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Abstract

We investigate a subclass of exponential family graphical models of which the
sufficient statistics are defined by arbitrary additive forms. We propose two ℓ2,1-
norm regularized maximum likelihood estimators to learn the model parameters
from i.i.d. samples. The first one is a joint MLE estimator which estimates all
the parameters simultaneously. The second one is a node-wise conditional MLE
estimator which estimates the parameters for each node individually. For both
estimators, statistical analysis shows that under mild conditions the extra flexibil-
ity gained by the additive exponential family models comes at almost no cost of
statistical efficiency. A Monte-Carlo approximation method is developed to effi-
ciently optimize the proposed estimators. The advantages of our estimators over
Gaussian graphical models and Nonparanormal estimators are demonstrated on
synthetic and real data sets.

1 Introduction

As an important class of statistical models for exploring the interrelationship among a large number
of random variables, undirected graphical models (UGMs) have enjoyed popularity in a wide range
of scientific and engineering domains, including statistical physics, computer vision, data mining,
and computational biology. Let X = [X1, ..., Xp]

⊤ be a p-dimensional random vector with each
variable Xi taking values in a set X . Suppose G = (V,E) is an undirected graph consists of a set
of vertices V = {1, ..., p} and a set of unordered pairs E representing edges between the vertices.
The pairwise UGMs over X corresponding to G can be written as the following exponential family
distribution:

P(X; θ) ∝ exp

∑
s∈V

θsφs(Xs) +
∑

(s,t)∈E

θstϕst(Xs, Xt)

 . (1)

In such a pairwise model, (Xs, Xt) are conditionally independent (given the rest of the variables)
if and only if the weight θst is zero. The most popular instances of pairwise UGMs are Gaussian
graphical models (GGMs) [19, 2] for real-valued random variables and Ising (or Potts) models [15]
for binary or finite nominal discrete random variables. More broadly, in order to derive multivari-
ate graphical models from univariate exponential family distributions (such as the Gaussian, bino-
mial/multinomial, Poisson, exponential distributions, etc.), the exponential family graphical models
(EFGMs) [27, 21] were proposed as a unified framework to learn UGMs with node-wise conditional
distributions arising from generalized linear models (GLMs).
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1.1 Overview of contribution

A fundamental issue that arises in UGMs is to specify sufficient statistics, i.e.,
{φs(Xs), ϕst(Xs, Xt)}, for modeling the interactions among variables. It is noteworthy that
most prior pairwise UGMs use pairwise product of variables (or properly transformed variables)
as pairwise sufficient statistics [16, 11, 27]. This is clearly restrictive in modern data analysis
tasks where the underlying pairwise interactions among variables are more often than not highly
complex and unknown a prior. The goal of this work is to remove such a restriction and explore
the feasibility (in theory and practice) of defining sufficient statistics in an additive formulation to
approximate the underlying unknown sufficient statistics. To this end, we consider the following
Additive Exponential Family Graphical Model (AdEFGM) distribution with joint density function:

P(X; f) = exp

∑
s∈V

fs(Xs) +
∑

(s,t)∈E

fst(Xs, Xt)−A(f)

 , (2)

where fs : X → R and fst(·, ·) : X 2 → R are respectively node-wise and pairwise statistics, and
A(f) := log

∫
Xp exp

{∑
s∈V fs(Xs) +

∑
(s,t)∈E fst(Xs, Xt)

}
dX is the log-partition function.

We require the condition A(f) < ∞ holds so that the definition of probability is valid. In this paper,
we assume the formulations of sufficient statistics fs and fst are unknown but they admit linear
representations over two sets of pre-fixed basis functions {φk(·), k = 1, 2, ..., q} and {ϕl(·, ·), l =
1, 2, ..., r}, respectively. That is,

fs(Xs) =

q∑
k=1

θs,kφk(Xs), fst(Xs, Xt) =

r∑
l=1

θst,lϕl(Xs, Xt), (3)

