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Abstract

We present an efficient and practical algorithm for the online prediction of
discrete-time linear dynamical systems with a symmetric transition matrix. We
circumvent the non-convex optimization problem using improper learning: care-
fully overparameterize the class of LDSs by a polylogarithmic factor, in exchange
for convexity of the loss functions. From this arises a polynomial-time algorithm
with a near-optimal regret guarantee, with an analogous sample complexity bound
for agnostic learning. Our algorithm is based on a novel filtering technique, which
may be of independent interest: we convolve the time series with the eigenvectors
of a certain Hankel matrix.

1 Introduction

Linear dynamical systems (LDSs) are a class of state space models which accurately model many
phenomena in nature and engineering, and are applied ubiquitously in time-series analysis, robotics,
econometrics, medicine, and meteorology. In this model, the time evolution of a system is explained
by a linear map on a finite-dimensional hidden state, subject to disturbances from input and noise.
Recent interest has focused on the effectiveness of recurrent neural networks (RNNs), a nonlinear
variant of this idea, for modeling sequences such as audio signals and natural language.

Central to this field of study is the problem of system identification: given some sample trajectories,
output the parameters for an LDS which generalize to predict unseen future data. Viewed directly,
this is a non-convex optimization problem, for which efficient algorithms with theoretical guarantees
are very difficult to obtain. A standard heuristic for this problem is expectation-maximization (EM),
which can find poor local optima in theory and practice.

We consider a different approach: we formulate system identification as an online learning problem,
in which neither the data nor predictions are assumed to arise from an LDS. Furthermore, we slightly
overparameterize the class of predictors, yielding an online convex program amenable to efficient
regret minimization. This carefully chosen relaxation, which is our main theoretical contribution,
expands the dimension of the hypothesis class by only a polylogarithmic factor. This construction
relies upon recent work on the spectral theory of Hankel matrices.

The result is a simple and practical algorithm for time-series prediction, which deviates significantly
from existing methods. We coin the term wave-filtering for our method, in reference to our relax-
ation’s use of convolution by wave-shaped eigenvectors. We present experimental evidence on both
toy data and a physical simulation, showing our method to be competitive in terms of predictive
performance, more stable, and significantly faster than existing algorithms.
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1.1 Our contributions

Consider a discrete-time linear dynamical system with inputs {xt}, outputs {yt}, and a latent state
{ht}, which can all be multi-dimensional. With noise vectors {ηt}, {ξt}, the system’s time evolution
is governed by the following equations:

ht+1 = Aht +Bxt + ηt
yt = Cht +Dxt + ξt.

If the dynamics A,B,C,D are known, then the Kalman filter [Kal60] is known to estimate the
hidden state optimally under Gaussian noise, thereby producing optimal predictions of the system’s
response to any given input. However, this is rarely the case – indeed, real-world systems are seldom
purely linear, and rarely are their evolution matrices known.

We henceforth give a provable, efficient algorithm for the prediction of sequences arising from an
unknown dynamical system as above, in which the matrix A is symmetric. Our main theoretical
contribution is a regret bound for this algorithm, giving nearly-optimal convergence to the lowest
mean squared prediction error (MSE) realizable by a symmetric LDS model:
Theorem 1 (Main regret bound; informal). On an arbitrary sequence {(xt, yt)}Tt=1, Algorithm 1
makes predictions {ŷt}Tt=1 which satisfy

MSE(ŷ1, . . . , ŷT )−MSE(ŷ∗1 , . . . , ŷ
∗
T ) ≤ Õ

(
poly(n,m, d, log T )√

T

)
,

compared to the best predictions {y∗t }Tt=1 by a symmetric LDS, while running in polynomial time.

Note that the signal need not be generated by an LDS, and can even be adversarially chosen. In the
less general batch (statistical) setting, we use the same techniques to obtain an analogous sample
complexity bound for agnostic learning:
Theorem 2 (Batch version; informal). For any choice of ε > 0, given access to an arbitrary dis-
tribution D over training sequences {(xt, yt)}Tt=1, Algorithm 2, run on N i.i.d. sample trajectories
from D, outputs a predictor Θ̂ such that

E
D

[
MSE(Θ̂)−MSE(Θ∗)

]
≤ ε+

Õ (poly(n,m, d, log T, log 1/ε))√
N

,

compared to the best symmetric LDS predictor Θ∗, while running in polynomial time.

