SPALS: Fast Alternating Least Squares via Implicit
Leverage Scores Sampling

Dehua Cheng Richard Peng
University of Southern California Georgia Institute of Technology
dehua.cheng@usc.edu rpeng@cc.gatech.edu

Ioakeim Perros Yan Liu
Georgia Institute of Technology University of Southern California
perros@gatech.edu yanliu.cs@usc.edu
Abstract

Tensor CANDECOMP/PARAFAC (CP) decomposition is a powerful but computa-
tionally challenging tool in modern data analytics. In this paper, we show ways of
sampling intermediate steps of alternating minimization algorithms for computing
low rank tensor CP decompositions, leading to the sparse alternating least squares
(SPALS) method. Specifically, we sample the Khatri-Rao product, which arises
as an intermediate object during the iterations of alternating least squares. This
product captures the interactions between different tensor modes, and form the
main computational bottleneck for solving many tensor related tasks. By exploiting
the spectral structures of the matrix Khatri-Rao product, we provide efficient access
to its statistical leverage scores. When applied to the tensor CP decomposition,
our method leads to the first algorithm that runs in sublinear time per-iteration
and approximates the output of deterministic alternating least squares algorithms.
Empirical evaluations of this approach show significant speedups over existing
randomized and deterministic routines for performing CP decomposition. On a
tensor of the size 2.4m x 6.6m x 92k with over 2 billion nonzeros formed by
Amazon product reviews, our routine converges in two minutes to the same error
as deterministic ALS.

1 Introduction

Tensors, a.k.a. multidimensional arrays, appear frequently in many applications, including spatial-
temporal data modeling [40], signal processing [12, 14], deep learning [29] and more. Low-rank
tensor decomposition [21] is a fundamental tool for understanding and extracting the information
from tensor data, which has been actively studied in recent years. Developing scalable and provable
algorithms for most tensor processing tasks is challenging due to the non-convexity of the objec-
tive [18, 21, 16, 1]. Especially in the era of big data, scalable low-rank tensor decomposition algorithm
(that runs in nearly linear or even sublinear time in the input data size) has become an absolute must
to command the full power of tensor analytics. For instance, the Amazon review data [24] yield a
2,440,972 x 6,643,571 x 92,626 tensor with 2 billion nonzero entries after preprocessing. Such
data sets pose challenges of scalability to some of the simplest tensor decomposition tasks.

There are multiple well-defined tensor ranks[21]. In this paper, we focus on the tensor CAN-
DECOMP/PARAFAC (CP) decomposition [17, 3], where the low-rank tensor is modeled by the
summation over many rank-1 tensors. Due to its simplicity and interpretability, tensor CP decompo-
sition, which is to find the best rank- R approximation for the input tensor often by minimizing the
square loss function, has been widely adopted in many applications [21].

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Matrix Khatri-Rao (KRP) product captures the interactions between different tensor modes in the
CP decomposition, and it is essential for understanding many tensor related tasks. For instance, in
the alternating least square (ALS) algorithm, which has been the workhorse for solving the tensor
CP decomposition problem, a compact representation of the KRP can reduce the computational
cost directly. ALS is a simple and parameter-free algorithm that optimizes the target rank- R tensor
by updating its factor matrices in the block coordinate descent fashion. In each iteration, the
computational bottleneck is to solve a least square regression problem, where the size of the design
matrix, a KRP of factor matrices, is n2 x n for an n X n X n tensor. While least square regression is
one of the most studied problem, solving it exactly requires at least O(n?) operations [23], which
can be larger than the size of input data for sparse tensors. For instance, the amazon review data
with 2 x 10° nonzeros leads to a computational cost on the order of 102 per iteration. Exploiting
the structure of the KRP can reduce this cost to be linear in the input size, which on large-scale
applications is still expensive for an iterative algorithm.