where q and r are the truncation order parameters. In the formulation (3), the choice of basis and
their sizes is flexible and task-dependent. For instance, if the mapping functions fs and fst are
periodic, then we can choose {φk(·)} as 1-D Fourier basis and {ϕl(·, ·)} as 2-D Fourier basis. As
another instance, the basis {ϕl} can be chosen as multiple kernels which are commonly used in
computer vision tasks. Specially, when q = r = 1, ϕl(Xs, Xt) = XsXt and φk(Xs) is fixed as
certain parametric function, AdEFGM reduces to the standard EFGM [27, 21]. In general cases, by
imposing an additive structure on the sufficient statistics fs and fst, AdEFGM is expected to be able
to capture more complex interactions among variables beyond pairwise product.

As the core contribution of this paper, we propose two ℓ2,1-norm regularized maximum likelihood
estimation (MLE) estimators to learn the weights of AdEFGM in high dimensional settings. The
first estimator is formulated as an ℓ2,1-norm regularized MLE to jointly estimate all the parameters
in the model. The second estimator is formulated as an ℓ2,1-norm regularized node-wise conditional
MLE to estimate the parameters associated with each node individually. Theoretically, we prove that
under mild conditions the joint MLE estimator achieves convergence rate O((

√
(2|E|+ p) ln p/n)

where |E| while the node-wise conditional estimator achieves convergence rate O(
√
(d+ 1) ln p/n)

in which d is the degree of the underlying graph G. Computationally, we propose a Monte-Carlo
approximation scheme to efficiently optimize the estimators via proximal gradient descent methods.
We conduct numerical studies on simulated and real data to support our claims. The simulation
results confirm that, when the data are drawn from an underlying UGMs with highly nonlinear suf-
ficient statistics, our estimators significantly outperform GGMs and Nonparanormal [10] estimators
in most cases. The experimental results on a stock price data show that our estimators are able to
recover more accurate category links among stocks than GMMs and Nonparanormal estimators.

1.2 Related work

In order to model random variables beyond parametric UGMs such as GGMs and Ising models, re-
searchers recently investigated semi-parametric/nonparametric extensions of these parametric mod-
els. The Nonparanormal [11] and copula-based methods [5] are semi-parametric graphical models
which assume that data is Gaussian after applying a monotone transformation. More broadly, one
could learn transformations of the variables and then fit any parametric UGMs (like EFGMs) over
the transformed variables. In [10, 26], two rank-based estimators were used to estimate correlation
matrix and then fit the GGMs. In [24], a semi-parametric method was proposed to fit the conditional
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means of the features with an arbitrary additive formulation. The Semi-EFGM proposed in [28] is
a semi-parametric rank-based conditional estimator for exponential family graphical models. In [1],
a kernel method was proposed for learning the structure of graphical models by treating variables
as Gaussians in a mapped high-dimensional feature space. In [7], Gu proposed a functional min-
imization framework to estimate the nonparametric model (1) over a Reproducing Hilbert Kernel
Space (RKHS). Nonparametric exponential family graphical models based on score matching loss
were investigated in [9, 20]. The forest density estimation [8] is a fully nonparametric method for
estimating UGMs with structure restricted to be a forest. In contrast to all these existing semi-
parametric/nonparametric models, our approach is novel in model definition and computation: we
impose a simple additive structure on sufficient statistics to describe complex interactions between
variables and use Monte-Carlo approximation to estimate the intractable normalization constant for
efficient optimization.

1.3 Notation and organization

Notation Let θ = {θs,k, θst,l : s ∈ V, k = 1, 2, .., , (s, t) ∈ V 2, s ̸= t, l = 1, 2, ...} be a vector
of parameters associated with AdEFGM and G = {{(s, k)}k, {(st, l)}l : s ∈ V, (s, t) ∈ V 2, s ̸=
t} be a group induced by the additive structures of nodes and edges. We conventionally define
the following grouped-norm related notations: ∥θ∥2,1 =

∑
g∈G ∥θg∥, ∥θ∥2,∞ = maxg∈G ∥θg∥,

supp(θ,G) = {g ∈ G : ∥θg∥ ̸= 0} and ∥θ∥2,0 = |supp(θ,G)|. For any S ⊆ G, these notations can
be defined restrictively over θS . We denote S̄ = G \ S the complement of S in G.

