
Depth from a Single Image by Harmonizing

Overcomplete Local Network Predictions

Ayan Chakrabarti
TTI-Chicago
Chicago, IL

ayanc@ttic.edu

Jingyu Shao
Dept. of Statistics, UCLA∗

Los Angeles, CA
shaojy15@ucla.edu

Gregory Shakhnarovich
TTI-Chicago
Chicago, IL

gregory@ttic.edu

Abstract

A single color image can contain many cues informative towards different as-
pects of local geometric structure. We approach the problem of monocular depth
estimation by using a neural network to produce a mid-level representation that
summarizes these cues. This network is trained to characterize local scene geom-
etry by predicting, at every image location, depth derivatives of different orders,
orientations and scales. However, instead of a single estimate for each derivative,
the network outputs probability distributions that allow it to express confidence
about some coefficients, and ambiguity about others. Scene depth is then estimated
by harmonizing this overcomplete set of network predictions, using a globalization
procedure that finds a single consistent depth map that best matches all the local
derivative distributions. We demonstrate the efficacy of this approach through
evaluation on the NYU v2 depth data set.

1 Introduction

In this paper, we consider the task of monocular depth estimation—i.e., recovering scene depth from
a single color image. Knowledge of a scene’s three-dimensional (3D) geometry can be useful in
reasoning about its composition, and therefore measurements from depth sensors are often used to
augment image data for inference in many vision, robotics, and graphics tasks. However, the human
visual system can clearly form at least an approximate estimate of depth in the absence of stereo and
parallax cues—e.g., from two-dimensional photographs—and it is desirable to replicate this ability
computationally. Depth information inferred from monocular images can serve as a useful proxy
when explicit depth measurements are unavailable, and be used to refine these measurements where
they are noisy or ambiguous.

The 3D co-ordinates of a surface imaged by a perspective camera are physically ambiguous along a
ray passing through the camera center. However, a natural image often contains multiple cues that can
indicate aspects of the scene’s underlying geometry. For example, the projected scale of a familiar
object of known size indicates how far it is; foreshortening of regular textures provide information
about surface orientation; gradients due to shading indicate both orientation and curvature; strong
edges and corners can correspond to convex or concave depth boundaries; and occluding contours or
the relative position of key landmarks can be used to deduce the coarse geometry of an object or the
whole scene. While a given image may be rich in such geometric cues, it is important to note that
these cues are present in different image regions, and each indicates a different aspect of 3D structure.

We propose a neural network-based approach to monocular depth estimation that explicitly leverages
this intuition. Prior neural methods have largely sought to directly regress to depth [1, 2]—with some
additionally making predictions about smoothness across adjacent regions [4], or predicting relative

∗Part of this work was done while JS was a visiting student at TTI-Chicago.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Figure 1: To recover depth from a single image, we first use a neural network trained to characterize
local depth structure. This network produces distributions for values of various depth derivatives—of
different orders, at multiple scales and orientations—at every pixel, using global scene features and
those from a centered local image patch (top left). A distributional output allows the network to
determine different derivatives at different locations with different degrees of certainty (right). An
efficient globalization algorithm is then used to produce a single consistent depth map estimate.

depth ordering between pairs of image points [7]. In contrast, we train a neural network with a rich
distributional output space. Our network characterizes various aspects of the local geometric structure
by predicting values of a number of derivatives of the depth map—at various scales, orientations, and
of different orders (including the 0th derivative, i.e., the depth itself)—at every image location.

However, as mentioned above, we expect different image regions to contain cues informative towards
different aspects of surface depth. Therefore, instead of over-committing to a single value, our
network outputs parameterized distributions for each derivative, allowing it to effectively characterize
the ambiguity in its predictions. The full output of our network is then this set of multiple distributions
at each location, characterizing coefficients in effectively an overcomplete representation of the depth
map. To recover the depth map itself, we employ an efficient globalization procedure to find the
single consistent depth map that best agrees with this set of local distributions.

We evaluate our approach on the NYUv2 depth data set [11], and find that it achieves state-of-the-art
performance. Beyond the benefits to the monocular depth estimation task itself, the success of our
approach suggests that our network can serve as a useful way to incorporate monocular cues in more
general depth estimation settings—e.g., when sparse or noisy depth measurements are available. Since
the output of our network is distributional, it can be easily combined with partial depth cues from other
sources within a common globalization framework. Moreover, we expect our general approach—of
learning to predict distributions in an overcomplete respresentation followed by globalization—to
be useful broadly in tasks that involve recovering other kinds of scene value maps that have rich
structure, such as optical or scene flow, surface reflectances, illumination environments, etc.