An effective way for speeding up such numerical computations is through randomization [23, 38],
where the computational cost can be uncorrelated with the ambient size of the input data in the
optimal case. By exploring the connection between the spectral structures of the design matrix as the
KRP of the factor matrices, we provide efficient access to the statistical leverage score of the design
matrix. It allows us to propose the SPALS algorithm that samples rows of the KRP in a nearly-optimal
manner. This near optimality is twofold: 1) the estimates of leverage scores that we use have many
tight cases; 2) the operation of sampling a row can be efficiently performed. The latter requirement is
far from trivial: Note that even when the optimal sampling probability is given, drawing a sample
may require O(n?) preprocessing. Our result on the spectral structures of the design matrix allows us
to achieve both criteria simultaneously, leading to the first sublinear-per-iteration cost ALS algorithm
with provable approximation guarantees. Our contributions can be summarized as follows:

1. We show a close connection between the statistical leverage scores of the matrix Khatri-Rao
product and the scores of the input matrices. This yields efficient and accurate leverage
score estimations for importance sampling;

2. Our algorithm achieves the state-of-art computational efficiency, while approximating the
ALS algorithm provably for computing CP tensor decompositions. The running time of
each iteration of our algorithm is O(nR?), sublinear in the input size for large tensors.

3. Our theoretical results on the spectral structure of KRP can also be applied on other tensor
related applications such as stochastic gradient descent [26] and high-order singular value
decompositions (HOSVD) [13].

We formalize the definitions in Section 2 and present our main results on leverage score estimation of
the KRP in Section 3. The SPALS algorithm and its theoretical analysis are presented in Section 4.
We discuss connections with previous works in Section 5. In Section 6, we empirical evaluate this
algorithm and its variants on both synthetic and real world data. And we conclude and discuss our
work in Section 7.

2 Notation and Background

Vectors are represented by boldface lowercase letters, such as, a, b, c; Matrices are represented by
boldface capital letters, such as, A, B, C; Tensors are represented by boldface calligraphic capital
letters, such as, 7. Without loss of generality, in this paper we focus our discussion for the 3-mode
tensors, but our results and algorithm can be easily generalized to higher-order tensors.

The ith entry of a vector is denoted by a;, element (4, j) of a matrix A is denoted by A;;, and the
element (i, j, k) of a tensor T~ € RI*/*K is denoted by 7. For notation simplicity, we assume
that (7, j) also represents the index ¢ + Ij between 1 and I.J, where the value I and J should be clear
from the context.

For a tensor 7~ € RI*X*K_we denote the tensor norm as |71 i-e.,

1,J,K
TH = Zi,j,k:l 731@

Special Matrix Products Our manipulation of tensors as matrices revolves around several matrix
products. Our main focus is the matrix Khatri-Rao product (KRP) ®, where for a pair of matrices
A c R/ and B € RV, A © B € RU/)*F hag element ((i, 5),7) as Ay, Bj,..

We also utilize the matrix Kronecker product @ and the elementwise matrix product *. More details
on these products can be found in Appendix A and [21].

Tensor Matricization Here we consider only the case of mode-n matricization. For n = 1, 2, 3, the
mode-n matricization of a tensor 7~ € R7*/*K ig denoted by Ty,). For instance, T3 € REXIT
where the element (k, (¢, 7)) is Tijk-

Tensor CP Decomposition The tensor CP decomposition [17, 3] expresses a tensor as the sum of a
number of rank-one tensors, e.g.,

R
T: § arob'rocra

r=1

where o denotes the outer product, 7 € R/*/*K and a, € R! b, € R’, and ¢, € R¥ for
r=1,2,..., R. Tensor CP decomposition will be compactly represented using [A, B, C], where
the factor matrices A € R™*% B € R/*E and C € RE*" and a,, b,., c, are their r-th column
respectively, i.e., [A,B,C],;, = S°% | AirBj,Cy,. Similar as in the matrix case, each rank-1
component is usually interpreted as a hidden factor, which captures the interactions between all
dimensions in the simplest way.

Given a tensor 7~ € RY*7*K along with target rank R, the goal is to find a rank- R tensor specified
by its factor matrices A € R/*% B € R/*% C € RE*E that is as close to 7 as possible:

R 2
Jain |7 - [A,B,C]|? = Z <7'i,j,k - ZAirBjer’r> .