Typical regression-based methods require the LDS to be strictly stable, and degrade on ill-
conditioned systems; they depend on a spectral radius parameter 1

1−‖A‖ . Our proposed method
of wave-filtering provably and empirically works even for the hardest case of ‖A‖ = 1. Our al-
gorithm attains the first condition number-independent polynomial guarantees in terms of regret
(equivalently, sample complexity) and running time for the MIMO setting. Interestingly, our algo-
rithms never need to learn the hidden state, and our guarantees can be sharpened to handle the case
when the dimensionality of ht is infinite.

1.2 Related work

The modern setting for LDS arose in the seminal work of Kalman [Kal60], who introduced the
Kalman filter as a recursive least-squares solution for maximum likelihood estimation (MLE) of
Gaussian perturbations to the system. The framework and filtering algorithm have proven to be a
mainstay in control theory and time-series analysis; indeed, the term Kalman filter model is often
used interchangeably with LDS. We refer the reader to the classic survey [Lju98], and the extensive
overview of recent literature in [HMR16].

Ghahramani and Roweis [RG99] suggest using the EM algorithm to learn the parameters of an LDS.
This approach, which directly tackles the non-convex problem, is widely used in practice [Mar10a].
However, it remains a long-standing challenge to characterize the theoretical guarantees afforded by
EM. We find that it is easy to produce cases where EM fails to identify the correct system.

In a recent result of [HMR16], it is shown for the first time that for a restricted class of systems, gra-
dient descent (also widely used in practice, perhaps better known in this setting as backpropagation)

2



guarantees polynomial convergence rates and sample complexity in the batch setting. Their result
applies essentially only to the SISO case (vs. multi-dimensional for us), depends polynomially on
the spectral gap (as opposed to no dependence for us), and requires the signal to be created by an
LDS (vs. arbitrary for us).

2 Preliminaries

2.1 Linear dynamical systems

Many different settings have been considered, in which the definition of an LDS takes on many vari-
ants. We are interested in discrete time-invariant MIMO (multiple input, multiple output) systems
with a finite-dimensional hidden state.1 Formally, our model is given as follows:

Definition 2.1. A linear dynamical system (LDS) is a map from a sequence of input vectors
x1, . . . , xT ∈ Rn to output (response) vectors y1, . . . , yT ∈ Rm of the form

ht+1 = Aht +Bxt + ηt (1)
yt = Cht +Dxt + ξt, (2)

where h0, . . . , hT ∈ Rd is a sequence of hidden states, A,B,C,D are matrices of appropriate
dimension, and ηt ∈ Rd, ξt ∈ Rm are (possibly stochastic) noise vectors.

Unrolling this recursive definition gives the impulse response function, which uniquely determines
the LDS. For notational convenience, for invalid indices t ≤ 0, we define xt, ηt, and ξt to be the
zero vector of appropriate dimension. Then, we have:

yt =

T−1∑
i=1

CAi (Bxt−i + ηt−i) + CAth0 +Dxt + ξt. (3)

We will consider the (discrete) time derivative of the impulse response function, given by expanding
yt−1 − yt by Equation (3). For the rest of this paper, we focus our attention on systems subject to
the following restrictions:

(i) The LDS is Lyapunov stable: ‖A‖2 ≤ 1, where ‖·‖2 denotes the operator (a.k.a. spectral)
norm.

(ii) The transition matrix A is symmetric and positive semidefinite.2

The first assumption is standard: when the hidden state is allowed to blow up exponentially, fine-
grained prediction is futile. In fact, many algorithms only work when ‖A‖ is bounded away from 1,
so that the effect of any particular xt on the hidden state (and thus the output) dissipates exponen-
tially. We do not require this stronger assumption.