2 Related Work

Interest in monocular depth estimation dates back to the early days of computer vision, with methods
that reasoned about geometry from cues such as diffuse shading [12], or contours [13, 14]. However,
the last decade has seen accelerated progress on this task [1–10], largely owing to the availability of
cheap consumer depth sensors, and consequently, large amounts of depth data for training learning-
based methods. Most recent methods are based on training neural networks to map RGB images
to geometry [1–7]. Eigen et al. [1, 2] set up their network to regress directly to per-pixel depth
values, although they provide deeper supervision to their network by requiring an intermediate layer

2

to explicitly output a coarse depth map. Other methods [3, 4] use conditional random fields (CRFs)
to smooth their neural estimates. Moreover, the network in [4] also learns to predict one aspect of
depth structure, in the form of the CRF’s pairwise potentials.

Some methods are trained to exploit other individual aspects of geometric structure. Wang et al. [6]
train a neural network to output surface normals instead of depth (Eigen et al. [1] do so as well, for a
network separately trained for this task). In a novel approach, Zoran et al. [7] were able to train a
network to predict the relative depth ordering between pairs of points in the image—whether one
surface is behind, in front of, or at the same depth as the other. However, their globalization scheme
to combine these outputs was able to achieve limited accuracy at estimating actual depth, due to the
limited information carried by ordinal pair-wise predictions.

In contrast, our network learns to reason about a more diverse set of structural relationships, by
predicting a large number of coefficients at each location. Note that some prior methods [3, 5] also
regress to coefficients in some basis instead of to depth values directly. However, their motivation
for this is to reduce the complexity of the output space, and use basis sets that have much lower
dimensionality than the depth map itself. Our approach is different—our predictions are distributions
over coefficients in an overcomplete representation, motivated by the expectation that our network
will be able to precisely characterize only a small subset of the total coefficients in our representation.

Our overall approach is similar to, and indeed motivated by, the recent work of Chakrabarti et al. [15],
who proposed estimating a scene map (they considered disparity estimation from stereo images)
by first using local predictors to produce distributional outputs from many overlapping regions at
multiple scales, followed by a globalization step to harmonize these outputs. However, in addition to
the fact that we use a neural network to carry out local inference, our approach is different in that
inference is not based on imposing a restrictive model (such as planarity) on our local outputs. Instead,
we produce independent local distributions for various derivatives of the depth map. Consequently,
our globalization method need not explicitly reason about which local predictions are “outliers” with
respect to such a model. Moreover, since our coefficients can be related to the global depth map
through convolutions, we are able to use Fourier-domain computations for efficient inference.

3 Proposed Approach

We formulate our problem as that of estimating a scene map y(n) ∈ R, which encodes point-wise
scene depth, from a single RGB image x(n) ∈ R

3, where n ∈ Z
2 indexes location on the image

plane. We represent this scene map y(n) in terms of a set of coefficients {wi(n)}Ki=1 at each location
n, corresponding to various spatial derivatives. Specifically, these coefficients are related to the scene
map y(n) through convolution with a bank of derivative filters {ki}Ki=1, i.e.,

wi(n) = (y ∗ ki)(n). (1)

For our task, we define {ki} to be a set of 2D derivative-of-Gaussian filters with standard deviations
2s pixels, for scales s = {1, 2, 3}. We use the zeroth order derivative (i.e., the Gaussian itself),
first order derivatives along eight orientations, as well as second order derivatives—along each of
the orientations, and orthogonal orientations (see Fig. 1 for examples). We also use the impulse
filter which can be interpreted as the zeroth derivative at scale 0, with the corresponding coefficients
wi(n) = y(n)—this gives us a total of K = 64 filters. We normalize the first and second order filters
to be unit norm. The zeroth order filters coefficients typically have higher magnitudes, and in practice,
we find it useful to normalize them as ‖ki‖2 = 1/4 to obtain a more balanced representation.

To estimate the scene map y(n), we first use a convolutional neural network to output distributions
for the coefficients p (wi(n)), for every filter i and location n. We choose a parametric form for these
distributions p(·), with the network predicting the corresponding parameters for each coefficient. The
network is trained to produce these distributions for each set of coefficients {wi(n)} by using as input
a local region centered around n in the RGB image x. We then form a single consistent estimate
of y(n) by solving a global optimization problem that maximizes the likelihood of the different
coefficients of y(n) under the distributions provided by our network. We now describe the different
components of our approach (which is summarized in Fig. 1)—the parametric form for our local
coefficient distributions, the architecture of our neural network, and our globalization method.

