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Abstract

Humans process visual scenes selectively and sequentially using attention. Central
to models of human visual attention is the saliency map. We propose a hierarchical
visual architecture that operates on a saliency map and uses a novel attention
mechanism to sequentially focus on salient regions and take additional glimpses
within those regions. The architecture is motivated by human visual attention, and
is used for multi-label image classification on a novel multiset task, demonstrating
that it achieves high precision and recall while localizing objects with its attention.
Unlike conventional multi-label image classification models, the model supports
multiset prediction due to a reinforcement-learning based training process that
allows for arbitrary label permutation and multiple instances per label.

1 Introduction

Humans can rapidly process complex scenes containing multiple objects despite having limited
computational resources. The visual system uses various forms of attention to prioritize and selectively
process subsets of the vast amount of visual input [6]. Computational models and various forms of
psychophysical and neuro-biological evidence suggest that this process may be implemented using
various "maps" that topographically encode the relevance of locations in the visual field [[17} 39} [13].

Under these models, visual input is compiled into a saliency-map that encodes the conspicuity
of locations based on bottom-up features, computed in a parallel, feed-forward process [20, [17].
Top-down, goal-specific relevance of locations is then incorporated to form a priority map, which is
then used to select the next target of attention [39]]. Thus processing a scene with multiple attentional
shifts may be interpreted as a feed-forward process followed by sequential, recurrent stages [23]].
Furthermore, the allocation of attention can be separated into covert attention, which is deployed to
regions without eye movement and precedes eye movements, and overt attention associated with
an eye movement [6]]. Despite their evident importance to human visual attention, the notions of
incorporating saliency to decide attentional targets, integrating covert and overt attention mechanisms,
and using multiple, sequential shifts while processing a scene have not been fully addressed by
modern deep learning architectures.

Motivated by the model of Itti et al. [[1'7]], we propose a hierarchical visual architecture that operates
on a saliency map computed by a feed-forward process, followed by a recurrent process that uses
a combination of covert and overt attention mechanisms to sequentially focus on relevant regions
and take additional glimpses within those regions. We propose a novel attention mechanism for
implementing the covert attention. Here, the architecture is used for multi-label image classifica-

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



tion. Unlike conventional multi-label image classification models, this model can perform multiset
classification due to the proposed reinforcement-learning based training.

2 Related Work

We first introduce relevant concepts from biological visual attention, then contextualize work in
deep learning related to visual attention, saliency, and hierarchical reinforcement learning (RL).
We observe that current deep learning models either exclusively focus on bottom-up, feed-forward
attention or overt sequential attention, and that saliency has traditionally been studied separately from
object recognition.

2.1 Biological Visual Attention

Visual attention can be classified into covert and overt components. Covert attention precedes
eye movements, and is intuitively used to monitor the environment and guide eye movements to
salient regions [0, [21]. Two particular functions of covert attention motivate the Gaussian attention
mechanism proposed below: noise exclusion, which modifies perceptual filters to enhance the signal
portion of the stimulus and mitigate the noise; and distractor suppression, which refers to suppressing
the representation strength outside an attention area [6l]. Further inspiring the proposed attention
mechanism is evidence from cueing [1]], multiple object tracking [8], and fMRI [30] studies, which
indicate that covert attention can be deployed to multiple, disjoint regions that vary in size and can be
conceptually viewed as multiple "spotlights".

Overt attention is associated with an eye movement, so that the attentional focus coincides with the
fovea’s line of sight. The planning of eye movements is thought to be influenced by bottom-up (scene
dependent) saliency as well as top-down (goal relevant) factors [21]]. In particular, one major view is
that two types of maps, the saliency map and the priority map, encode measures used to determine
the target of attention [39]. Under this view, visual input is processed into a feature-agnostic saliency
map that quantifies distinctiveness of a location relative to other locations in the scene based on
bottom-up properties. The saliency map is then integrated to include top-down information, resulting
in a priority map.

The saliency map was initially proposed by Koch & Ullman [20], then implemented in a computational
model by Itti [17]. In their model, saliency is determined by relative feature differences and compiled
into a "master saliency map". Attentional selection then consists of directing a fixed-sized attentional
region to the area of highest saliency, i.e. in a "winner-take-all" process. The attended location’s
saliency is then suppressed, and the process repeats, so that multiple attentional shifts can occur
following a single feed-forward computation.

