State Aware Imitation Learning

Yannick Schroecker Charles Isbell
College of Computing College of Computing
Georgia Institute of Technology Georgia Institute of Technology
yannickschroecker@gatech.edu isbell@cc.gatech.edu
Abstract

Imitation learning is the study of learning how to act given a set of demonstrations
provided by a human expert. It is intuitively apparent that learning to take optimal
actions is a simpler undertaking in situations that are similar to the ones shown by
the teacher. However, imitation learning approaches do not tend to use this insight
directly. In this paper, we introduce State Aware Imitation Learning (SAIL), an
imitation learning algorithm that allows an agent to learn how to remain in states
where it can confidently take the correct action and how to recover if it is lead astray.
Key to this algorithm is a gradient learned using a temporal difference update rule
which leads the agent to prefer states similar to the demonstrated states. We show
that estimating a linear approximation of this gradient yields similar theoretical
guarantees to online temporal difference learning approaches and empirically show
that SAIL can effectively be used for imitation learning in continuous domains
with non-linear function approximators used for both the policy representation and
the gradient estimate.

1 Introduction

One of the foremost challenges in the field of Artificial Intelligence is to program or train an agent
to act intelligently without perfect information and in arbitrary environments. Many avenues have
been explored to derive such agents but one of the most successful and practical approaches has
been to learn how to imitate demonstrations provided by a human teacher. Such imitation learning
approaches provide a natural way for a human expert to program agents and are often combined
with other approaches such as reinforcement learning to narrow the search space and to help find
a near optimal solution. Success stories are numerous in the field of robotics [3] where imitation
learning has long been subject of research but can also be found in software domains with recent
success stories including AlphaGo [23]] which learns to play the game of Go from a database of
expert games before improving further and the benchmark domain of Atari games where imitation
learning combined with reinforcement learning has been shown to significantly improve performance
over pure reinforcement learning approaches [9].

Formally, we define the problem domain as a Markov decision process, i.e. by its states, actions
and unknown Markovian transition probabilities p(s’|s, a) of taking action «a in state s leading to
state s’. Imitation learning aims to find a policy 7(a|s) that dictates the action an agent should take
in any state by learning from a set of demonstrated states Sp and the corresponding demonstrated
actions A p. The likely most straight-forward approach to imitation learning is to employ a supervised
learning algorithm such as neural networks in order to derive a policy, treating the demonstrated
states and actions as training inputs and outputs respectively. However, while this can work well
in practice and has a long history of successes starting with, among other examples, early ventures
into autonomous driving[18], it also violates a key assumption of statistical supervised learning by
having past predictions affect the distribution of inputs seen in the future. It has been shown that
agents trained this way have a tendency to take actions that lead it to states that are dissimilar from

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

any encountered during training and in which the agent is less likely to have an accurate model of
how to act [[18,[19]. Deviations from the demonstrations based on limitations of the learning model
or randomness in the domain are therefore amplified as time progresses. Several approaches exist
that are capable of addressing this problem. Interactive imitation learning methods (e.g. [5, (19, [20])
address this problem directly but require continuing queries to the human teacher which is often not
practical. Inverse Reinforcement Learning (IRL) approaches attempt to learn the objective function
that the demonstrations are optimizing and show better generalization capabilities. However, IRL
approaches often require a model of the domain, can be limited by the representation of the reward
function and are learning a policy indirectly. A consequence of the latter is that small changes to the
learned objective function can lead to large changes in the learned policy.

In this paper we introduce State Aware Imitation Learning (SAIL). SAIL aims to address the
aforementioned problem by explicitly learning to reproduce demonstrated trajectories based on their
states as well as their actions. Intuitively, if an agent trained with SAIL finds itself in a state similar
to a demonstrated state it will prefer actions that are similar to the demonstrated action but it will also
prefer to remain near demonstrated states where the trained policy is more likely to be accurate. An
agent trained with SAIL will thus learn how to recover if it deviates from the demonstrated trajectories.
We achieve this in a principled way by finding the maximum-a-posteriori (MAP) estimate of the
complete trajectory. Thus, our objective is to find a policy which we define to be a parametric
distribution 7y (a|s) using parameters 6. Natural choices would be linear functions or neural networks.
The MAP problem is then given by

argmaxyp(0|Sp, Ap) = argmax, log p(Ap|Sp,) + logp(Spl|d) + log p(h). (1)