7,k r=1
Alternating Least Squares Algorithm A widely used method for performing CP decomposition is
alternating least squares (ALS) algorithm. It iteratively minimizes one of the factor matrices with the
others fixed. For instance, when the factors A and B are fixed, algebraic manipulations suggest that
the best choice of C can be obtained by solving the least squares regression:

2
min HXCT - T(TS)‘ , (1)

where the design matrix X = B ® A is the KRP of A and B, and T 3 is the matricization of 7 [21].

3 Near-optimal Leverage Score Estimation for Khatri-Rao Product

As shown in Section 2, the matrix KRP captures the essential interactions between the factor matrices
in the tensor CP decomposition. This task is challenging because the size of KRP of two matrices is
significantly larger than the input matrices. For example, for the amazon review data, the KRP of two
factor matrices contains 10'2 rows, which is much larger than the data set itself with 10° nonzeros.

Importance sampling is one of the most powerful tools for obtaining sample efficient randomized
data reductions with strong guarantees. However, effective implementation requires comprehensive
knowledge on the objects to be sampled: the KRP of factor matrices. In this section, we provide
an efficient and effective toolset for estimating the statistical leverage scores of the KRP of factor
matrices, giving a direct way of applying importance sampling, one of the most important tools in
randomized matrix algorithms, for tensor CP decomposition related applications.

In the remainder of this section, we first define and discuss the optimal importance: statistical
leverage score, in the context of /5-regression. Then we propose and prove our near-optimal leverage
score estimation routine.

3.1 Leverage Score Sampling for />-regression

It is known that, when p < n, subsampling the rows of design matrix X € R"*? by its statistical
leverage score and solving on the samples provides efficient approximate solution to the least square

regression problem: ming || X5 — y||§, with strong theoretical guarantees [23].

Definition 3.1 (Statistical Leverage Score). Given ann X r matrix X, withn > r, let U denote the
n X r matrix consisting of the top-r left singular vectors of X. Then, the quantity

7 = [Usll3,

where U, . denotes the i-th row of U, is the statistical leverage score of the i-th row of X.

The statistical leverage score of a certain row captures importance of the row in forming the linear
subspace. Its optimality in solving /3-regression can be explained by the subspace projection nature
of linear regression.

It does not yield an efficient algorithm for the optimization problem in Equation (1) due to the
difficulties of computing statistical leverage scores. But this reduction to the matrix setting allows
for speedups using a variety of tools. In particular, sketching [6, 25, 27] or iterative sampling [22, 9]
lead to routines that run in input sparsity time: O(nnz) plus the cost of solving an O(r logn) sized
least squares problem. However, directly applying these methods still require at least one pass over
T at each iteration, which will dominate the overall cost.

3.2 Near-optimal Leverage Score Estimation

As discussed in the previous section, the KRPs of factor matrices capture the interaction between
two modes in the tensor CP decomposition, e.g., the design matrix B ® A in the linear regression
problem. To extract a compact representation of the interaction, the statistical leverage scores of
B ® A provide an informative distribution over the rows, which can be utilized to select the important
subsets of rows randomly.

For a matrix with /.J rows in total, e.g., B ® A, in general, the calculation of statistical leverage
score is prohibitively expensive. However, due to the special structure of the KRP B ® A, the upper
bound of statistical leverage score, which is sufficient to obtain the same guarantee by using slightly
more samples, can be efficiently estimated, as shown in Theorem 3.2.

Theorem 3.2 (Khatri-Rao Bound). For matrix A € RT*F and matrix B € R7*E, where I > R
and J > R, let 7 and TB be the statistical leverage score of the i-th and j-th row of A and B,
respectively. Then, for statlstlcal leverage score of the (iJ + j)-th row of matrix A © B, AQB, we
have

A®B
1.7

<7 TB

Proof. Let the singular value decomposition of A and B be A = U*A*V?" and B = UbAbeT,
where U?® € RIXF Ub € R7*E and A%, Ab, V¢ VP e REXE,

By the definition of Khatri-Rao product, we have that
AOB=[A.,®B.1,...,A. p®@B. 5] ¢ RI/*E,

where ® is the Kronecker product. By the form of SVD and Lemma B.1, we have

AOB=[UA“(V]) @ UA (VI)T,..., U A" (VE) T @ UPA (V)]