We take a moment to justify assumption (ii), and why this class of systems is still expressive and
useful. First, symmetric LDSs constitute a natural class of linearly-observable, linearly-controllable
systems with dissipating hidden states (for example, physical systems with friction or heat diffusion).
Second, this constraint has been used successfully for video classification and tactile recognition
tasks [HSC+16]. Interestingly, though our theorems require symmetric A, our algorithms appear to
tolerate some non-symmetric (and even nonlinear) transitions in practice.

2.2 Sequence prediction as online regret minimization

A natural formulation of system identification is that of online sequence prediction. At each time
step t, an online learner is given an input xt, and must return a predicted output ŷt. Then, the true
response yt is observed, and the predictor suffers a squared-norm loss of ‖yt− ŷt‖2. Over T rounds,
the goal is to predict as accurately as the best LDS in hindsight.

1We assume finite dimension for simplicity of presentation. However, it will be evident that hidden-state
dimension has no role in our algorithm, and shows up as ‖B‖F and ‖C‖F in the regret bound.

2The psd constraint on A can be removed by augmenting the inputs xt with extra coordinates (−1)t(xt).
We omit this for simplicity of presentation.
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Note that the learner is permitted to access the history of observed responses {y1, . . . , yt−1}. Even in
the presence of statistical (non-adversarial) noise, the fixed maximum-likelihood sequence produced
by Θ = (A,B,C,D, h0) will accumulate error linearly as T . Thus, we measure performance
against a more powerful comparator, which fixes LDS parameters Θ, and predicts yt by the previous
response yt−1 plus the derivative of the impulse response function of Θ at time t.

We will exhibit an online algorithm that can compete against the best Θ in this setting. Let
ŷ1, . . . , ŷT be the predictions made by an online learner, and let y∗1 , . . . , y

∗
T be the sequence of

predictions, realized by a chosen setting of LDS parameters Θ, which minimize total squared error.
Then, we define regret by the difference of total squared-error losses:

Regret(T )
def
=

T∑
t=1

‖yt − ŷt‖2 −
T∑
t=1

‖yt − y∗t ‖2.

This setup fits into the standard setting of online convex optimization (in which a sublinear regret
bound implies convergence towards optimal predictions), save for the fact that the loss functions are
non-convex in the system parameters. Also, note that a randomized construction (set all xt = 0,
and let yt be i.i.d. Bernoulli random variables) yields a lower bound3 for any online algorithm:
E [Regret(T )] ≥ Ω(

√
T ).

To quantify regret bounds, we must state our scaling assumptions on the (otherwise adversarial)
input and output sequences. We assume that the inputs are bounded: ‖xt‖2 ≤ Rx. Also, we assume
that the output signal is Lipschitz in time: ‖yt − yt−1‖2 ≤ Ly . The latter assumption exists to
preclude pathological inputs where an online learner is forced to incur arbitrarily large regret. For a
true noiseless LDS, Ly is not too large; see Lemma F.5 in the appendix.

We note that an optimal Õ(
√
T ) regret bound can be trivially achieved in this setting by algorithms

such as Hedge [LW94], using an exponential-sized discretization of all possible LDS parameters;
this is the online equivalent of brute-force grid search. Strikingly, our algorithms achieve essentially
the same regret bound, but run in polynomial time.

2.3 The power of convex relaxations

Much work in system identification, including the EM method, is concerned with explicitly finding
the LDS parameters Θ = (A,B,C,D, h0) which best explain the data. However, it is evident from
Equation 3 that the CAiB terms cause the least-squares (or any other) loss to be non-convex in Θ.
Many methods used in practice, including EM and subspace identification, heuristically estimate
each hidden state ht, after which estimating the parameters becomes a convex linear regression
problem. However, this first step is far from guaranteed to work in theory or practice.

Instead, we follow the paradigm of improper learning: in order to predict sequences as accurately as
the best possible LDS Θ∗ ∈ H, one need not predict strictly from an LDS. The central driver of our
algorithms is the construction of a slightly larger hypothesis class Ĥ, for which the best predictor
Θ̂∗ is nearly as good as Θ∗. Furthermore, we construct Ĥ so that the loss functions are convex under
this new parameterization. From this will follow our efficient online algorithm.