Note that this equation differs from the naive supervised approach in which the second term
log p(Spl@) is assumed to be independent from the current policy and is thus irrelevant to the
optimization problem. Maximizing this term leads to the agent actively trying to reproduce states
that are similar to the ones in Sp. It seems natural that additional information about the domain
is necessary in order to learn how to reach these states. In this work, we obtain this information
using unsupervised interactions with the environment. We would like to stress that our approach
does not require further input from the human teacher, any additional measure of optimality, or any
model of the environment. A key component of our algorithm is based on the work of Morimura
et al.[15] who estimate a gradient of the distribution of states observed when following the current
policy using a least squares temporal difference learning approach and use their results to derive an
alternative policy gradient algorithm. We discuss their approach in detail in section [3.1]and extend
the idea to an online temporal difference learning approach in section[3.2] This adaptation gives us
greater flexibility for our choice of function approximator and also provides a natural way to deal
with an additional constraint to the optimization problem which we will introduce below. In section
[3.3] we describe the full SAIL algorithm in detail and show that the estimated gradient can be used
to derive a principled and novel imitation learning approach. We then evaluate our approach on a
tabular domain in section .1| comparing our results to a purely supervised approach to imitation
learning as well as to sample based inverse reinforcement learning. In section 4.2 we show that SAIL
can successfully be applied to learn a neural network policy in a continuous bipedal walker domain
and achieves significant improvements over supervised imitation learning in this domain.

2 Related works

One of the main problems SAIL is trying to address is the problem of remaining close to states
where the agent can act with high confidence. We identify three different classes of imitation
learning algorithms that address this problem either directly or indirectly under different assumptions
and with different limitations. A specialized solution to this problem can be found in the field of
robotics. Imitation learning approaches in robotics often do not aim to learn a full policy using
general function approximators but instead try to predict a trajectory that the robot should follow.
Trajectory representations such as Dynamic Movement Primitives [21]] give the robot a sequence
of states (or its derivatives) which the robot then follows using a given control law. The role of the
control law is to drive the robot towards the demonstrated states which is also a key objective of
SAIL. However, this solution is highly domain specific and a controller needs to be chosen that fits
the task and representation of the state space. It can, for example, be more challenging to use image
based state representations. For a survey of imitation learning methods applied to robotics, see [3].

The second class of algorithms is what we will call iterative imitation learning algorithms. A key
characteristic of these algorithms is that the agent actively queries the expert for demonstrations
in states that it sees when executing its current policy. One of the first approaches in this class is
SEARN[S]]. When applied to Imiteration Learning, SEARN starts by following the experts action
at every step, then iteratively uses the demonstrations collected during the last episode to train a
new policy and collects new episodes by taking actions according to a mixture of all previously
trained policies and the experts actions. Over time SEARN learns to follow its mixture of policies
and stops relying on the expert to decide which actions to take. Ross et al. [19] first proved that
the pure supervised approach to imitation learning can lead to the error rate growing over time.
To alleviate this issue they introduced a similar iterative algorithm called SMILe and proved that
the error rate increases near linearly with respect to the time horizon. Building on this, Ross et
al. introduced DAGGER [20]. DAGGER provides similar theoretical guarantees and empirically
outperforms SMILe by augmenting a single training set during each iteration based on queries to
the expert on the states seen during execution. DAGGER does not require previous policies to be
stored in order to calculate a mixture. Note that while these algorithms are guaranteed to address the
issue of straying too far from demonstrations, they approach the problem from a different direction.
Instead of preferring states on which the agent has demonstrations, the algorithms collects more
demonstrations in states the agent actually sees during execution. This can be effective but requires
additional interaction with the human teacher which is often not cheaply available in practice.