- [(U“A“) ® (UbAb)] (V“T ® V”) - [U“ ® Ub] [A“ ® Ab] (V“T ® VbT) - [Ua ® Ub] s,
where S = [A" ® A’] (V“T ® VbT> € RF**R S0 the SVD of A ® B can be constructed using
the SVD of S = U A, V/ . So the leverage score of A ® B can be computed from [U, ® U] Uy:

H=[U,® U U, U] [U, 20",)
and for the index k& = iJ + j, we have

AGB T
Tij _Hkk:ekHekS

Hvﬂwrek 2

where e, is the i-th natural basis vector. The first inequality isbecause H x [U, ® U] [U, ® Ub]T
O

3)

(UL)) =778, @

M:o

1

q

Algorithm 1 Sample a row from B © A and T 3.

Draw a Bernoulli random variable z ~ Bernoulli(/3).
if z = 0 then
Draw i ~ Multi(r*/R, ..., 7#/R) and j ~ Multi(rB/R, ..., 7B/R).
else
Dr?w aentry (4, j, k) from the nonzero entries with probability proportional to T~ f ik
end i
Return the (j/ 4+ 4)-th row of B ® A and T3y with weight I.7p; ;.

For the rank-R CP decomposition, the sum of the leverage scores for all rows in B © A equals R.
The sum of our upper bound relaxes it to R2, which means that now we need O(R?) samples instead

of O(R) This result directly generalizes to the Khatri-Rao product of k-dimensional tensors. The
proof is provided in Appendix C.

Theorem 3.3. For matrices A¥) € RT*E ywhere I, > Rfork =1,..., K, let Ti(k) be the statistical
leverage score of the i-th row of A¥). Then, for the 1, Ix-by-R matrix ADo AP o...0 AK)

with statistical leverage score T;, ... ;, for the row corresponding to 7;, . ;.., we have
e ,
1:K (k)
Tix,evix < H iy,
k=1

where ;" . denotes the statistical leverage score of the row of AD o A@D o ... 0 AK)

i1y,
corresponding to the i-th row of A® fork =1,... K.
Our estimation enables the development of efficient numerical algorithms and is nearly optimal in
three ways:
1. The estimation can be calculated in sublinear time given that max{I, J, K} = o (nnz(T)).
For instance, for the amazon review data, we have max{/, J, K} ~ 105 < nnz(T) ~ 10°%;

yens

2. The form of the estimation allows efficient sample-drawing. In fact, the row index can be
drawn efficiently by considering each mode independently;

3. The estimation is tight up to a constant factor . And R is considered as modest constant
for low-rank decomposition. Therefore, the estimation allows sample-efficient importance
sampling.

4 SPALS: Sampling Alternating Least Squares

The direct application of our results on KRP leverage score estimation is an efficient version of the
ALS algorithm for tensor CP decomposition, where the computational bottleneck is to solve the
optimization problem 1.

Our main algorithmic result is a way to obtain a high quality O(r?log n) row sample of X without
explicitly constructing the matrix X. This is motivated by a recent work that implicitly generates
sparsifiers for multistep random walks [4]. In particular, we sample the rows of X, the KRP of A and
B, using products of quantities computed on the corresponding rows in A and B, which provides
a rank-1 approximation to the optimal importance: the statistical leverage scores. This leads to a
sublinear time sampling routine, and implies that we can approximate the progress of each ALS step
linear in the size of the factor being updated, which can be sublinear in the number of non-zeros in 7.

In the remainder of this section, we present our algorithm SPALS and prove its approximation
guarantee. We will also discuss its extension to other tensor related applications.

4.1 Sampling Alternating Least Squares
The optimal solution to optimization problem (1) is

C=Tu(BoA)[(ATA)+(BTB) .