As a warmup example, consider the following overparameterization: pick some time window
τ � T , and let the predictions ŷt be linear in the concatenation [xt, . . . , xt−τ ] ∈ Rτd. When
‖A‖ is bounded away from 1, this is a sound assumption.4 However, in general, this approximation
is doomed to either truncate longer-term input-output dependences (short τ ), or suffer from over-
fitting (long τ ). Our main theorem uses an overparameterization whose approximation factor ε is
independent of ‖A‖, and whose sample complexity scales only as Õ(polylog(T, 1/ε)).

2.4 Low approximate rank of Hankel matrices

Our analysis relies crucially on the spectrum of a certain Hankel matrix, a square matrix whose
anti-diagonal stripes have equal entries (i.e. Hij is a function of i+ j). An important example is the

3This is a standard construction; see, e.g. Theorem 3.2 in [Haz16].
4This assumption is used in autoregressive models; see Section 6 of [HMR16] for a theoretical treatment.
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Hilbert matrix Hn,θ, the n-by-n matrix whose (i, j)-th entry is 1
i+j+θ . For example,

H3,−1 =

[
1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5

]
.

This and related matrices have been studied under various lenses for more than a century: see, e.g.,
[Hil94, Cho83]. A basic fact is that Hn,θ is a positive definite matrix for every n ≥ 1, θ > −2.
The property we are most interested in is that the spectrum of a positive semidefinite Hankel matrix
decays exponentially, a difficult result derived in [BT16] via Zolotarev rational approximations. We
state these technical bounds in Appendix E.

3 The wave-filtering algorithm

Our online algorithm (Algorithm 1) runs online projected gradient descent [Zin03] on the squared
loss ft(Mt)

def
= ‖yt − ŷt(Mt)‖2. Here, each Mt is a matrix specifying a linear map from fea-

turized inputs X̃t to predictions ŷt. Specifically, after choosing a certain bank of k filters {φj},
X̃t ∈ Rnk+2n+m consists of convolutions of the input time series with each φj (scaled by certain
constants), along with xt−1, xt, and yt−1. The number of filters k will turn out to be polylogarithmic
in T .

The filters {φj} and scaling factors {σ1/4
j } are given by the top eigenvectors and eigenvalues of the

Hankel matrix ZT ∈ RT×T , whose entries are given by

Zij :=
2

(i+ j)3 − (i+ j)
.

In the language of Section 2.3, one should think of each Mt as arising from an
Õ(poly(m,n, d, log T ))-dimensional hypothesis class Ĥ, which replaces the original O((m+ n+
d)2)-dimensional class H of LDS parameters (A,B,C,D, h0). Theorem 3 gives the key fact that
Ĥ approximately containsH.

Algorithm 1 Online wave-filtering algorithm for LDS sequence prediction

1: Input: time horizon T , filter parameter k, learning rate η, radius parameter RM .
2: Compute {(σj , φj)}kj=1, the top k eigenpairs of ZT .

3: Initialize M1 ∈ Rm×k′ , where k′ def
= nk + 2n+m.

4: for t = 1, . . . , T do
5: Compute X̃ ∈ Rk′ , with first nk entries X̃(i,j) := σ

1/4
j

∑T−1
u=1 φj(u)xt−u(i), followed by

the 2n+m entries of xt−1, xt, and yt−1.
6: Predict ŷt := MtX̃ .
7: Observe yt. Suffer loss ‖yt − ŷt‖2.
8: Gradient update: Mt+1 ←Mt − 2η(yt − ŷt)⊗ X̃ .
9: if ‖Mt+1‖F ≥ RM then

10: Perform Frobenius norm projection: Mt+1 ← RM

‖Mt+1‖F Mt+1.
11: end if
12: end for

In Section 4, we provide the precise statement and proof of Theorem 1, the main regret bound for
Algorithm 1, with some technical details deferred to the appendix. We also obtain analogous sample
complexity results for batch learning; however, on account of some definitional subtleties, we defer
all discussion of the offline case, including the statement and proof of Theorem 2, to Appendix A.