As mentioned above, our approach also shares significant similarities with Inverse Reinforcement
Learning (IRL) approaches [[17]]. IRL methods aim to derive a reward function for which the provided
demonstrations are optimal. This reward function can then be used to compute a complete policy.
Note that the IRL problem is known to be ill-formed as a set of demonstrations can have an infinite
amount of corresponding reward functions. Successful approaches such as Maximum Entropy IRL
(MaxEntIRL) [27] thus attempt to disambiguate between possible reward functions by reasoning
explicitly about the distribution of both states and actions. In fact, Choi and Kim [4]] argue that many
existing IRL methods can be rewritten as finding the MAP estimate for the reward function given the
provided demonstrations using different probabilistic models. This provides a direct link to our work
which maximizes the same objective but with respect to the policy as opposed to the reward function.
A significant downside of many IRL approaches is that they require a model describing the dynamics
of the world. However, sample based approaches exist. Boularias et al. [1] formulate an objective
function similar to MaxEntIRL but find the optimal solution based on samples. Relative Entropy
IRL (RelEntIRL) aims to find a reward function corresponding to a distribution over trajectories
that matches the observed features while remaining within a relative entropy bound to the uniform
distribution. While RelEntIRL can be effective, it is limited to linear reward functions. Few sample
based methods exist that are able to learn non-linear reward functions. Recently, Finn et al. proposed
Guided Cost Learning [6] which optimizes an objective based on MaxEntIRL using importance
sampling and iterative refinement of the sample policy. Refinement is based on optimal control
with learned models and is thus best suited for problems in domains in which such methods have
been shown to work well, e.g. robotic manipulation tasks. A different direction for sample based
IRL has been proposed by Klein et al. who treat the scores of a score-based classifier trained using
the provided demonstration as a value function, i.e. the long-term expected reward, and use these
values to derive a reward function. Structured Classification for IRL (SCIRL) [[13]] uses estimated
feature expectations and linearity of the value function to derive the parameters of a linear reward
function while the more recent Cascaded Supervised IRL (CSI) [14] derives the reward function by
training a Support Vector Machine based on the observed temporal differences. While non-linear
classifiers could be used, the method is dependent on the interpretability of the score as a value
function. Recently, Ho et al.[11] introduced an approach that aims to find a policy that implicitly
maximizes a linear reward function but without the need to explicitly represent such a reward function.
Generative Adversarial Imitation Learning [10] uses a method similar to Generative Adversarial
Networks|[[7] to extend this approach to nonlinear reward functions. The resulting algorithm trains a
discriminator to distinguish between demonstration and sampled trajectory and uses the probability
given by the discriminator as a reward to train a policy using reinforcement learning. The maximum
likelihood approach presented here can be seen as an approximation of minimizing the KL divergence
between the demonstrated states and actions and the reproduction by the learned policy. This can

also be achieved by using the ratio of state-action probabilities W
s)mo(als)
straight-forward transformation of the output of the optimal discriminator[7]]. Note however that this

equality only holds assuming an infinite number of demonstrations. Furthermore note that unlike the

as a reward which is a

gradient network introduced in this paper, the discriminator needs to learn about the distribution of
the expert’s demonstrations.

Finally, we would like to point out the similarities our work shares with meta learning techniques that
learn the gradients (e.g.[[12]) or determine the weight updates (e.g. [22]], [8]) for a neural network.
Similar to these meta learning approaches, we propose to estimate the gradient w.r.t. the policy.
While a complete review of this work is beyond the scope of this paper, we believe that many of the
techniques developed to address challenges in this field can be applicable to our work as well.

3 Approach

SAIL is a gradient ascent based algorithm to finding the true MAP estimate of the policy. A significant
role in estimating the gradient Vg log p(6|Sp, Ap) will be to estimate the gradient of the (stationary)
state distribution induced by following the current policy. We write the stationary state distribution as
d™ (s), assume that the Markov chain is ergodic (i.e. the distribution exists) and review the work
by Morimura et al. [13] on estimating its gradient Vg log d™ (s) in section We outline our own
online adaptation to retrieve this estimate in section [3.2]and use it in order to derive the full SAIL
gradient Vg logp(0|Sp, Ap) in section

3.1 A temporal difference approach to estimating Vy log d” (s)

We first review the work by Morimura et al. [15] who first discovered a relationship between the
gradient V log d™ (s) and value functions as used in the field of reinforcement learning. Morimura
et al. showed that the gradient can be written recursively and decomposed into an infinite sum so that
a corresponding temporal difference loss can be derived.