We separate the calculation into two parts: (1) T(3) (B® A),and (2) [(ATA) x (BTB)] ~! where
* denotes the elementwise matrix product. The latter is to invert the gram matrix of the Khatri-Rao

product, which can also be efficiently computed due to its R x R size. We will mostly focus on
evaluating the former expression.
We perform the matrix multiplication by drawing a few rows from both T(TS) and B® A and construct

the final solution from the subset of rows. The row of B ® A can be indexed by (7, j) fori =1,...,T
and j = 1,...,J, which correspond to the ¢-th and j-th row in A and B, respectively. That is, our
sampling problem can be seen as to sample the entries of a I x .J matrix P = {p; ;}, e

We define the sampling probability p; ; as follows,
rArB
R2

K 2
D ket Tk
5
ieal

where 3 € (0, 1). The first term is a rank-1 component for matrix P. And when the input tensor is
sparse, the second term is sparse, thus admitting the sparse plus low rank structure, which can be
easily sampled as the mixture of two simple distributions. The sampling algorithm is described in
Algorithm 1. Note that sampling by the leverage scores of the design matrix B ® A alone provides a
guaranteed but worse approximation for each step [23]. Since that the design matrix itself is formed
by two factor matrices, i.e., we are not directly utilizing the information in the data, we design the
second term for the worst case scenario.

pij=(1-5) + 68 (&)

When R < n and n < nnz(T), where n = max(I, J, K), we can afford to calculate 7/* and TJB
exactly in each iteration. So the distribution corresponding to the first term can be efficiently sampled
with preparation cost O(r%n + r3) and per-sample-cost O(log n). Note that the second term requires
a one-time O(nnz(T)) preprocessing before the first iteration.

4.2 Approximation Guarantees

We define the following conditions:

TA@B
2,

C1. The sampling probability p; ; satisfies p; ; > 51 }j% for some constant Sy ;

e T
171
The proposed probabilities p; ; in Equation (5) satisfy both conditions with 5; = (1 — 5)/R and

B2 = . We can now prove our main approximation result.
Theorem 4.1. For a tensor T € RI*I*K with n = max(I, J, K) and any factor matrices on the
first two dimension as A € R E and B € R7* . If a step of ALS on the third dimension gives Copr:

then a step of SPALS that samples m = O(R?logn/e?) rows produces C satisfying
2
||T o [A’ B’éﬂ || < HT - [[A7 Bv CUIJI]]”2 + 6||7'H2

Proof. Denote the sample-and-rescale matrix as S € R™*!/_ By Corollary E.3, we have that
[T (Bo®A)—T5)STS(BOA)| < el T|. Together with Lemma E.1, we can conclude. [

C2. The sampling probability p; ; satisfies p; ; > B2 for some constant [3g;

Note that the approximation error of our algorithm does not accumulate over iterations. Similar to the
stochastic gradient descent algorithm, the error occurred in the previous iterations can be addressed
in the subsequent iterations.

4.3 Extensions on Other Tensor Related Applications

Importance Sampling SGD on CP Decompostion We can incorporate importance sampling in the
stochastic gradient descent algorithm for CP decomposition. The gradient follows the form

0
5617 —[AB.ClI" =T (Bo A).

By sampling rows according to proposed distribution, it reduces the per-step variance via importance
sampling [26]. Our result addresses the computational difficulty of finding the appropriate importance.

Sampling ALS on Higher-Order Singular Value Decomposition (HOSVD) For solving the
HOSVD [13] on tensor, the Kronecker product is involved instead of the Khatri-Rao product. In
Appendix D, we prove similar leverage score approximation results for Kronecker product. In fact,
for Kronecker product, our “approximation” provides the exact leverage score.

Theorem 4.2. For matrix A € RT™*M gnd matrix B € R7*N, where I > M and J > N, let TiA
and T]B be the statistical leverage score of the i-th and j-th row of A and B, respectively. Then, for

matrix A @ B € RIVXMN with statistical leverage score TiAj®B Sor the (iJ + j)-th row, we have
A®B _ _A_B
T =TT

5 Related Works

CP decomposition is one of the simplest, most easily-interpretable tensor decomposition. Fitting it
in an ALS fashion is still considered as the state-of-art in the recent tensor analytics literature [37].
The most widely used implementation of ALS is the MATLAB Tensor Toolbox [21]. It directly
performs the analytic solution of ALS steps. There is a line of work on speeding up this procedure in
distributed/parallel/MapReduce settings [20, 19, 5, 33]. Such approaches are compatible with our
approach, as we directly reduce the number of steps by sampling. A similar connection holds for
works achieving more efficient computation of KRP steps of the ALS algorithm such as in [32].