We make one final interesting note here, from which the name wave-filtering arises: when plotted
coordinate-wise, our filters {φj} look like the vibrational modes of an inhomogeneous spring (see
Figure 1). We provide some insight on this phenomenon (along with some other implementation
concerns) in Appendix B. Succinctly: in the scaling limit, (ZT /‖ZT ‖2)T→∞ commutes with a
certain second-order Sturm-Liouville differential operator D. This allows us to approximate filters
with eigenfunctions of D, using efficient numerical ODE solvers.
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Figure 1: (a) The entries of some typical eigenvectors of Z1000, plotted coordinate-wise. (b) φ27 of
Z1000 (σ27 ≈ 10−16) computed with finite-precision arithmetic, along with a numerical solution to
the ODE in Appendix B.1 with λ = 97. (c) Some very high-order filters, computed using the ODE,
would be difficult to obtain by eigenvector computations.

4 Analysis

We first state the full form of the regret bound achieved by Algorithm 1:5

Theorem 1 (Main). On any sequence {(xt, yt)}Tt=1, Algorithm 1, with a
choice of k = Θ

(
log2 T log(RΘRxLyn)

)
, RM = Θ(R2

Θ

√
k), and η =

Θ((R2
xLy log(RΘRxLyn)n

√
T log4 T )−1), achieves regret

Regret(T ) ≤ O
(
R4

ΘR
2
x Ly log2(RΘRxLyn) · n

√
T log6 T

)
,

competing with LDS predictors (A,B,C,D, h0) with 0 4 A 4 I and ‖B‖F , ‖C‖F , ‖D‖F , ‖h0‖ ≤
RΘ.

Note that the dimensions m, d do not appear explicitly in this bound, though they typically factor
into RΘ. In Section 4.1, we state and prove Theorem 3, the convex relaxation guarantee for the
filters, which may be of independent interest. This allows us to approximate the optimal LDS in
hindsight (the regret comparator) by the loss-minimizing matrix Mt : X̃ 7→ ŷt. In Section 4.2, we
complete the regret analysis using Theorem 3, along with bounds on the diameter and gradient, to
conclude Theorem 1.

Since the batch analogue is less general (and uses the same ideas), we defer discussion of Algo-
rithm 2 and Theorem 2 to Appendix A.

4.1 Approximate convex relaxation via wave filters

Assume for now that h0 = 0; we will remove this at the end, and see that the regret bound is
asymptotically the same. Recall (from Section 2.2) that we measure regret compared to predictions
obtained by adding the derivative of the impulse response function of an LDS Θ to yt−1. Our
approximation theorem states that for any Θ, there is some MΘ ∈ Ĥ which produces approximately
the same predictions. Formally:

Theorem 3 (Spectral convex relaxation for symmetric LDSs). Let {ŷt}Tt=1 be the online predictions
made by an LDS Θ = (A,B,C,D, h0 = 0). Let RΘ = max{‖B‖F , ‖C‖F , ‖D‖F }. Then, for any
ε > 0, with a choice of k = Ω (log T log(RΘRxLynT/ε)), there exists an MΘ ∈ Rm×k′ such that

T∑
t=1

‖MΘX̃t − yt‖2 ≤
T∑
t=1

‖ŷt − yt‖2 + ε.

Here, k′ and X̃t are defined as in Algorithm 1 (noting that X̃t includes the previous ground truth
yt−1).

5Actually, for a slightly tighter proof, we analyze a restriction of the algorithm which does not learn the
portion M (y), instead always choosing the identity matrix for that block.
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Proof. We construct this mapping Θ 7→MΘ explicitly. Write MΘ as the block matrix[
M (1) M (2) · · · M (k) M (x′) M (x) M (y)

]
,

where the blocks’ dimensions are chosen to align with X̃t, the concatenated vector[
σ

1/4
1 (X ∗ φ1)t σ

1/4
2 (X ∗ φ2)t · · · σ

1/4
k (X ∗ φk)t xt−1 xt yt−1

]
,

so that the prediction is the block matrix-vector product

MΘX̃t =

k∑
j=1

σ
1/4
j M (j)(X ∗ φj)t +M (x′)xt−1 +M (x)xt +M (y)yt−1.