By definition, the gradient of the stationary state distribution in a state s’ can be written in terms of
prior states s and actions a.

Vd™ (s') = Vg / 0™ (s)mo(als)p(s'|s, a)ds, @)

Using Vg (d™ (s)mg(a|s)p(s'|s,a)) = p(s,a,s)(Vglogd™ (s) + Vglog mg(a|s)) and dividing by
d™ (s') on both sides, we obtain

0= /q(s7a\5’) (Vologd™ (s) + Vglogmy(als) — Vologd™ (s')) ds,a 3)

Where q denotes the reverse transition probabilities. This can be seen as an expected temporal
difference error over the previous state and action where the temporal difference error is defined as

d(s,a,s") = Vglogd™(s) + Vglogmy(als) — Vglogd™ (s’) 4)

In the original work, Morimura et al. derive a least squares estimator for Vg log d™ (s’) based
on minimizing the expected squared temporal difference error as well as a penalty to enforce the
constraint [V logd™ (s)] = 0, ensuring d™ remains a proper probability distribution, and apply it
to policy gradient reinforcement learning. In the following sections we formulate an online update
rule to estimate the gradient, argue convergence in the linear case, and use the estimated gradient to
derive a novel imitation learning algorithm.

3.2 Online temporal difference learning for Vy log d™(s)

In this subsection we define the online temporal difference update rule for SAIL and show that
convergence properties are similar to the case of average reward temporal difference learning[25].
Online temporal difference learning algorithms are computationally more efficient than their least
squares batch counter parts and are essential when using high-dimensional non-linear function
approximations to represent the gradient. We furthermore show that online methods give us a natural
way to enforce the constraint E[Vylogd™ (s)] = 0. We aim to approximate Vy log d™(s) up to
an unknown constant vector ¢ and thus define our target as f*(s) := Vylogd™(s) + ¢. We use a
temporal difference update to learn a parametric approximation f,(s) ~ f*(s). The update rule
based on taking action a in state s and transitioning to state s’ is given by

w1 = Wk + Vo fu(s) (fu(s) + Velogm(als) — fu(s)) .)

Algorithm 1 State Aware Imitation Learning
1: function SAIL(w, ag, o, Sp, Ap)

2: 0 < SupervisedTraining(Sp, Ap)

3: for k < 0..#Iterations do

4: SE, Ag < CollectUnsupervisedEpisode(my))

5: W w+ O‘w|slT\ 2 sa.s cmansitions(S, Ap) (Jw(8) + Valogme(als) — fu(s) Vu f(s'))
6: p— ‘571E|ZS€SE foJ(S)

7: 0 0+ ag (@ 2 s.aepirs(Sp,Ap) (Vologmo(als) + (fu(s) — p)) + Vep(9)>

return 0

Note that if f,, converges to an approximation of f* then due to E[Vglogd™ (s)] = 0, we have
Vologd™(s) =~ f,(s) — E[f.(s)] where the expectation can be estimated based on samples.

While convergence of temporal difference methods is not guaranteed in the general case, some
guarantees can be made in the case of linear function approximation f,,(s) := w” ¢(s)[25]. We note
that [V logm(als)] = 0 and thus for each dimension of 6 the update can be seen as a variation
of average reward temporal difference learning where the scalar reward is replaced by the gradient
vector Vg log 7(a|s) and f,, is bootstrapped based on the previous state as opposed to the next. While
the role of current and next state in this update rule are reversed and this might suggest that updates
should be done in reverse, the convergence results by Tsitsiklis and Van Roy[25] are dependent only
on the limiting distribution of following the sample policy on the domain which remains unchanged
regardless of the ordering of updates [15]]. It is therefore intuitively apparent that the convergence
results still hold and that f,, converges to an approximation of f*. We formalize this notion in
Appendix A.