Subsequent research effort has been directed at finding neural correlates of the saliency map and
priority map. Some proposed areas for salience computation include the superficial layers of the
superior colliculus (sSC) and inferior sections of the pulvinar (PI), and for priority map computation
include the frontal eye field (FEF) and deeper layers of the superior colliculus (dSC)[39]]. Here, we
need to only assume existence of the maps as conceptual mechanisms involved in influencing visual
attention and refer the reader to [39] for a recent review.

We explore two aspects of Itti’s model within the context of modern deep learning-based vision: the
use of a bottom-up, featureless saliency map to guide attention, and the sequential shifting of attention
to multiple regions. Furthermore, our model incorporates top-down signals with the bottom-up
saliency map to create a priority map, and includes covert and overt attention mechanisms.

2.2 Visual Attention, Saliency, and Hierarchical RL in Deep Learning

Visual attention is a major area of interest in deep learning; existing work can be separated into
sequential attention and bottom-up feed-forward attention. Sequential attention models choose a
series of attention regions. Larochelle & Hinton [24] used a RBM to classify images with a sequence
of fovea-like glimpses, while the Recurrent Attention Model (RAM) of Mnih et al. [31] posed
single-object image classification as a reinforcement learning problem, where a policy chooses the
sequence of glimpses that maximizes classification accuracy. This "hard attention" mechanism
developed in [31] has since been widely used [27, 44, [35, |2]. Notably, an extension to multiple



objects was made in the DRAM model [3]], but DRAM is limited to datasets with a natural label
ordering, such as SVHN [32]. Recently, Cheung et al. [9] developed a variable-sized glimpse inspired
by biological vision, incorporating it into a simple RNN for single object recognition. Due to the
fovea-like attention which shifts based on task-specific objectives, the above models can be seen as
having overt, top-down attention mechanisms.

An alternative approach is to alter the structure of a feed-forward network so that the convolutional
activations are modified as the image moves through the network, i.e. in a bottom-up fashion. Spatial
transformer networks [[18] learn parameters of a transformation that can have the effect of stretching,
rotating, and cropping activations between layers. Progressive Attention Networks [36]] learn attention
filters placed at each layer of a CNN to progressively focus on an arbitrary subset of the input, while
Residual Attention Networks [41] learn feature-specific filters. Here, we consider an attentional stage
that follows a feed-forward stage, i.e. a saliency map and image representation are produced in a
feed-forward stage, then an attention mechanism determines which parts of the image representation
are relevant using the saliency map.

Saliency is typically studied in the context of saliency modeling, in which a model outputs a saliency
map for an image that matches human fixation data, or salient object segmentation [25]. Separately,
several works have considered extracting a saliency map for understanding classification network
decisions [37, 47)]. Zagoruyko et al. [46] formulate a loss function that causes a student network
to have similar "saliency" to a teacher network. They model saliency as a reduction operation
F : ROXHEXW _ REXW applied to a volume of convolutional activations, which we adopt due to
its simplicity. Here, we investigate using a saliency map for a downstream task. Recent work has
begun to explore saliency maps as inputs for prominent object detection [38] and image captioning
[L1], pointing to further uses of saliency-based vision models.

While we focus on using reinforcement learning for multiset classification with only class labels as
annotation, RL has been applied to other computer vision tasks, including modeling eye movements
based on annotated human scan paths [29], optimizing prediction performance subject to a computa-
tional budget [19], describing classification decisions with natural language [[16]], and object detection
(28151 [4].

Finally, our architecture is inspired by works in hierarchical reinforcement learning. The model
distinguishes between the upper level task of choosing an image region to focus on and the lower
level task of classifying the object related to that region. The tasks are handled by separate networks
that operate at different time-scales, with the upper level network specifying the task of the lower
level network. This hierarchical modularity relates to the meta-controller / controller architecture
of Kulkarni et al. [22] and feudal reinforcement learning [12} 140]. Here, we apply a hierarchical
architecture to multi-label image classification, with the two levels linked by a differentiable operation.
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Figure 1: A high-level view of the model components. See Supplementary Materials section 3 for
detailed views.