Organization. The remaining of this paper is organized as follows: In §2, we present two maximum
likelihood estimators for learning the model parameters of AdEFGM. The statistical guarantees of
the proposed estimators are analyzed in §3. Monte-Carlo simulations and experimental results on
real stock price data are presented in §4. Finally, we conclude this paper in §5. Due to space limit,
all the technical proofs of theoretical results are deferred to an appendix section which is included
in the supplementary material.

2 ℓ2,1-norm Regularized MLE for AdEFGM

In this section, we investigate the problem of estimating the parameters of AdEFGM in high dimen-
sional settings. By substituting (3) into (2), the distribution of an AdEFGM can be converted to the
following form:

P(X; θ) = exp {B(X; θ)−A(θ)} , (4)
where θ = {θs,k, θst,l}, and

B(X; θ) :=
∑
s∈V,k

θs,kφk(Xs) +
∑

(s,t)∈E,l

θst,lϕl(Xs, Xt), A(θ) := log

∫
Xp

exp {B(X; θ)} dX.

Suppose we have n i.i.d. samples Xn = {X(i)}ni=1 drawn from the following AdEFGM with true
parameters θ∗:

P(X; θ∗) = exp {B(X; θ∗)−A(θ∗)} . (5)
An important goal of graphical model learning is to estimate the true parameters θ∗ from the ob-
served data Xn. The more accurate parameter estimation is, the more accurate we are able to recover
the underlying true graph structure. We next propose two ℓ2,1-norm regularized maximum likelihood
estimation (MLE) methods for joint and node-conditional learning of parameters, respectively.

2.1 Joint MLE estimation

Given the sample set Xn = {X(i)}ni=1, the negative log-likelihood of the joint distribution (5) is:

L(θ;Xn) = − 1

n

n∑
i=1

B(X(i); θ) +A(θ).

It is trivial to verify L(θ;Xn) has the following first order derivative (see, e.g., [25]):

∂L

∂θs,k
= Eθ[φk(Xs)]−

1

n

n∑
i=1

φk(X
(i)
s ),

∂L

∂θst,l
= Eθ[ϕl(Xs, Xt)]−

1

n

n∑
i=1

ϕl(X
(i)
s , X

(i)
t ), (6)
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where the expectation Eθ[·] is taken over the joint distribution (2). Also, it is well known that
L(θ;Xn) is convex in θ.

In order to estimate the parameters which are expected to be sparse in edge level due to the potential
sparse structure of graph, we consider the following ℓ2,1-norm regularized MLE estimator:

θ̂n = argmin
θ

{L(θ;Xn) + λn∥θ∥2,1} , (7)

where ∥θ∥2,1 =
∑

s∈V

(∑q
k=1 θ

2
s,k

)1/2
+
∑

(s,t)∈V 2,s̸=t

(∑r
l=1 θ

2
st,l

)1/2
is the ℓ2,1-norm with

respect to the basis statistics and λn > 0 is the regularization strength parameter dependent on n.
The ℓ2,1-norm penalty is used to promote edgewise sparsity as the graph structure is expected to be
sparse in high dimensional settings.

2.2 Node-conditional MLE estimation

Recent state of the art methods for learning UGMs suggest a natural procedure deriving multivariate
graphical models from univariate distributions [12, 15, 27]. The common idea in these methods is
to learn the graph structure by estimating node-neighborhoods, or by fitting the node-conditional
distribution of each individual node conditioned on the rest of the nodes. Indeed, these node-wise
fitting methods have been shown to have strong statistical guarantees and attractive computational
performance. Inspired by these approaches, we propose an alternative estimator to estimate the
weights of sufficient statistics associated with each individual node. With a slight abuse of notation,
we denote θs a subvector of θ associated with node s, i.e.,