Introducing a discount factor So far we related the update rule to average reward temporal
difference learning as this was a natural consequence of the assumptions we were making. However, in
practice we found that a formulation analogous to discounted reward temporal difference learning may
work better. While this can be seen as a biased but lower variance approximation to the average reward
problem [26]], a perhaps more satisfying justification can be obtained by reexamining the simplifying
assumption that the sampled states are distributed by the stationary state distribution d™. An
alternative simplifying assumption is that the previous states are distributed by a mixture of the starting
state distribution d(s_1) and the stationary state distribution p(s_1) = (1 — y)do(s—1) +yd™(s-1)
for v € [0, 1]. In this case, equation[3|has to be altered and we have

0= /p(s, als") (Ve logd™ (s) + (1 — v)Valog do(s) + Vg logmg(als) — Vglogd™ (s)) ds, a.

Note that Vg log do(s) = 0 and thus we recover the discounted update rule

w1 = wi +aVe f(s') (7f(s) + Vglogm(als) — f(s)) (6)

3.3 State aware imitation learning

Based on this estimate of Vg logd™ we can now derive the full State Aware Imitation Learning
algorithm. SAIL aims to find the full MAP estimate as defined in Equation [I] via gradient ascent. The
gradient decomposes into three parts:

Vologp(8|Sp, Ap) = Velogp(Ap|Sp,0) + Velogp(Spld) + Ve log p(0) @)

The first and last term make up the gradient used for gradient descent based supervised learning and
can usually be computed analytically. To estimate Vg log p(Sp|6), we disregard information about
the order of states and make the simplifying assumptions that all states are drawn from the stationary
distribution. Under this assumption, we can estimate Vg log p(Sp|0) = > g, Vo logd™ (s) based
on unsupervised transition samples using the approach described in section [3.2] The full SAIL
algorithm thus maintains a current policy as well an estimate of Vg log p(Sp|6) and iteratively

1850
1800 °
- o .
W 1750 | s)
& 1700 — SAIL H % 4.3r — - optimal policy N
qE> 1650 — — — - — - - - — — — _] — - Supervised baseline H o 4.2 - supervised baseline [
o - =)
S 1600 | - Random baseline g 4.1 sAL H
<
1550 | 1 Z 40
1500 b 1 S k
1450 ! ! ! L 38 L L L L
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
lteration Iteration
(a) (b)

Figure 1: a) The sum of probabilities of taking the optimal action double over the baseline. b) The
reward (4+/ — 20) obtained after 5000 iterations of SAIL is much closer to the optimal policy.

1. Collects unsupervised state and action samples S and Ay from the current policy,

2. Updates the gradient estimate using Equation [S|and estimates E[f,,(s)] using the sample
mean of the unsupervised states or an exponentially moving sample mean

1
o= @ Z fu(s)

sESE

3. Updates the current policy using the estimated gradient f,,(s) — p as well as the analytical
gradients for Vy log p(f) and Vg log p(Ap|Sp, #). The SAIL gradient is given by

Vologp(0]Sp, Ap) = D0 (fuls) = s+ Vologp(als, 0)) + Vop(0)
s,a€pairs(Sp,Ap)

The full algorithm is also outlined in Algorithm [T}

4 Evaluation

We evaluate our approach on two domains. The first domain is a harder variation of the tabular
racetrack domain first used in [[1]] with 7425 states and 5 actions. In section [f.1.1] we use this domain
to show that SAIL can improve on the policy learned by a supervised baseline and learn to act in states
the policy representation does not generalize to. In section d.1.2] we evaluate sample efficiency of an
off-policy variant of SAIL. The tabular representation allows us to compare the results to RelEntIRL
[1]] as a baseline without restrictions arising from the chosen representation of the reward function.
The second domain we use is a noisy variation of the bipedal walker domain found in OpenAl gym|[2].
We use this domain to evaluate the performance of SAIL on tasks with continuous state and action
spaces using neural networks to represent the policy as well as the gradient estimate and compare it
against the supervised baseline using the same representations.

4.1 Racetrack domain

We first evaluate SAIL on the racetrack domain. This domain is a more difficult variation of the
domain used by Boularias et al. [[1] and consists of a grid with 33 by 9 possible positions. Each
position has 25 states associated with it, encoding the velocity (-2, -1, 0, +1, +2) in the x and y
direction which dictates the movement of the agent at each time step. The domain has 5 possible
actions allowing the agent to increase or reduce its velocity in either direction or to keep its current
velocity. Randomness is introduced to the domain using the notion of a failure probability which
is set to be 0.8 if the absolute velocity in either direction is 2 and 0.1 otherwise. The goal of the
agent is to complete a lap around the track without going off-track which we define to be the area
surrounding the track (z = 0,y = 0,z > 31 or y > 6) as well as the inner rectangle (2 < z < 31
and 2 < y < 6). Note that unlike in [[1]], the agent has the ability to go off-track as opposed to being
constrained by a wall and has to learn to move back on track if random chance makes it stray from it.
Furthermore, the probability of going off-track is higher as the track is more narrow in this variation
of the domain. This makes the domain more challenging to learn using imitation learning alone.