3 Architecture

The architecture is a hierarchical recurrent neural network consisting of two main components: the
meta-controller and controller. These components assume access to a saliency model, which produces
a saliency map from an image, and an activation model, which produces an activation volume from
an image. Figure|I|shows the high level components, and Supplementary Materials section 3 shows
detailed views of the overall architecture and individual components.

In short, given a saliency map the meta-controller places an attention mask on an object, then the
controller takes subsequent glimpses and classifies that object. The saliency map is updated to account
for the processed locations, and the process repeats. The meta-controller and controller operate at
different time-scales; for each step of the meta-controller, the controller takes k£ + 1 steps.

Notation Let Z denote the space of images, I € R *%7 and ) = 1, ..., n. denote the set of labels.
Let S denote the space of saliency maps, S € RPs*ws et V denote the space of activation volumes,
V e REXhvxwy ‘let M denote the space of covert attention masks, M € R"M*wn Jet P denote
the space of priority maps, P € R"»X®wm and let A denote an action space. The activation model is
a function f4 : Z — V mapping an input image to an activation volume. An example volume is the
512 x hy X wy activation tensor from the final conv layer of a ResNet.

Meta-Controller The meta-controller is a function fy;c : S — M mapping a saliency map to a
covert attention mask. Here, f;¢ is a recurrent neural network defined as follows:

zt = [St, Y1),

€ = Wencodexta

hy = GRU ey, hy_1),
M, = attn(hy).

x4 is a concatenation of the flattened saliency map and one-hot encoding of the previous step’s class
label prediction, and attn(-) is the novel spatial attention mechanism defined below. The mask is then
transformed by the interface layer into a priority map that directs the controller’s glimpses towards a
salient region, and used to produce an initial glimpse vector for the controller.

Gaussian Attention Mechanism The spatial attention mechanism, inspired by covert visual attention,
is a 2D discrete convolution of a mixture of Gaussians filter. Specifically, the attention mask M is a
m x n matrix with M;; = ¢(4, j), where

K , 2 2

00ii) = 3o (-0 [ (47 =)+ (47 -3) ).
k=1

K denotes the number of Gaussian components and o/(%), 3(%) lﬂgk), /{ék) respectively denote the

importance, width, and X, y center of component k.

To implement the mechanism, the parameters («, (3, k1, 2) are output by a network layer as a
4K -dimensional vector («, 3, k1, k2), and the elements are transformed to their proper ranges:
k1 = 0(k1)m, ko = 0(K2)n, o = softmax(a), f = exp(/3). Then M is formed by applying ¢ to the
coordinates {(7,7) | 1 <i < m,1 <j < n}. Note that these operations are differentiable, allowing
the attention mechanism to be used as a module in a network trained with back-propagation. Graves
[L5] proposed a 1D version; here we use a 2D version for spatial attention.

Interface The interface layer transforms the meta-controller’s output into a priority map and glimpse
vector that are used as input to the controller (diagram in Supp. Materials 3.4). The priority map
combines the top-down covert attention mask with the bottom-up saliency map: P = M © S.
Since P influences the region that is processed next, this can also be seen as a generalization of the
"winner-take-all" step in the Itti model; here a learned function chooses a region of high saliency
rather than greedily choosing the maximum location.

To provide an initial glimpse vector gy € R for the controller, the mask is used to spatially weight
the activation volume: gy = 221 Z;ﬂ:"l M; ; V. ; ; This is interpreted as the meta-controller taking
an initial, possibly broad and variable-sized glimpse using covert attention. The weighting produced
by the attention map retains the activations around the centers of attention, while down-weighting
outlying areas, effectively suppressing activations from noise outside of the attentional area. Since



the activations are averaged into a single vector, there is a trade-off between attentional area and
information retention.