θs := {θs,k | k = 1, ..., q} ∪ {θst,l | t ∈ N(s), l = 1, ..., r},

where N(s) is the neighborhood of s. Given the joint distribution (4), it is easy to show that the
conditional distribution of Xs given the rest variables, X\s, is written by:

P(Xs | X\s; θs) = exp
{
C(Xs | X\s; θs)−D(X\s; θs)

}
, (8)

where C(Xs | X\s; θs) :=
∑

k θs,kφk(Xs) +
∑

t∈N(s),l θst,lϕl(Xs, Xt), and D(X\s; θs) :=

log
∫
X exp

{
C(Xs | X\s; θs)

}
dXs is the log-partition function which ensures normalization. We

note that the condition A(θ) < ∞ for the joint log-partition function implies D(X\s; θs) < ∞.

In order to estimate the parameters associated with a node, we consider using the sparsity regularized
conditional maximum likelihood estimation. Given n independent samples Xn drawn from (5), we
can write the negative log-likelihood of the conditional distribution as:

L̃(θs;Xn) =
1

n

n∑
i=1

{
−C(X(i)

s | X(i)
\s ; θs) +D(X

(i)
\s ; θs)

}
.

It is standard that L̃(θs;Xn) is convex with respect to θs and it has the following first-order derivative:

∂L̃(θs;Xn)

∂θs,k
=
1

n

n∑
i=1

{
−φk(X

(i)
s ) + Eθs [φk(Xs) | X(i)

\s ]
}
,

∂L̃(θs;Xn)

∂θst,l
=
1

n

n∑
i=1

{
−ϕl(X

(i)
s , X

(i)
t ) + Eθs [ϕl(Xs, X

(i)
t ) | X(i)

\s ]
}
,

(9)

where the expectation Eθs [· | X\s] is taken over the node-wise conditional distribution (8).

Let us consider the following ℓ2,1-norm regularized conditional MLE formulation associated with
the variable Xs:

θ̂ns = argmin
θs

{
L̃(θs;Xn) + λn∥θs∥2,1

}
, (10)

where ∥θs∥2,1 =
(∑q

k=1 θ
2
s,k

)1/2
+
∑

t̸=s

(∑r
l=1 θ

2
st,l

)1/2
is the grouped ℓ2,1-norm with respect to

the node-wise and pairwise basis associated with s and λn > 0 controls the regularization strength.
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2.3 Computation via Monte-Carlo approximation

We consider using proximal gradient descent methods [22] to solve the composite optimization
problems in (7) and (10). For both estimators, the major computational overhead is to iteratively
calculate the expectation terms involved in the gradients ∇L(θ;Xn) and ∇L̃(θs;Xn). In general,
these expectation terms have no close-form for exact calculation and sampling methods such as im-
portance sampling and MCMC are usually needed for approximate estimation. There are, however,
two challenging issues with such a sampling based optimization procedure: (1) the multivariate
sampling methods typically suffer from high computational cost even when the dimensionality p
is moderately large; and (2) the non-vanishing sampling error of gradient will accumulate during
the iteration which according to the results in [18] will deteriorate the overall convergence perfor-
mance. Obviously, the main source of these challenges is caused by the intractable log-partition
terms appeared in the estimators.

To more efficiently apply the first-order methods without suffering from iterative sampling and error
accumulation, it is a natural idea to replace the log-partition terms by a Monte-Carlo approximation
and minimize the resulting approximated formulation. Taking the joint estimator (7) as an example,
we resort to the basic importance sampling method to approximately estimate the log-partition term
A(θ) = log

∫
Xp exp {B(X; θ)} dX . Assume we have m i.i.d. samples Ym = {Y (j)}mj=1 drawn

from a random vector Y ∈ X p with known probability density P(Y ). Given θ, an importance
sampling estimate of exp{A(θ)} is given by

exp{Â(θ;Ym)} =
1

m

m∑
j=1

exp
{
B(Y (j); θ)

}
P(Y (j))

.