4.5 — - Optimal policy
’ Supervised baseline
4.4 @@ Uniform off-policy SAIL
4.3 > Off-policy SAIL
F 1 RelEntIRL

4.2

4.1

4.0

3.9

3.8

Figure 2: Reward obtained using off-policy training. SAIL learns a near-optimal policy using only
1000 sample episodes. The scale is logarithmic on the x-axis after 5000 iterations (gray area).

For all our experiments, we use a set of 100 episodes collected from an oracle. To measure perfor-
mance, we assign a score of —0.1 to being off-track, a score of 5 for completing the lap and —5 for
crossing the finish line the wrong way. Note that this score is not used during training but is purely
used to measure performance in this evaluation. We also use this score as a reward to derive an oracle.

4.1.1 On-policy results

For our first experiment, we compare SAIL against a supervised baseline. As the oracle is determinis-
tic and the domain is tabular, this means taking the optimal action in states encountered as part of
one of the demonstrated episodes and uniformly random actions otherwise. For the evaluation of
SAIL, we initialize the policy to the supervised baseline and use the algorithm to improve the policy
over 5000 iterations. At each iteration, 20 unsupervised sample episodes are collected to estimate the
SAIL gradient, using plain stochastic gradient descent with a learning rate of 0.1 for the temporal
difference update and RMSprop with a a learning rate of 0.01 for updating the policy. Figure
shows that SAIL stably converges to a policy that significantly outperforms the supervised baseline.
While we do not expect SAIL to act optimally in previously unseen states but to instead exhibit
recovery behavior, it is interesting to measure on how many states the learned policy agrees with the
optimal policy using a soft count for each state based on the probability of the optimal action. Figure
shows that the amount of states in which the agent takes the optimal action roughly doubles its
advantage over random chance and that the learned behavior is significantly closer to the optimal
policy on states seen during execution.

4.1.2 Off-policy sample efficiency

For our second experiment, we evaluate the sample efficiency of SAIL by reusing previous sample
episodes. As a temporal difference method, SAIL can be adapted using any off-policy temporal
difference learning technique. In this work we elected to use truncated importance weights [[16]
with emphatic decay [24]. We evaluate the performance of SAIL collecting one new unsupervised
sample episode in each iteration, reusing the samples collected in the past 19 episodes and compare
the results against our implementation of Relative Entropy IRL[1]. We found that the importance
sampling approach used by RelEntIRL makes interactions obtained by a pre-trained policy ineffective
when using a tabular polic and thus collect samples by taking actions uniformly at random. For
comparability, we also evaluated SAIL using a fixed set of samples obtained by following a uniform
policy. In this case, we found that the temporal-difference learning can become unstable in later
iterations and thus decay the learning rate by a factor of 0.995 after each iteration.

We vary the number of unsupervised sample episodes and show the score achieved by the trained
policy in Figure[2] The score for RelEntIRL is measured by computing the optimal policy given the
learned reward function. Note that this requires a model that is not normally available. We found
that in this domain depending on the obtained samples, RelEntIRL has a tendency to learn shortcuts
through the off-track area. Since small changes in the reward function can lead to large changes in
the final policy, we average the results for RelEntIRL over 20 trials and bound the total score from

!The original work by Boularias et al. shows that a pre-trained sample policy can be used effectively if a
trajectory based representation is used

0.40

0.35 — SAIL
AN — - Supervised Baseline
0.30 - 4
[0}
s 0.25 4
L 0.20F d
3
L‘E‘ 0.15 - 4
0.10 - 4
0.05 - 4
000 L L L L L L L
0 2000 4000 6000 8000 10000 12000 14000
Iteration
(@) (b)

Figure 3: a) The bipedal walker has to traverse the plain, controlling the 4 noisy joint motors in its
legs. b) Failure rate of SAIL over 1000 traversals compared to the supervised baseline measured.
After 15000 iterations, SAIL traverses the plain far more reliably than the baseline.

below by the score achieved using the supervised baseline. We can see that SAIL is able to learn a
near optimal policy using a low number of sample episodes. We can furthermore see that SAIL using
uniform samples is able to learn a good policy and outperform the RelEntIRL baseline reliably.