3

Figure 2: We train a neural network to output distributions for K depth derivatives {wi(n)} at each
location n, using a color image as input. The distributions are parameterized as Gaussian mixtures,
and the network produces the M mixture weights for each coefficient. Our network includes a local
path (green) with a cascade of convolution layers to extract features from a 97×97 patch around each
location n; and a scene path (red) with pre-trained VGG-19 layers to compute a single scene feature
vector. We learn a linear map (with x32 upsampling) from this scene vector to per-location features.
The local and scene features are concatenated and used to generate the final distributions (blue).

3.1 Parameterizing Local Distributions

Our neural network has to output a distribution, rather than a single estimate, for each coefficient
wi(n). We choose Gaussian mixtures as a convenient parametric form for these distributions:

pi,n (wi(n)) =

M
∑

j=1

p̂ji (n)
1√
2πσi

exp

(

−|wi(n)− cji |2
2σ2

i

)

, (2)

where M is the number of mixture components (64 in our implementation), σ2
i is a common variance

for all components for derivative i, and {cji} the individual component means. A distribution for a
specific coefficient wi(n) can then characterized by our neural network by producing the mixture

weights {p̂ji (n)},
∑

j p̂
j
i (n) = 1, for each wi(n) from the scene’s RGB image.

Prior to training the network, we fix the means {cji} and variances {σ2
i } based on a training set of

ground truth depth maps. We use one-dimensional K-means clustering on sets of training coefficient

values {wi} for each derivative i, and set the means cji in (2) above to the cluster centers. We set σ2
i

to the average in-cluster variance—however, since these coefficients have heavy-tailed distributions,
we compute this average only over clusters with more than a minimum number of assignments.

3.2 Neural Network-based Local Predictions

Our method uses a neural network to predict the mixture weights p̂ji (n) of the parameterization in (2)
from an input color image. We train our network to output K ×M numbers at each pixel location

n, which we interpret as a set of M -dimensional vectors corresponding to the weights {p̂ji (n)}j ,
for each of the K distributions of the coefficients {wi(n)}i. This training is done with respect to a

loss between the predicted p̂ji (n), and the best fit of the parametric form in (2) to the ground truth

derivative value wi(n). Specifically, we define qji (n) in terms of the true wi(n) as:

qji (n) ∝ exp

(

−|wi(n)− cji |2
2σ2

i

)

,
∑

j

qji (n) = 1, (3)

and define the training loss L in terms of the KL-divergence between these vectors qji (n) and the

network predictions p̂ji (n), weighting the loss for each derivative by its variance σ2
i :

L = − 1

NK

∑

i,n

σ2
i

M
∑

j=1

qji (n)
(

log p̂ji (n)− log qji (n)
)

, (4)

4

where N is the total number of locations n.

Our network has a fairly high-dimensional output space—corresponding to K ×M numbers, with
(M − 1) × K degrees of freedom, at each location n. Its architecture, detailed in Fig. 2, uses a
cascade of seven convolution layers (each with ReLU activations) to extract a 1024-dimensional local
feature vector from each 97× 97 local patch in the input image. To further add scene-level semantic
context, we include a separate path that extracts a single 4096-dimensional feature vector from
the entire image—using pre-trained layers (upto pool5) from the VGG-19 [16] network, followed
downsampling with averaging by a factor of two, and a fully connected layer with a ReLU activation
that is trained with dropout. This global vector is used to derive a 64-dimensional vector for each
location n—using a learned layer that generates a feature map at a coarser resolution, that is then
bi-linearly upsampled by a factor of 32 to yield an image-sized map.

The concatenated local and scene-level features are passed through two more hidden layers (with

ReLU activations). The final layer produces the K ×M -vector of mixture weights p̂ji (n), applying a

separate softmax to each of the M -dimensional vector {pji (n)}j . All layers in the network are learned
end-to-end, with the VGG-19 layers finetuned with a reduced learning rate factor of 0.1 compared to
the rest of the network. The local path of the network is applied in a “fully convolutional” way [17]
during training and inference, allowing efficient reuse of computations between overlapping patches.