The applicability of randomized numerical linear algebra tools to tensors was studied during their
development [28]. Within the context of sampling-based tensor decomposition, early work has been
published in [36, 35] that focuses though on Tucker decomposition. In [30], sampling is used as
a means of extracting small representative sub-tensors out of the initial input, which are further
decomposed via the standard ALS and carefully merged to form the output. Another work based
on an a-priori sampling of the input tensor can be found in [2]. However, recent developments in
randomized numerical linear algebra often focused on over-constrained regression problems or low
rank matrices. The incorporation of such tools into tensor analytics routines was fairly recent [31, 37]

Most closely related to our algorithm are the routines from [37], which gave a sketch-based CP
decomposition inspired by the earlier work in [31]. Both approaches only need to examine the
factorization at each iteration, followed by a number of updates that only depends on rank. A main
difference is that the sketches in [37] moves the non-zeroes, while our sampling approach removes
many entries instead. Their algorithm also performs a subsequent FFT step, while our routine always
works on subsets of the matricizations. Our method is much more suitable for sparse tensors. Also,
our routine can be considered as data dependent randomization, which enjoys better approximation
accuracy than [37] in the worst case.

For direct comparison, the method in [37] and ours both require nnz(7") preprocessing at the

beginning. Then, for each iteration, our method requires O (nr?3) operations comparing with O(r(n +
Bblogb) + r3) for [37]. Here B and b for [37] are parameters for the sketching and need to be tuned
for various applications. Depending on the target accuracy, b can be as large as the input size: on the
cube synthetic tensors with n = 102 that the experiments in [37] focused on, b was set to between
24 ~ x10? and 2'¢ &~ 6 x 10* in order to converge to good relative errors.

From a distance, our method can be viewed as incorporating randomization into the intermediate steps
of algorithms, and can be viewed as higher dimensional analogs of weighted SGD algorithms [39].
Compared to more global uses of randomization [38], these more piecemeal invocations have several
advantages. For high dimensional tensors, sketching methods need to preserve all dimensions, while
the intermediate problems only involve matrices, and can often be reduced to smaller dimensions.
For approximating a rank R tensor in d dimensions to error e, this represents the difference between

poly(R, €) and ?d. Furthermore, the lower cost of each step of alternate minimization makes it much
easier to increase accuracy at the last few steps, leading to algorithms that behave the same way in
the limit. The wealth of works on reducing sizes of matrices while preserving objectives such as £,
norms, hinge losses, and M-estimators [11, 10, 8, 7] also suggest that this approach can be directly
adapted to much wider ranges of settings and objectives.

6 Experimental Results

We implemented and evaluated our algorithms in a single machine setting. The source code is
available online!. Experiments are tested on a single machine with two Intel Xeon E5-2630 v3 CPU
and 256GB memory. All methods are implemented in C++ with OpenMP parallelization. We report
averages from 5 trials.

"https://github.com/dehuacheng/SpAls

https://github.com/dehuacheng/SpAls

Dense Synthetic Tensors We start by comparing our method against the sketching based algorithm
from [37] in the single thread setting as in their evaluation. The synthetic data we tested are third-
order tensors with dimension n = 1000, as described in [37]. We generated a rank-1000 tensor
with harmonically decreasing weights on rank-1 components. And then after normalization, random
Gaussian noise with noise-to-signal nsr = 0.1, 1, 10 was added. As with previous experimental
evaluations [37], we set target rank to = 10. The performances are given in Table 1a. We vary the
sampling rate of our algorithm, i.e., SPALS(a) will sample a2 log2 n rows at each iteration.