Controller The controller is a recurrent neural network fo : (P, go) — A that runs for k + 1
steps and maps a priority map and initial glimpse vector from the interface layer to parameters of
a distribution, and an action is sampled. The first k£ actions select spatial indices of the activation
volume, and the final action chooses a class label, i.e. A1, ;= {1,2,..,hywy} and Ay = V.
Specifically:

Ty = [Pt; ?Qtfh ai*hgifl]a

€ = encodeli,

hi = GRU(e“ hi—1)7
S = {I/Vlocationhi 1 S < k

Welasshi i=k+1’
p; = softmax(s;),
Qi ~ Di,
where ¢ indexes the meta-controller time-step and ¢ indexes the controller time-step, and a; € A is an

action sampled from the categorical distribution with parameter vector p;. The glimpse vectors g;,
1 < 1 < k are formed by extracting the column from the activation volume V" at location a; = (z, y);.

Intuitively, the controller uses overt attention to choose glimpse locations using the information
conveyed in the priority map and initial glimpse, compiling the information in its hidden state to make
a classification decision. Recall that both covert attention and priority maps are known to influence
eye saccades [21]. See Supplementary Materials 3.5 for a diagram.

Update Mechanism During a step ¢, the meta-controller takes saliency map S; as input, focuses
on a region of S; using an attention mask M,, then the controller takes glimpses at locations
(z,9)1,(x,9)2, ..., (T, y)k. Atstep t + 1, the saliency map should reflect the fact that some regions
have already been attended to in order to encourage attending to novel areas. While the meta-
controller’s hidden state can in principle prevent it from repeatedly focusing on the same regions, we
explicitly update the saliency map with a function update : S — S that suppresses the saliency of
glimpsed locations and locations with nonzero attention mask values, thereby increasing the relative
saliency of the remaining unattended regions:

_Jo if (i,5) € {(z, 91, (@, 9)2, -, (T, 9)r}
[Salis = {max([St]ij — [My]i;,0) otherwise 1 : ’

This mechanism is motivated by the inhibition of return effect in the human visual system; after
attention has been removed from a region, there is an increased response time to stimuli in the region,
which may influence visual search and encourage attending to novel areas [13} [33].

Saliency Model The saliency model is a function fs : Z — S mapping an input image to a saliency
map. Here, we use a saliency model that computes a map by compressing an activation volume using
a reduction operation F : RE*HvxWv _y RHvXWv aq in [46]. We choose F (V) = Zle |Vi|%,
and use the output of the activation model as V. Furthermore, the activation model is fine-tuned on a
single-object dataset containing classes found in the multi-object dataset, so that the saliency model
has high activations around classes of interest.

4 Learning

4.1 Sequential Multiset Classification

Multi-label classification tasks can be categorized based on whether the labels are lists, sets, or
multisets. We claim that multiset classification most closely resembles a human’s free viewing of a
scene; the exact labeling order of objects may vary by individual, and multiple instances of the same
object may appear in a scene and receive individual labels. Specifically, let D = {(X;,Y;)}"_, bea
dataset of images X; with labels Y; C ) and consider the structure of Y;.

In list-based classification, the labels Y; = [y, ..., y|m] have a consistent order, e.g. left to right. As
a sequential prediction problem, there is exactly one true label for each prediction step, so a standard



cross-entropy loss can be used at each prediction step, as in [3]. When the labels Y; = {y1, ..., yv;|}
are a set, one approach for sequential prediction is to impose an ordering O(Y;) = [yo,, .-, yo‘yﬂ]
as a preprocessing step, transforming the set-based problem to a list-based problem. For instance,
O(+) may order the labels based on prevalence in the training data as in [42]. Finally, multiset
classification generalizes set-based classification to allow duplicate labels within an example, i.e.
Y; = {y", ylrg;“‘” }, where m; denotes the multiplicity of label y;.

Here, we propose a training process that allows duplicate labels and is permutation-invariant with
respect to the labels, removing the need for a hand-engineered ordering and supporting all three types
of classification. With a saliency-based model, permutation invariance for labels is especially crucial,
since the most salient (and hence first classified) object may not correspond to the first label.

4.2 Training

Our solution is to frame the problem in terms of maximizing a non-smooth reward function that
encourages the desired classification and attention behavior, and use reinforcement learning to
maximize the expected reward. Assuming access to a trained saliency model and activation model,
the meta-controller and controller can be jointly trained end-to-end.