3.3 Global Scene Map Estimation

Applying our neural network to a given input image produces a dense set of distributions pi,n(wi(n))
for all derivative coefficients at all locations. We combine these to form a single coherent estimate by
finding the scene map y(n) whose coefficients {wi(n)} have high likelihoods under the corresponding
distributions {pi,n(·)}. We do this by optimizing the following objective:

y = argmax
y

∑

i,n

σ2
i log pi,n ((ki ∗ y)(n)) , (5)

where, like in (4), the log-likelihoods for different derivatives are weighted by their variance σ2
i .

The objective in (5) is a summation over a large (K times image-size) number of non-convex terms,
each of which depends on scene values y(n) at multiple locations n in a local neighborhood—
based on the support of filter ki. Despite the apparent complexity of this objective, we find that
approximate inference using an alternating minimization algorithm, like in [15], works well in
practice. Specifically, we create explicit auxiliary variables wi(n) for the coefficients, and solve the
following modified optimization problem:

y = argmin
y

min
{wi(n)}

−





∑

i,n

σ2
i log pi,n (wi(n))



+
β

2

∑

i,n

(wi(n)− (ki ∗ y)(n))2 +
1

2
R(y). (6)

Note that the second term above forces coefficients of y(n) to be equal to the corresponding auxiliary
variables wi(n), as β → ∞. We iteratively compute (6), by alternating between minimizing the
objective with respect to y(n) and to {wi(n)}, keeping the other fixed, while increasing the value of
β across iterations.

Note that there is also a third regularization term R(y) in (6), which we define as

R(y) =
∑

r

∑

n

‖(∇r ∗ y)(n)‖2, (7)

using 3× 3 Laplacian filters, at four orientations, for {∇r}. In practice, this term only affects the
computation of y(n) in the initial iterations when the value of β is small, and in later iterations is
dominated by the values of wi(n). However, we find that adding this regularization allows us to
increase the value of β faster, and therefore converge in fewer iterations.

Each step of our alternating minimization can be carried out efficiently. When y(n) fixed, the
objective in (6) can be minimized with respect to each coefficient wi(n) independently as:

wi(n) = argmin
w

− log pi,n(w) +
β

2σ2
i

(w − w̄i(n))
2, (8)

5

where w̄i(n) = (ki ∗ y)(n) is the corresponding derivative of the current estimate of y(n). Since
pi,n(·) is a mixture of Gaussians, the objective in (8) can also be interpreted as the (scaled) negative

log-likelihood of a Gaussian-mixture, with “posterior” mixture means w̄j
i (n) and weights p̄ji (n):

w̄j
i (n) =

cij + βw̄i(n)

1 + β
, p̄ji (n) ∝ p̂ji (n) exp

(

− β

β + 1

(cji − w̄i(n))
2

2σ2
i

)

. (9)

While there is no closed form solution to (8), we find that a reasonable approximation is to simply set

wi(n) to the posterior mean value w̄j
i (n) for which weight p̄ji (n) is the highest.

The second step at each iteration involves minimizing (6) with respect to y given the current estimates
of wi(n). This is a simple least-squares minimization given by

y = argmin
y

β
∑

i,n

((ki ∗ y)(n)− w(n))
2
+
∑

r,n

‖(∇r ∗ y)(n)‖2. (10)

Note that since all terms above are related to y by convolutions with different filters, we can carry out
this minimization very efficiently in the Fourier domain.

We initialize our iterations by setting wi(n) simply to the component mean cji for which our predicted

weight p̂ji (n) is highest. Then, we apply the y and {wi(n)} minimization steps alternatingly, while

increasing β from 2−10 to 27, by a factor of 21/8 at each iteration.

4 Experimental Results

We train and evaluate our method on the NYU v2 depth dataset [11]. To construct our training and
validation sets, we adopt the standard practice of using the raw videos corresponding to the training
images from the official train/test split. We randomly select 10% of these videos for validation,
and use the rest for training our network. Our training set is formed by sub-sampling video frames
uniformly, and consists of roughly 56,000 color image-depth map pairs. Monocular depth estimation
algorithms are evaluated on their accuracy in the 561× 427 crop of the depth map that contains a
valid depth projection (including filled-in areas within this crop). We use the same crop of the color
image as input to our algorithm, and train our network accordingly.

We let the scene map y(n) in our formulation correspond to the reciprocal of metric depth, i.e., y(n) =
1/z(n). While other methods use different compressive transform (e.g., [1, 2] regress to log z(n)), our
choice is motivated by the fact that points on the image plane are related to their world co-ordinates
by a perspective transform. This implies, for example, that in planar regions the first derivatives of
y(n) will depend only on surface orientation, and that second derivatives will be zero.