nsr = 0.1 nsr =1 nsr = 10
error time | error time | error time
ALS-dense 027 64.8 | 1.08 66.2 | 10.08 67.6 error time
sketch(20, 14) | 0.45 6.50 | 1.37 4.70 | 11.11 4.90 ALS-sparse | 0.981 142
sketch(40, 16) | 0.30 16.0 | 1.13 12.7 | 10.27 12.4 SPALS(0.3) | 0.987 6.97
ALS-sparse 0.24 501 | 1.09 512 | 10.15 498 SPALS(1) 0983 15.7
SPALS(0.3) | 0.20 1.76 | 1.14 1.93 | 1040 1.92 SPALS(3.0) | 0.982 389
SPALS(1) 0.18 579 | 1.10 5.64 | 10.21 5.94 (b) Relative error and running
SPALS(3.0) | 0.21 159 | 1.09 16.1 | 10.15 16.16 times per iteration on the Ama-

(a) Running times per iterations in seconds and errors of various ~ zon review tensor with dimensions
alternating least squares implementations 2.44e6 x 6.64e6 x 9.26e4 and
2.02 billion non-zeros

On these instances, a call to SPALS with rate o samples was about 4.77a X 103 rows, and as the tensor
is dense, 4.77a x 10° entries. The correspondence between running times and rates demonstrate
the sublinear runtimes of SPALS with low sampling rates. Comparing with the [37], our algorithm
employs data dependent random sketch with minimal overhead, which yields significantly better
precision with similar amount of computation.

Sparse Data Tensor Our original motivation for SPALS was to handle large sparse data tensors. We
ran our algorithm on a large-scale tensor generated from Amazon review data [24]. Its sizes and
convergences of SPALS with various parameters are in Table 1b. We conduct the experiments in
parallel with 16 threads. The Amazon data tensor has a much higher noise to signal ratio than our
other experiments which common for large-scale data tensors: Running deterministic ALS with rank
10 on it leads to a relative error of 98.1%. SPALS converges rapidly towards a good approximation
with only a small fraction of time comparing with the ALS algorithm.

7 Discussion

Our experiments show that SPALS provides notable speedup over previous CP decomposition routines
on both dense and sparse data. There are two main sources of speedups: (1) the low target rank and
moderate individual dimensions enable us to compute leverage scores efficiently; and (2) the simple
representations of the sampled form also allows us to use mostly code from existing ALS routines with
minimal computational overhead. It is worth noting that in the dense case, the total number of entries
accessed during all 20 iterations is far fewer than the size of 7. Nonetheless, the adaptive nature
of the sampling scheme means all the information from 7 are taken into account while generating
the first and subsequent iterations. From a randomized algorithms perspective, the sub-linear time
sampling steps bear strong resemblances with stochastic optimization routines [34]. We believe more
systematically investigating such connections can lead to more direct connections between tensors
and randomized numerical linear algebra, and in turn further algorithmic improvements.

Acknowledgments

This work is supported in part by the U. S. Army Research Office under grant number W91 1NF-15-1-
0491, NSF Research Grant IIS-1254206 and 1IS-1134990. The views and conclusions are those of
the authors and should not be interpreted as representing the official policies of the funding agency,
or the U.S. Government.

References

[1] B.Barak,J. A. Kelner, and D. Steurer. Dictionary learning and tensor decomposition via the sum-of-squares
method. In STOC, 2015.

[2] S. Bhojanapalli and S. Sanghavi. A New Sampling Technique for Tensors. ArXiv e-prints, 2015.

[3] J. D. Carroll and J.-J. Chang. Analysis of individual differences in multidimensional scaling via an n-way
generalization of “eckart-young” decomposition. Psychometrika, 1970.

[4] D. Cheng, Y. Cheng, Y. Liu, R. Peng, and S.-H. Teng. Spectral sparsification of random-walk matrix
polynomials. arXiv preprint arXiv:1502.03496, 2015.

[5] J. H. Choi and S. Vishwanathan. Dfacto: Distributed factorization of tensors. In NIPS, 2014.

(6]
(7]
(8]
(91

(10]
(11]

(12]
(13]
(14]
(15]
[16]
(17]

(18]
(19]

(20]
(21]
(22]
(23]
[24]
[25]
(26]
(27]
(28]

(29]
(30]

(31]
(32]

(33]
[34]
(35]

(36]
[37]

(38]
(391

(40]

K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity time. In
STOC, 2013.