Reward To support multiset classification, we propose a multiset-based reward for the controller’s
classification action. Specifically, consider an image X with m labels Y = {y1, ..., ym }. At meta-
controller step ¢, 1 < t < m, let A; be a multiset of available labels, let f;(X) be the corresponding
class scores output by the controller. Then define:

“f T 1 —1 otherwise LT A otherwise

where ¢; ~ softmax(f;(X)) and A; < Y. In short, a class label is sampled from the controller,
and the controller receives a positive reward if and only if that label is in the multiset of available
labels. If so, the label is removed from the available labels. Clearly, the reward for sampled labels
1, U2, -, Gm equals the reward for o(91), o (J2), .., 0 (4, ) for any permutation o of the m elements.
Note that list-based tasks can be supported by setting A; < v;.

The controller’s location-choice actions simply receive a reward equal to the priority map value at the
glimpse location, which encourages the controller to choose locations according to the priority map.
That is, for locations (x, )1, ..., (x,y) sampled from the controller, define R;,, = Py ),

Objective Let n = 1...IN index the example, ¢ = 1...M index the meta-controller step, and i =
0...K index the controller step. The goal is choosing 6 to maximize the total expected reward:

J(0) = Eperi50) {an Rn}m} where the rewards R,, ; ; are defined as above, and the expectation

is over the distribution of trajectories produced using a model f parameterized by ¢. An unbiased
gradient estimator for § can be obtained using the REINFORCE [43]] estimator within the stochastic
computation graph framework of Schulman et al. [34] as follows.

Viewed as a stochastic computation graph, an input saliency map .S, ; passes through a path of
deterministic nodes, reaching the controller. Each of the controller’s k41 steps produces a categorical
parameter vector p,, ; ; and a stochastic node is introduced by each sampling operation a; ; ~ Py, ¢,i.
Then form a surrogate loss function £(0) = Z“ log p; ;R; ; with the stochastic computation

graph. By Corollary 1 of [34], the gradient of £(6) gives an unbiased gradient estimator of the
objective, which can be approximated using Monte-Carlo sampling: %J(G) =E [%E(G)] ~
% Zszl %ﬁ(@). As is standard in reinforcement learning, a state-value function V' (s; ;) is used as
a baseline to reduce the variance of the REINFORCE estimator, thus £(6) = >, ;logpsi(V (st,i) —

R; ;). In our implementation, the controller outputs the state-value estimate, so that s; ; is the
controller’s hidden state.

5 Experiments

We validate the classification performance, training process, and hierarchical attention with set-based
and multiset-based classification experiments. To test the effectiveness of the permutation-invariant



Table 1: Metrics on the test set for MNIST Set and Multiset tasks, and SVHN Multiset.

MNIST Set MNIST Multiset SVHN Multiset

F1 0-1 F1 0-1 F1 0-1

HSAL-RL 0.990 0.960 0978  0.935 0973  0.947
Cross-Entropy  0.735  0.478 0.726 0477 0.589 0.307

RL training, we compare against a baseline model that uses a cross-entropy loss on the probabilities
pt,; and (randomly ordered) labels y; instead of the RL training, similar to training proposed in [42].

Datasets Two synthetic datasets, MNIST Set and MNIST Multiset, as well as the real-world SVHN
dataset, are used. For MNIST Set and Multiset, each 100x100 image in the dataset has a variable
number (1-4) of digits, of varying sizes (20-50px) and positions, along with cluttering objects that
introduce noise. Each label in an image from MNIST Set is unique, while MNIST Multiset images
may contain duplicate labels. Each dataset is split into 60,000 training examples and 10,000 testing
examples, and metrics are reported for the testing set. SVHN Multiset consists of SVHN examples
with label order randomized when a batch is sampled. This removes the natural left-to-right order of
the SVHN labels, thus turning the classification into a multiset task.

Evaluation Metrics To evaluate classification performance, macro-F1 and exact match (0-1) as
defined in [26] are used. For evaluating the hierarchical attention mechanism we use visualization

as well as a saliency metric for the controller’s glimpses, defined as attngjiency = % Zle S;; fora
controller trajectory (x,y)1, ..., (%, y)k, J: at meta-controller time step ¢, then averaged over all time
steps and examples. A high score means that the controller tends to pick salient points as glimpse
locations.