4.1 Network Training

We use data augmentation during training, applying random rotations of ±5◦ and horizontal flips
simultaneously to images and depth maps, and random contrast changes to images. We use a fully
convolutional version of our architecture during training with a stride of 8 pixels, yielding nearly
4000 training patches per image. We train the network using SGD for a total of 14 epochs, using a
batch size of only one image and a momentum value of 0.9. We begin with a learning rate of 0.01,
and reduce it after the 4th, 8th, 10th, 12th, and 13th epochs, each time by a factor of two. This
schedule was set by tracking the post-globalization depth accuracy on a validation set.

4.2 Evaluation

First, we analyze the informativeness of individual distributional outputs from our neural network.
Figure 3 visualizes the accuracy and confidence of the local per-coefficient distributions produced by
our network on a typical image. For various derivative filters, we display maps of the absolute error
between the true coefficient values wi(n) and the mean of the corresponding predicted distributions
{pi,n(·)}. Alongside these errors, we also visualize the network’s “confidence” in terms of a map of
the standard deviations of {pi,n(·)}. We see that the network makes high confidence predictions for
different derivatives in different regions, and that the number of such high confidence predictions is
least for zeroth order derivatives. Moreover, we find that all regions with high predicted confidence

6

Table 1: Effect of Individual Derivatives on Global Estimation Accuracy (on 100 validation images)

Lower Better Higher Better

Filters RMSE (lin.) RMSE(log) Abs Rel. Sqr Rel. δ < 1.25 δ < 1.252 δ < 1.253

Full 0.6921 0.2533 0.1887 0.1926 76.62% 91.58% 96.62%

Scale 0,1 (All orders) 0.7471 0.2684 0.2019 0.2411 75.33% 90.90% 96.28%

Scale 0,1,2 (All orders) 0.7241 0.2626 0.1967 0.2210 75.82% 91.12% 96.41%

Order 0 (All scales) 0.7971 0.2775 0.2110 0.2735 73.64% 90.40% 95.99%

Order 0,1 (All scales) 0.6966 0.2542 0.1894 0.1958 76.56% 91.53% 96.62%

Scale 0 (Pointwise Depth) 0.7424 0.2656 0.2005 0.2177 74.50% 90.66% 96.30%

Figure 3: We visualize the informativeness of the local predictions from our network (on an image
from the validation set). We show the accuracy and confidence of the predicted distributions for
coefficients of different derivative filters (shown inset), in terms of the error between the distribution
mean and true coefficient value, and the distribution standard deviation respectively. We find that
errors are always low in regions of high confidence (low standard deviation). We also find that despite
the fact that individual coefficients have many low-confidence regions, our globalization procedure is
able to combine them to produce an accurate depth map.

(i.e., low standard deviation) also have low errors. Figure 3 also displays the corresponding global
depth estimates, along with their accuracy relative to the ground truth. We find that despite having
large low-confidence regions for individual coefficients, our final depth map is still quite accurate. This
suggests that the information from different coefficients’ predicted distributions is complementary.

To quantitatively characterize the contribution of the various components of our overcomplete
representation, we conduct an ablation study on 100 validation images. With the same trained
network, we include different subsets of filter coefficients for global estimation—leaving out either
specific derivative orders, or scales—and report their accuracy in Table 1. We use the standard
metrics from [2] for accuracy between estimated and true depth values ẑ(n) and z(n) across all
pixels in all images: root mean square error (RMSE) of both z and log z, mean relative error
(|z(n) − ẑ(n)|/z(n)) and relative square error (|z(n) − ẑ(n)|2/z(n)), as well as percentages of
pixels with error δ = max(z(n)/ẑ(n), ẑ(n)/z(n)) below different thresholds. We find that removing
each of these subsets degrades the performance of the global estimation method—with second order
derivatives contributing least to final estimation accuracy. Interestingly, combining multiple scales but
with only zeroth order derivatives performs worse than using just the point-wise depth distributions.

Finally, we evaluate the performance of our method on the NYU v2 test set. Table 2 reports the
quantitative performance of our method, along with other state-of-the-art approaches over the entire
test set, and we find that the proposed method yields superior performance on most metrics. Figure 4
shows example predictions from our approach and that of [1]. We see that our approach is often able
to better reproduce local geometric structure in its predictions (desk & chair in column 1, bookshelf
in column 4), although it occasionally mis-estimates the relative position of some objects (e.g., globe
in column 5). At the same time, it is also usually able to correctly estimate the depth of large and
texture-less planar regions (but, see column 6 for an example failure case).