4.2 Noisy bipedal walker

For our second experiment, we evaluate the performance of SAIL on a noisy variant of a two-
dimensional Bipedal walker domain (see Figure [3a). The goal of this domain is to learn a policy that
enables the simulated robot to traverse a plain without falling. The state space in this domain consists
of 4 dimensions for velocity in x and y directions, angle of the hull, angular velocity, 8 dimensions
for the position and velocity of the 4 joints in the legs, 2 dimensions that denote whether the leg has
contact with the ground and 10 dimensions corresponding to lidar readings, telling the robot about its
surroundings. The action space is 4 dimensional and consists of the torque that is to be applied to
each of the 4 joints. To make the domain more challenging, we also apply additional noise to each of
the torques. The noise is sampled from a normal distribution with standard deviation of 0.1 and is
kept constant for five consecutive frames at a time. The noise thus has the ability to destabilize the
walker. Our goal in this experiment is to learn a continuous policy from demonstrations, mapping the
state to torques and enabling the robot to traverse the plain reliably. As a demonstration, we provide a
single successful crossing of the plain. The demonstration has been collected from an oracle that
has been trained on the bipedal walker domain without additional noise and is therefore not optimal
and prone to failure. Our main metric for success on this domain is failure rate, i.e. the fraction of
times that the robot is not able to traverse the plain due to falling to the ground. While the reward
metric used in [2] is more comprehensive as it measures speed and control cost, it cannot be expected
that a pure imitation learning approach can minimize control cost when trained with an imperfect
demonstration that does not achieve this goal itself. Failure rate, on the other hand can always be
minimized by aiming to reproduce a demonstration of a successful traversal as well as possible.

To represent our policy, we use a single shallow neural network with one hidden layer consisting of
100 nodes with tanh activation. We train this policy using a pure supervised approach as a baseline
as well as with SAIL and contrast the results. During evaluation and supervised training, the output
of the neural network is taken to be the exact torques whereas SAIL requires a probabilistic policy.
Therefore we add additional Gaussian noise, kept constant for 8 consecutive frames at a time.

To train the network in a purely supervised approach, we use RMSProp over 3000 epochs with a
batch size of 128 frames and a learning rate of 1075, After the training process has converged, we
found that the neural network trained with pure supervised learning fails 1650 times out of 5000 runs.

To train the policy with SAIL, we first initialize it with the aforementioned supervised approach.
The training is then followed up with training using the combined gradient estimated by SAIL until
the failure rate stops decreasing. To represent the gradient of the logarithmic stationary distribution,
we use a fully connected neural network with two hidden layers of 80 nodes each using ReLU
activations. Each episode is split into mini-batches of 16 frames. The V log d™®-network is trained
using RMSprop with a learning rate of 10~* whereas the policy network is trained using RMSprop

and a learning rate of 10~5, starting after the first 1000 episodes. As can be seen in Figure SAIL
increases the success rate of 0.67 achieved by the baseline to 0.938 within 15000 iterations.

5 Conclusion

Imitation learning has long been a topic of active research. However, naive supervised learning has a
tendency to lead the agent to states in which it cannot act with certainty and alternative approaches
either make additional assumptions or, in the case of IRL methods, address this problem only
indirectly. In this work, we proposed a novel imitation learning algorithm that directly addresses
this issue and learns a policy without relying on intermediate representations. We showed that the
algorithm can generalize well and provides stable learning progress in both, domains with a finite
number of discrete states as well as domains with continuous state and action spaces. We believe that
explicit reasoning over states can be helpful even in situations where reproducing the distributions of
states will not result in a desirable policy and see this as a promising direction for future research.