Implementation Details The activation and saliency model is a ResNet-34 network pre-trained
on ImageNet. For MNIST experiments, the ResNet is fine-tuned on a single object MNIST Set
dataset, and for SVHN is fine-tuned by randomly selecting one of an image’s labels each time a
batch is sampled. Images are resized to 224x224, and the final (4th) convolutional layer is used
(V € R312X7TXT)  Since the label sets vary in size, the model is trained with an extra "stop"
class, and during inference greedy argmax sampling is used until the "stop" class is predicted. See
Supplementary Materials section 1 for further details.

5.1 Experimental Evaluation

In this section we analyze the model’s classification performance, the contribution of the proposed
RL training, and the behavior of the hierarchical attention mechanism.

Classification Performance Table[T]shows the evaluation metrics on the set-based and multiset-based
classification tasks for the proposed hierarchical saliency-based model with RL training ("HSAL-RL")
and the cross-entropy baseline ("Cross-Entropy") introduced above. HSAL-RL performs well across
all metrics; on both the set and multiset tasks the model achieves very high precision, recall, and
macro-F1 scores, but as expected, the multiset task is more difficult. We conclude that the proposed
model and training process is effective for these set and multiset image classification tasks.

Contribution of RL training As seen in Table[I] performance is greatly reduced when the standard
cross-entropy training is used, which is not invariant to the label ordering. This shows the importance
of the RL training, which only assumes that predictions are some permutation of the labels.

Controller Attention Based on attnggj;ency, the controller learns to glimpse in salient regions more
often as training progresses, starting at 58.7 and ending at 126.5 (see graph in Supplementary
Materials Section 2). The baseline, which does not have the reward signal for its glimpses, fails to
improve over training (remaining near 25), demonstrating the importance and effectiveness of the
controller’s glimpse rewards.

Hierarchical Attention Visualization Figure 2| visualizes the hierarchical attention mechanism on
three example inference processes. See Supplementary Materials Section 4 for more examples, which
we discuss here. In general, the upper level attention highlights a region encompassing a digit, and
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Figure 2: The inference process showing the hierarchical attention on three different examples. Each
column represents a single meta-controller step, two controller glimpses, and classification.

the lower level glimpses near the digit before classifying. Notice the saliency map update over time,
the priority map’s structure due to the Gaussian attention mechanism, and the variable-sized focus of
the priority map followed by finer-grained glimpses. Note that the predicted labels need not be in the
same order as the ground truth labels (e.g. "689"), and that the model can predict multiple instances
of a label (e.g. "33", "449"), illustrating multiset prediction. In some cases, the upper level attention
is sufficient to classify the object without the controller taking related glimpses, as in "373", where
the glimpses are in a blank region for the 7. In "722", the covert attention is initially placed on both
the 7 and the 2, then the controller focuses only on the 7; this can be interpreted as using the multiple
spotlight capability of covert attention, then directing overt attention to a single target.

5.2 Limitations

Saliency Map Input Since the saliency map is the only top-level input, the quality of the saliency
model is a potential performance bottleneck. As Figure ] shows, in general there is no guarantee
that all objects of interest will have high saliency relative to the locations around them. However, the
modular architecture allows for plugging in alternative, rigorously evaluated saliency models such as
a state-of-the-art saliency model trained with human fixation data [10].

Activation Resolution Currently, the activation model returns the highest-level convolutional activa-
tions, which have a 7x7 spatial dimension for a 224x224 image. Consider the case shown in Figure 3]
Even if the controller acted optimally, activations for multiple digits would be included in its glimpse
vector due to the low resolution. This suggests activations with higher spatial resolution are needed,
perhaps by incorporating dilated convolutions [45] or using lower-level activations at attended areas,
motivated by covert attention’s known enhancement of spatial resolution [6, [7, [14].

6 Conclusion

We proposed a novel architecture, attention mechanism, and RL-based training process for sequential
image attention, supporting multiset classification. The proposal is a first step towards incorporating
notions of saliency, covert and overt attention, and sequential processing motivated by the biological
visual attention literature into deep learning architectures for downstream vision tasks.



Figure 3: The location of highest saliency Figure 4: The cat is a label in the ground truth

from a 7x7 saliency map (right) is projected set but does not have high salience relative to
onto the 224x224 image (left). its surroundings.
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