Without loss of generality, assume that A is diagonal, with entries {αl}dl=1.6 Let bl be the l-th row
of B, and cl the l-th column of C. Also, we define a continuous family of vectors µ : [0, 1] → RT ,
with entries µ(α)(i) = (αl − 1)αi−1

l . Then, our construction is as follows:

• M (j) =
∑d
l=1 σ

−1/4
j 〈φj , µ(αl)〉 (cl ⊗ bl), for each 1 ≤ j ≤ k.

• M (x′) = −D, M (x) = CB +D, M (y) = Im×m.

Below, we give the main ideas for why this MΘ works, leaving the full proof to Appendix C.

Since M (y) is the identity, the online learner’s task is to predict the differences yt − yt−1 as well as
the derivative Θ, which we write here:

ŷt − yt−1 = (CB +D)xt −Dxt−1 +

T−1∑
i=1

C(Ai −Ai−1)Bxt−i

= (CB +D)xt −Dxt−1 +

T−1∑
i=1

C

(
d∑
l=1

(
αil − αi−1

l

)
el ⊗ el

)
Bxt−i

= (CB +D)xt −Dxt−1 +

d∑
l=1

(cl ⊗ bl)
T−1∑
i=1

µ(αl)(i)xt−i. (4)

Notice that the inner sum is an inner product between each coordinate of the past inputs
(xt, xt−1, . . . , xt−T ) with µ(αl) (or a convolution, viewed across the entire time horizon). The crux
of our proof is that one can approximate µ(α) using a linear combination of the filters {φj}kj=1.
Writing Z := ZT for short, notice that

Z =

∫ 1

0

µ(α)⊗ µ(α) dα,

since the (i, j) entry of the RHS is∫ 1

0

(α− 1)2αi+j−2 dα =
1

i+ j − 1
− 2

i+ j
+

1

i+ j + 1
= Zij .

What follows is a spectral bound for reconstruction error, relying on the low approximate rank of Z:

Lemma 4.1. Choose any α ∈ [0, 1]. Let µ̃(α) be the projection of µ(α) onto the k-dimensional
subspace of RT spanned by {φj}kj=1. Then,

‖µ(α)− µ̃(α)‖2 ≤

√√√√6

T∑
j=k+1

σj ≤ O
(
c
−k/ log T
0

√
log T

)
,

for an absolute constant c0 > 3.4.

6Write the eigendecomposition A = UΛUT . Then, the LDS with parameters (Â, B̂, Ĉ,D, h0) :=

(Λ, BU,UTC,D, h0) makes the same predictions as the original, with Â diagonal.
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By construction of M (j), MΘX̃t replaces each µ(αl) in Equation (4) with its approximation µ̃(αl).
Hence we conclude that

MΘX̃t = yt−1 + (CB +D)xt −Dxt−1 +

d∑
l=1

(cl ⊗ bl)
T−1∑
i=1

µ̃(αl)(i)xt−i

= yt−1 + (ŷt − yt−1) + ζt = ŷt + ζt,

letting {ζt} denote some residual vectors arising from discarding the subspace of dimension T − k.
Theorem 3 follows by showing that these residuals are small, using Lemma 4.1: it turns out that
‖ζt‖ is exponentially small in k/ log T , which implies the theorem.

4.2 From approximate relaxation to low regret

Let Θ∗ ∈ H denote the best LDS predictor, and let MΘ∗ ∈ Ĥ be its image under the map
from Theorem 3, so that total squared error of predictions MΘ∗X̃t is within ε from that of
Θ∗. Notice that the loss functions ft(M)

def
= ‖yt − MX̃t‖2 are quadratic in M , and thus con-

vex. Algorithm 1 runs online gradient descent [Zin03] on these loss functions, with decision set
M def

= {M ∈ Rm×k′
∣∣ ‖M‖F ≤ RM}. Let Dmax := supM,M ′∈M‖M −M ′‖F be the diameter

ofM, and Gmax := supM∈M,X̃‖∇ft(M)‖F be the largest norm of a gradient. We can invoke the
classic regret bound:

Lemma 4.2 (e.g. Thm. 3.1 in [Haz16]). Online gradient descent, using learning rate Dmax

Gmax

√
T

, has
regret

RegretOGD(T )
def
=

T∑
t=1

ft(Mt)− min
M∈M

T∑
t=1

ft(M) ≤ 2GmaxDmax

√
T .