Our overall inference method (network predictions and globalization) takes 24 seconds per-image
when using an NVIDIA Titan X GPU. The source code for implementation, along with a pre-trained
network model, are available at http://www.ttic.edu/chakrabarti/mdepth.

7

http://www.ttic.edu/chakrabarti/mdepth

Table 2: Depth Estimation Performance on NYUv2 [11] Test Set

Lower Better Higher Better

Method RMSE (lin.) RMSE(log) Abs Rel. Sqr Rel. δ < 1.25 δ < 1.252 δ < 1.253

Proposed 0.620 0.205 0.149 0.118 80.6% 95.8% 98.7%

Eigen 2015 [1] (VGG) 0.641 0.214 0.158 0.121 76.9% 95.0% 98.8%

Wang [3] 0.745 0.262 0.220 0.210 60.5% 89.0% 97.0%

Baig [5] 0.802 - 0.241 - 61.0% - -

Eigen 2014 [2] 0.877 0.283 0.214 0.204 61.4% 88.8% 97.2%

Liu [4] 0.824 - 0.230 - 61.4% 88.3% 97.1%

Zoran [7] 1.22 0.43 0.41 0.57 - - -

Figure 4: Example depth estimation results on NYU v2 test set.

5 Conclusion

In this paper, we described an alternative approach to reasoning about scene geometry from a single
image. Instead of formulating the task as a regression to point-wise depth values, we trained a neural
network to probabilistically characterize local coefficients of the scene depth map in an overcomplete
representation. We showed that these local predictions could then be reconciled to form an estimate
of the scene depth map using an efficient globalization procedure. We demonstrated the utility of our
approach by evaluating it on the NYU v2 depth benchmark.

Its performance on the monocular depth estimation task suggests that our network’s local predictions
effectively summarize the depth cues present in a single image. In future work, we will explore how
these predictions can be used in other settings—e.g., to aid stereo reconstruction, or improve the
quality of measurements from active and passive depth sensors. We are also interested in exploring
whether our approach of training a network to make overcomplete probabilistic local predictions can
be useful in other applications, such as motion estimation or intrinsic image decomposition.

Acknowledgments. AC acknowledges support for this work from the National Science Foundation
under award no. IIS-1618021, and from a gift by Adobe Systems. AC and GS thank NVIDIA
Corporation for donations of Titan X GPUs used in this research.

8

References

[1] D. Eigen and R. Fergus. Predicting depth, surface normals and semantic labels with a common
multi-scale convolutional architecture. In Proc. ICCV, 2015.

[2] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction from a single image using a
multi-scale deep network. In NIPS, 2014.

[3] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. Yuille. Towards unified depth and semantic
prediction from a single image. In Proc. CVPR, 2015.

[4] F. Liu, C. Shen, and G. Lin. Deep convolutional neural fields for depth estimation from a single
image. In Proc. CVPR, 2015.

[5] M. Baig and L. Torresani. Coupled depth learning. In Proc. WACV, 2016.
[6] X. Wang, D. Fouhey, and A. Gupta. Designing deep networks for surface normal estimation. In

Proc. CVPR, 2015.
[7] D. Zoran, P. Isola, D. Krishnan, and W. T. Freeman. Learning ordinal relationships for mid-level

vision. In Proc. ICCV, 2015.
[8] K. Karsch, C. Liu, and S. B. Kang. Depth extraction from video using non-parametric sampling.

In Proc. ECCV. 2012.
[9] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of perspective. In Proc. CVPR, 2014.

[10] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from single monocular images. In NIPS,
2005.

[11] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor segmentation and support inference
from rgbd images. In Proc. ECCV. 2012.

[12] B. K. Horn and M. J. Brooks. Shape from shading. MIT Press, 1986.
[13] M. B. Clowes. On seeing things. Artificial intelligence, 1971.
[14] K. Sugihara. Machine interpretation of line drawings. MIT Press, 1986.
[15] A. Chakrabarti, Y. Xiong, S. Gortler, and T. Zickler. Low-level vision by consensus in a spatial

hierarchy of regions. In Proc. CVPR, 2015.
[16] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details:

Delving deep into convolutional nets. In Proc. BMVC, 2014.
[17] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.

In Proc. CVPR, 2015.

9