K. L. Clarkson and D. P. Woodruff. Input sparsity and hardness for robust subspace approximation. In
FOCS, 2015.

K. L. Clarkson and D. P. Woodruff. Sketching for m-estimators: A unified approach to robust regression.
In SODA, 2015.

M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford. Uniform sampling for matrix
approximation. In ITCS, 2015.

M. B. Cohen and R. Peng. ¢, row sampling by Lewis weights. In STOC, 2015.

A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W. Mahoney. Sampling algorithms and coresets for
\ell_p regression. SIAM Journal on Computing, 2009.

L. De Lathauwer and B. De Moor. From matrix to tensor: Multilinear algebra and signal processing. In
Institute of Mathematics and Its Applications Conference Series, 1998.

L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM
Jjournal on Matrix Analysis and Applications, 2000.

V. De Silva and L.-H. Lim. Tensor rank and the ill-posedness of the best low-rank approximation problem.
SIAM J. Matrix Anal. Appl., 2008.

P. Drineas, M. W. Mahoney, S. Muthukrishnan, and T. Sarlés. Faster least squares approximation.
Numerische Mathematik, 2011.

R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping from saddle points - online stochastic gradient for tensor
decomposition. In COLT, 2015.

R. A. Harshman. Foundations of the parafac procedure: Models and conditions for an" explanatory"
multi-modal factor analysis. 1970.

C.J. Hillar and L.-H. Lim. Most tensor problems are np-hard. Journal of the ACM (JACM), 2013.

I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos. Haten2: Billion-scale tensor decompositions. In
ICDE, 2015.

U. Kang, E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor: scaling tensor analysis up by 100
times-algorithms and discoveries. In KDD, 2012.

T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM review, 2009.

M. Li, G. Miller, and R. Peng. Iterative row sampling. In FOCS, 2013.

M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends®) in Machine
Learning, 2011.

J. McAuley and J. Leskovec. Hidden factors and hidden topics: understanding rating dimensions with
review text. In RecSys, 2013.

X. Meng and M. W. Mahoney. Low-distortion subspace embeddings in input-sparsity time and applications
to robust linear regression. In STOC, 2013.

D. Needell, R. Ward, and N. Srebro. Stochastic gradient descent, weighted sampling, and the randomized
kaczmarz algorithm. In NIPS, 2014.

J. Nelson and H. L. Nguyén. Osnap: Faster numerical linear algebra algorithms via sparser subspace
embeddings. In FOCS, 2013.

N. H. Nguyen, P. Drineas, and T. D. Tran. Tensor sparsification via a bound on the spectral norm of random
tensors. CoRR, 2010.

A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov. Tensorizing neural networks. In NIPS, 2015.
E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. Parcube: Sparse parallelizable tensor decomposi-
tions. In Machine Learning and Knowledge Discovery in Databases. Springer, 2012.

N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps. In KDD, 2013.
A.-H. Phan, P. Tichavsky, and A. Cichocki. Fast alternating s algorithms for high order candecomp/parafac
tensor factorizations. Signal Processing, IEEE Transactions on, 2013.

S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karypis. Splatt: Efficient and parallel sparse tensor-
matrix multiplication. 29th IEEE International Parallel & Distributed Processing Symposium, 2015.

T. Strohmer and R. Vershynin. A randomized kaczmarz algorithm with exponential convergence. JFAA,
20009.

J. Sun, S. Papadimitriou, C.-Y. Lin, N. Cao, S. Liu, and W. Qian. Multivis: Content-based social network
exploration through multi-way visual analysis. In SDM. SIAM, 2009.

C. E. Tsourakakis. Mach: Fast randomized tensor decompositions. In SDM. SIAM, 2010.

Y. Wang, H.-Y. Tung, A. J. Smola, and A. Anandkumar. Fast and guaranteed tensor decomposition via
sketching. In NIPS, 2015.

D. P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends®) in Theoretical
Computer Science, 2014.

J. Yang, Y. Chow, C. Ré, and M. W. Mahoney. Weighted sgd for ¢, regression with randomized precondi-
tioning. In SODA, 2016.

R. Yu, D. Cheng, and Y. Liu. Accelerated online low rank tensor learning for multivariate spatiotemporal
streams. In ICML, pages 238-247, 2015.