To finish, it remains to show that Dmax and Gmax are small. In particular, since the gradients
contain convolutions of the input by `2 (not `1) unit vectors, special care must be taken to ensure
that these do not grow too quickly. These bounds are shown in Section D.2, giving the correct
regret of Algorithm 1 in comparison with the comparator M∗ ∈ Ĥ. By Theorem 3, M∗ competes
arbitrarily closely with the best LDS in hindsight, concluding the theorem.

Finally, we discuss why it is possible to relax the earlier assumption h0 = 0 on the initial hidden
state. Intuitively, as more of the ground truth responses {yt} are revealed, the largest possible effect
of the initial state decays. Concretely, in Section D.4, we prove that a comparator who chooses a
nonzero h0 can only increase the regret by an additive Õ(log2 T ) in the online setting.

5 Experiments

In this section, to highlight the appeal of our provable method, we exhibit two minimalistic cases
where traditional methods for system identification fail, while ours successfully learns the system.
Finally, we note empirically that our method seems not to degrade in practice on certain well-
behaved nonlinear systems. In each case, we use k = 25 filters, and a regularized follow-the-leader
variant of Algorithm 1 (see Appendix B.2).

5.1 Synthetic systems: two hard cases for EM and SSID

We construct two difficult systems, on which we run either EM or subspace identification7 (SSID),
followed by Kalman filtering to obtain predictions. Note that our method runs significantly (>1000
times) faster than this traditional pipeline.

In the first example (Figure 2(a), left), we have a SISO system (n = m = 1) and d = 2; all xt, ξt,
and ηt are i.i.d. Gaussians, andB> = C = [1 1], D = 0. Most importantly,A = diag ([0.999, 0.5])
is ill-conditioned, so that there are long-term dependences between input and output. Observe that
although EM and SSID both find reasonable guesses for the system’s dynamics, they turns out to be
local optima. Our method learns to predict as well as the best possible LDS.

7Specifically, we use “Deterministic Algorithm 1” from page 52 of [VODM12].
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System 1: ill-conditioned SISO
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System 2: 10-dimensional MIMO
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(a) Two synthetic systems. For clarity, error plots are smoothed by a median filter. Left: Noisy SISO system
with a high condition number; EM and SSID finds a bad local optimum. Right: High-dimensional MIMO
system; other methods fail to learn any reasonable model of the dynamics.
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(b) Forced pendulum, a physical simulation our method learns in practice, despite a lack of theory.

Figure 2: Visualizations of Algorithm 1. All plots: blue = ours, yellow = EM, red = SSID, black = true
responses, green = inputs, dotted lines = “guess the previous output” baseline. Horizontal axis is time.

The second example (Figure 2(a), right) is a MIMO system (with n = m = d = 10), also with
Gaussian noise. The transition matrix A = diag ([0, 0.1, 0.2, . . . , 0.9]) has a diverse spectrum, the
observation matrix C has i.i.d. Gaussian entries, and B = In, D = 0. The inputs xt are random
block impulses. This system identification problem is high-dimensional and non-convex; it is thus
no surprise that EM and SSID consistently fail to converge.

5.2 The forced pendulum: a nonlinear, non-symmetric system

We remark that although our algorithm has provable regret guarantees only for LDSs with symmetric
transition matrices, it appears in experiments to succeed in learning some non-symmetric (even
nonlinear) systems in practice, much like the unscented Kalman filter [WVDM00]. In Figure 2(b),
we provide a typical learning trajectory for a forced pendulum, under Gaussian noise and random
block impulses. Physical systems like this are widely considered in control and robotics, suggesting
possible real-world applicability for our method.

6 Conclusion

We have proposed a novel approach for provably and efficiently learning linear dynamical systems.
Our online wave-filtering algorithm attains near-optimal regret in theory; and experimentally out-
performs traditional system identification in both prediction quality and running time. Furthermore,
we have introduced a “spectral filtering” technique for convex relaxation, which uses convolutions
by eigenvectors of a Hankel matrix. We hope that this theoretical tool will be useful in tackling more
general cases, as well as other non-convex learning problems.
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