We consider the following Monte-Carlo approximation to the estimator (7):

ˆ̂
θn = argmin

θ

{
L̂(θ;Xn,Ym) + λn∥θ∥2,1

}
, (11)

where L̂(θ;Xn,Ym) = − 1
n

∑n
i=1 B(X(i); θ) + Â(θ;Ym). Since the random samples Ym are fixed

in (11), the sampling operation can be avoided in the computation of ∇L̂(θ;Xn,Ym). Concerning
the accuracy of the approximate estimator (11), the following result guarantees that, with high prob-
ability, the minimizer of the approximate estimator (11) is suboptimal to the population estimator (7)
with suboptimality O(1/

√
m). A proof of this proposition is provided in A.1 (see the supplementary

material).

Proposition 1. Assume that P(Y ) > 0. Then the following inequality holds with high probability:

L(
ˆ̂
θn;Xn)+λn∥ ˆ̂θn∥2,1 ≤ L(θ̂n;Xn)+λn∥θ̂n∥2,1+

2.58σ̂
(
exp{−A(

ˆ̂
θn}+ exp{−Â(θ̂n;Ym)}

)
√
m

,

where σ̂n = 1
m

∑m
j=1

(
exp{B(Y (j);θ̂n)}

P(Y (j))
− exp{Â(θ̂n;Ym)}

)2

.

A similar Monte-Carlo approximation strategy can be applied to the node-wise MLE estimator (10).

3 Statistical Analysis

In this section, we provide statistical guarantees on parameter estimation error for the joint MLE
estimator (7) and the node-conditional estimator (10). In large picture, our analysis follows the
techniques presented in [13, 30] by specifying the conditions under which these techniques can be
applied to our setting.

3.1 Analysis of the joint estimator

We are interested in the concentration bounds of the random variables defined by

Zs,k := φk(Xs)− Eθ∗ [φk(Xs)], Zst,l := ϕl(Xs, Xt)− Eθ∗ [ϕl(Xs, Xt)],
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where the expectation Eθ∗ [·] is taken over the underlying true distribution (5). By the “law of the
unconscious statistician” we have E[Zs,k] = E[Zst,l] = 0. That is, {Zs,k} and {Zst,l} are zero-
mean random variables. We introduce the following technical condition on {Zs,k, Zst,l} which we
will show to guarantee the gradient ∇L(θ∗;Xn) vanishes exponentially fast, with high probability,
as sample size increases.

Assumption 1. For all (s, k) and all (s, t, l), we assume that there exist constants σ > 0 and ζ > 0
such that for all |η| ≤ ζ,

E[exp{ηZs,k}] ≤ exp
{
σ2η2/2

}
, E[exp{ηZst,l}] ≤ exp

{
σ2η2/2

}
.

This assumption essentially imposes an exponential-type bound on the moment generating function
of the random variables Zs,k, Zst,l.

It is well known that the Hessian ∇2L(θ;Xn) is positive semidefinite at any θ and it is independent
on the sample set Xn. We also need the following condition which guarantees the restricted positive
definiteness of ∇2L(θ;Xn) over certain low dimensional subspace when θ is in the vicinity of θ∗.

Assumption 2 (Locally Restricted Positive Definite Hessian). Let S = supp(θ∗;G). There exist
constants δ > 0 and β > 0 such that for any θ ∈ {∥θ−θ∗∥ ≤ δ}, the inequality ϑ⊤∇2L(θ;Xn)ϑ ≥
β∥ϑ∥2 holds for any ϑ ∈ CS := {∥θS̄∥2,1 ≤ 3∥θS∥2,1}.

Assumption 2 requires that the Hessian ∇2L(θ;Xn) is positive definite in the cone CS when θ lies
in a local ball centered at θ∗. This condition is a specification of the concept restricted strong
convexity [30] to AdEFGM.

Remark 1 (Minimal Representation). We say an AdEFGM has minimal representation if there is a
unique parameter vector θ associated with the distribution (4). This condition equivalently requires
that there exists no non-zero ϑ such that B(X;ϑ) is equal to an absolute constant. This implies that
for any θ and for all non-zero ϑ,

Varθ [B(X;ϑ)] = ϑ⊤∇2L(θ;Xn)ϑ > 0.

