p(x|yi = −1) = N(x; [−1,−1]⊤, 0.5I). We add eight outliers to the dataset and evaluate the
robustness against outliers (about 3% outliers). In the experiment, we used v = 10 for Student-t
processes. We furthermore used the following kernel:

k(xi, xj) = θ0 exp

{
−

D∑
d=1

θd1(x
d
i − xd

j )
2

}
+ θ2 + θ3δi,j , (44)

where xd
i is the dth element of xi, and θ0, θ1, θ2, θ3 are hyperparameters to be optimized.

Fig.2 shows the labeled samples by blue and red points, the obtained decision boundaries by black
lines, and added outliers by blue and red stars. As we can see, the decision boundaries obtained by
the Gaussian process classifier is heavily affected by outliers, while those obtained by the Student-t
process classifier are more stable. Thus, as expected, Student-t process classification is more robust
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Table 1: Classification Error Rates (%)

Dataset Outliers GPC STC
Pima 0 34.0(3.0) 32.3(2.6)

5% 34.9(3.1) 32.9(3.1)
10% 36.2(3.3) 34.4(3.5)

Ionosphere 0 9.6(1.7) 7.5(2.0)
5% 9.9(2.8) 9.6(3.2)
10% 13.0(5.2) 11.9(5.4)

Thyroid 0 4.3(1.3) 4.4(1.3)
5% 4.8(1.8) 5.5(2.3)
10% 5.4(1.4) 7.2(3.4)

Sonar 0 15.4(3.6) 15.0(3.2)
5% 18.3(4.4) 17.5(3.3)
10% 19.4(3.8) 19.4(3.1)

Table 2: Approximate log evidence

Dataset Outliers GPC STC
Pima 0 -74.1(2.4) -37.1(6.1)

5% -77.8(2.9) -37.2(6.5)
10% -78.6(1.8) -36.8(6.5)

Ionosphere 0 -59.5(5.2) -36.9(7.4)
5% -75.0(3.6) -35.8(7.0)
10% -90.3(5.2) -37.4(7.2)

Thyroid 0 -32.5(1.6) -41.2(4.3)
5% -39.1(2.3) -45.8(5.5)
10% -46.9(1.8) -45.8(4.5)

Sonar 0 -55.8(1.2) -41.6(1.2)
5% -59.4(2.5) -41.3(1.6)
10% -65.8(1.1) -67.8(2.1)

against outliers compared to Gaussian process classification, thanks to the heavy-tailed structure of
the Student-t distribution.

5.3 Experiments on the Benchmark dataset

We compared the performance of Gaussian process and Student-t process classification on the UCI
datasets1. We used the kernel given in Eq.(44). The detailed explanation about experimental settings
are given in Appendix F. Results are shown in Tables 1 and 2, where outliers mean how many
percentages we randomly flip training dataset labels to make additional outliers. As we can see
Student-t process classification outperforms Gaussian process classification in many cases.

6 Conclusions

In this work, we enabled the t-exponential family to inherit the important property of the exponential
family whose calculation can be efficiently performed thorough natural parameters by using the
q-algebra. With this natural parameter based calculation, we developed EP for the t-exponential
family by introducing the t-factorization approach. The key concept of our proposed approach is that
the t-exponential family has pseudo additivity. When t = 1, our proposed EP for the t-exponential
family is reduced to the original EP for the ordinary exponential family and t-factorization yields
the ordinary data-dependent factorization. Therefore, our proposed EP method can be viewed as a
generalization of the original EP. Through illustrative experiments, we confirmed that our proposed
EP applied to the Bayes point machine can overcome the drawback of ADF, i.e., the proposed EP
method is independent of data permutations. We also experimentally illustrated that proposed EP
applied to Student-t process classification exhibited high robustness to outliers compared to Gaussian
process classification. Experiments on benchmark data also demonstrated superiority of Student-t
process.
In our future work, we will further extend the proposed EP method to more general message passing
methods or double-loop EP. We would like also to make our method more scalable to large datasets
and develop another approximation method such as variational inference.
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