Acknowledgements

This work was supported by the Office of Naval Research under grant N000141410003

References

[1] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative Entropy Inverse Reinforcement Learning.
International Conference on Artificial Intelligence and Statistics (AISTATS), 15:1-8, 2011.

[2] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. OpenAl Gym, 2016.

[3] Sonia Chernova and Andrea L Thomaz. Robot learning from human teachers. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 8(3):1-121, 2014.

[4

—_

Jaedeug Choi and Kee-eung Kim. MAP Inference for Bayesian Inverse Reinforcement Learning. Neural
Information Processing System (NIPS), 2011.

[5] Hal Daumé, John Langford, and Daniel Marcu. Search-based structured prediction. Machine Learning
Journal (MLJ), 75(3):297-325, 20009.

[6

—_

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided Cost Learning: Deep Inverse Optimal Control via
Policy Optimization. International Conference on Machine Learning (ICML), 2016.

[7

—

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pages 2672-2680, 2014.

(8

—_—

David Ha, Andrew Dai, and Quoc V. Le. HyperNetworks. arXiv preprint, page arXiv:1609.09106v4
[cs.LG], 2016.

[9

—

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew Sendonaris,
Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z. Leibo, and Audrunas Gruslys. Learning from
Demonstrations for Real World Reinforcement Learning. arXiv preprint, page 1704.03732v1 [cs.Al],
2017.

[10] Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, pages 4565-4573, 2016.

[11] Jonathan Ho, Jayesh Gupta, and Stefano Ermon. Model-free imitation learning with policy optimization.
In International Conference on Machine Learning, pages 2760-2769, 2016.

[12] Max Jaderberg, Wojciech Marian Czarnecki, Simon Osindero, Oriol Vinyals, Alex Graves, and Koray
Kavukcuoglu. Decoupled Neural Interfaces using Synthetic Gradients. arXiv preprint, page 1608.05343v1
[cs.LG], 2016.

[13] Edouard Klein, Matthieu Geist, Bilal Piot, and Olivier Pietquin. Inverse Reinforcement Learning through
Structured Classification. Neural Information Processing System (NIPS), 2012.

(14]

(15]

(16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

(27]

Edouard Klein, Bilal Piot, Matthieu Geist, and Olivier Pietquin. A cascaded supervised learning approach
to inverse reinforcement learning. Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD), 2013.

Tetsuro Morimura, Eiji Uchibe, Junichiro Yoshimoto, Jan Peters, and Kenji Doya. Derivatives of logarith-
mic stationary distributions for policy gradient reinforcement learning. Neural computation, 22(2):342-376,
2010.

Remi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and Efficient Off-Policy
Reinforcement Learning. In Neural Information Processing System (NIPS), 2016.

Andrew Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International Conference
on Machine Learning (ICML), 2000.

Dean a Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Neural Information
Processing System (NIPS), 1989.

Stéphane Ross and J. Andrew Bagnell. Efficient Reductions for Imitation Learning. International
Conference on Artificial Intelligence and Statistics (AISTATS), 2010.

Stéphane Ross, Geoffrey Gordon, and J. Andrew Bagnell. A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning. International Conference on Artificial Intelligence
and Statistics (AISTATS), 2011.

Stefan Schaal. Robot learning from demonstration. Neural Information Processing System (NIPS), 1997.

Juergen H. Schmidhuber. A self-referential Weight Matrix. International Conference on Artificial Neural
Networks, 1993.

David Silver, Aja Huang, Chris J] Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian
Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Dieleman Sander, Dominik
Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587):484-489, 2016.

Richard S Sutton, A Rupam Mahmood, and Martha White. An emphatic approach to the problem of
off-policy temporal-difference learning. Journal of Machine Learning Research (JMLR), 17:1-29, 2016.

John N Tsitsiklis and Benjamin Van Roy. Average cost temporal-difference learning. Automatica, 35:1799—
1808, 1999.

John N. Tsitsiklis and Benjamin Van Roy. On average versus discounted reward temporal-difference
learning. Machine Learning, 49(2-3):179-191, 2002.

Brian D Ziebart, Andrew Maas, J Andrew Bagnell, and Anind K Dey. Maximum Entropy Inverse
Reinforcement Learning. In AAAI Conference on Artificial Intelligence (AAAI), 2007.

10