If AdEFGM has minimal representation at θ∗, then there must exist sufficiently small constants
δ > 0 and β > 0 such that for any θ ∈ {∥θ − θ∗∥ ≤ δ}, ϑ⊤∇2L(θ;Xn)ϑ ≥ β∥ϑ∥2. Therefore,
Assumption 2 holds true when AdEFGM has minimal representation at θ∗.

The following theorem is our main result on the estimation error of the joint MLE estimator (7). A
proof of this result is provided in Appendix A.2 in the supplementary material.

Theorem 1. Assume that the conditions in Assumption 1 and Assumption 2 hold. If sample size n
satisfies

n > max

{
6max{q, r} ln p

σ2ζ2
,
54c20σ

2 max{q, r}∥θ∗∥2,0 ln p
δ2β2

}
,

then with probability at least 1− 2max{q, r}p−1, the following inequality holds:

∥θ̂n − θ∗∥ ≤ 3c0β
−1σ

√
6max{q, r}∥θ∗∥2,0 ln p/n.

Remark 2. The main message Theorem 1 conveys is that when n is sufficiently large, the estimation
error ∥θ̂n − θ∗∥ vanishes at the order of O(

√
max{q, r}(2|E|+ p) ln p/n) with high probability.

This convergence rate matches the results obtained in [17, 16] for GGMs and the results in [10, 26]
for Nonparanormal.

3.2 Analysis of the node-conditional estimator

For the node-conditional estimator (10), we study the rate of convergence of the parameter estima-
tion error ∥θ̂ns − θ∗s∥ as a function of sample size n. We need Assumption 1 and the following
assumption in our analysis.

Assumption 3. For any node s, let S = supp(θ∗s ;G). There exist constants δ̃ > 0 and β̃ > 0 such
that for any θs ∈ {∥θs − θ∗s∥ < δ̃}, the inequality ϑ⊤

s ∇2L̃(θs;Xn)ϑs ≥ β̃∥ϑs∥2 holds for any
ϑs ∈ C̃S := {∥(θs)S̄∥2,1 ≤ 3∥(θs)S∥2,1}.

6



The following is our main result on the convergence rate of node-conditional estimation error ∥θ̂ns −
θ∗s∥. A proof of this result is provided in Appendix A.3 in the supplementary material.
Theorem 2. Assume that the conditions in Assumption 1 and Assumption 3 hold. If sample size n
satisfies

n > max

{
6max{q, r} ln p

σ2ζ2
,
216c̃20σ̃

2 max{q, r}∥θ∗s∥2,0 ln p
δ2β̃2

}
,

then with probability at least 1− 4max{q, r}p−2, the following inequality holds:

∥θ̂ns − θ∗s∥ ≤ 6c̃0β̃
−1σ

√
6max{q, r}∥θ∗s∥2,0 ln p/n.

Remark 3. Theorem 2 indicates that with overwhelming probability, the estimation error
∥θ̂ns − θ∗s∥ = O(

√
(d+ 1) ln p)/n) where d is the degree of the underlying graph, i.e., d =

maxs∈V ∥θ∗s∥2,0 − 1. We may combine the parameter estimation errors from all the nodes as
a global measurement of accuracy. Indeed, by Theorem 2 and union of probability we get that
maxs∈V ∥θ̂ns −θ∗s∥ = O(

√
(d+ 1) ln p/n) holds with probability at least 1−4max{q, r}p−1. This

estimation error bound matches those for GGMs with neighborhood-selection-type estimators [29].

4 Experiments

This section is devoted to showing the actual learning performance of AdEFGM. We first investigate
graph structure recovery accuracy using simulation data (for which we know the ground truth), and
then we apply our method to a stock price data for inferring the statistical dependency among stocks.

4.1 Monte-Carlo simulation

This is a proof-of-concept experiment. The purpose is to confirm that when the pairwise interactions
of the underlying graphical models are highly nonlinear and unknown a prior, our additive estimator
will be significantly superior to existing parametric/semi-parametric graphical models for inferring
the structure of graphs. The numerical results of AdEFGM reported in this experiment are obtained
by the joint MLE estimator in (7).

Simulated data Our simulation study employs a graphical model of which the edges are generated
independently with probability P . We will consider the model under different levels of sparsity
by adjusting the probability P . For simplicity purpose, we assume fs(Xs) ≡ 1 and consider a
nonlinear pairwise interaction function fst(Xs, Xt) = cos(π(Xs − Xt)/5). We fit the data to
the additive model (4) with a 2-D Fourier basis of size 8. Using Gibbs sampling, we generate a
training sample of size n from the true graphical model, and an independent sample of the same
size from the same distribution for tuning the strength parameter λn. We compare performance for
n = 200, varying values of p ∈ {50, 100, 150, 200, 250, 300}, and different sparsity levels under
P = {0.02, 0.05, 0.1}, replicated 10 times for each configuration.

Baselines We compare the performance of our estimator to Graphical Lasso [6] as a GGM estimator
and SKEPTIC [10] as a Nonparanormal estimator. In our implementation, we use a version of
SKEPTIC with Kendall’s tau to infer the correlation.

Evaluation metric To evaluate the support recovery performance, we use the standard F-score from
the information retrieval literature. The larger F-score is, the better the support recovery perfor-
mance. The numerical values over 10−3 in magnitude are considered to be nonzero.

Results Figure 1 shows the support recovery F-scores of the considered methods on the synthetic
data. From this group of results we can observe that by using 2-D Fourier basis to approximate the
unknown cosine distance function, AdEFGM is able to more accurately recover the underlying graph
structure than the other two considered methods. The advantage of AdEFGM illustrated here is as
expected because it is designed to automatically learn the unknown complex pairwise interactions
while GGM and Nonparanormal are restrictive to certain UGMs with known sufficient statistics.

4.2 Stock price data

We further study the performance of AdEFGM on a stock price data. This data contains the historical
prices of S&P500 stocks over 5 years, from January 1, 2008 to January 1, 2013. By taking out the
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Figure 1: Simulated data: Support recovery F-score curves. Left panels: P = 0.02, Middle panels:
P = 0.05, Right panels: P = 0.1.
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Figure 2: Stock price data S&P500: Category link precision, recall and F-score curves.

stocks with less than 5 years of history, we end up with 465 stocks, each having daily closing
prices over 1,260 trading days. The prices are first adjusted for dividends and splits and the used
to calculate daily log returns. Each day’s return can be represented as a point in R465. To apply
AdEFGM to this data, we consider the general model (4) with the 2-D Fourier basis being used to
approximate the pairwise interaction between stocks Xs and Xt. Since the category information of
S&P500 is available, we measure the performance by Precision, Recall and F-score of the top k
links (edges) on the constructed graph. A link is regarded as true if and only if it connects two nodes
belonging to the same category. We use the joint MLE estimator for this experiment. Figure 2 shows
the curves of precision, recall and F-score as functions of k in a wide range [103, 105]. It is apparent
that AdEFGM significantly outperforms GGM and Nonparanormal for identifying correct category
links. This result suggests that the interactions among the S&P500 stocks are highly nonlinear.

5 Conclusions

In this paper, we proposed and analyzed AdEFGMs as a generic class of additive undirected graphi-
cal models. By expressing node-wise and pairwise sufficient statistics as linear representations over
a set of basis statistics, AdEFGM is able to capture complex interactions among variables which
are not uncommon in modern engineering applications. We investigated two types of ℓ2,1-norm
regularized MLE estimators for joint and node-conditional high dimensional estimation. Based on
our theoretical justification and empirical observation, we can draw the following two conclusions:
1) the ℓ2,1-norm regularized AdEFGM learning is a powerful tool for inferring pairwise exponen-
tial family graphical models with unknown arbitrary sufficient statistics; and 2) the extra flexibility
gained by AdEFGM comes at almost no cost of statistical and computational efficiency.
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