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Abstract

The Hard Thresholding Pursuit (HTP) is a class of truncated gradient descent
methods for finding sparse solutions of ℓ0-constrained loss minimization prob-
lems. The HTP-style methods have been shown to have strong approximation
guarantee and impressive numerical performance in high dimensional statistical
learning applications. However, the current theoretical treatment of these meth-
ods has traditionally been restricted to the analysis of parameter estimation con-
sistency. It remains an open problem to analyze the support recovery performance
(a.k.a., sparsistency) of this type of methods for recovering the global minimizer
of the original NP-hard problem. In this paper, we bridge this gap by showing,
for the first time, that exact recovery of the global sparse minimizer is possible
for HTP-style methods under restricted strong condition number bounding condi-
tions. We further show that HTP-style methods are able to recover the support
of certain relaxed sparse solutions without assuming bounded restricted strong
condition number. Numerical results on simulated data confirms our theoretical
predictions.

1 Introduction

In modern high dimensional data analysis tasks, a routinely faced challenge is that the number of
collected samples is substantially smaller than the dimensionality of features. In order to achieve
consistent estimation in such small-sample-large-feature settings, additional assumptions need to
be imposed on the model. Among others, the low-dimensional structure prior is the most popular
assumption made in high dimensional analysis. This structure can often be captured by imposing
sparsity constraint on model space, leading to the following ℓ0-constrained minimization problem:

min
x∈Rp

f(x), s.t. ∥x∥0 ≤ k, (1)

where f : Rp 7→ R is a smooth convex loss function and ∥x∥0 denotes the number of nonzero
entries in x. Due to the cardinality constraint, Problem (1) is not only non-convex, but also NP-hard
in general (Natarajan, 1995). Thus, it is desirable to develop efficient computational procedures to
approximately solve this problem.

When the loss function is squared regression error, Problem (1) reduces to the compressive sensing
problem (Donoho, 2006) for which a vast body of greedy selection algorithms have been proposed
including orthogonal matching pursuit (OMP) (Pati et al., 1993), compressed sampling matching
pursuit (CoSaMP) (Needell & Tropp, 2009), hard thresholding pursuit (HTP) (Foucart, 2011) and it-
erative hard thresholding (IHT) (Blumensath & Davies, 2009) to name a few. The greedy algorithms
designed for compressive sensing can usually be generalized to minimize non-quadratic loss func-
tions (Shalev-Shwartz et al., 2010; Yuan & Yan, 2013; Bahmani et al., 2013). Comparing to those
convex-relaxation-based methods (Beck & Teboulle, 2009; Agarwal et al., 2010), these greedy se-
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lection algorithms often exhibit similar accuracy guarantees but more attractive computational effi-
ciency and scalability.

Recently, the HTP/IHT-style methods have gained significant interests and they have been witnessed
to offer the fastest and most scalable solutions in many cases (Yuan et al., 2014; Jain et al., 2014).
The main theme of this class of methods is to iteratively perform gradient descent followed by a
truncation operation to preserve the most significant entries, and an (optional) debiasing operation
to minimize the loss over the selected entries. In (Blumensath, 2013; Yuan et al., 2014), the rate
of convergence and parameter estimation error of HTP/IHT-style methods were established under
proper Restricted Isometry Property (RIP) (or restricted strong condition number) bound conditions.
Jain et al. (2014) presented and analyzed several relaxed variants of HTP/IHT-style algorithms for
which the estimation consistency can be established without requiring the RIP conditions. Very
recently, the extensions of HTP/IHT-style methods to structured and stochastic sparse learning prob-
lems have been investigated in (Jain et al., 2016; Li et al., 2016; Shen & Li, 2016).

1.1 An open problem: exact recovery of HTP

In this paper, we are particularly interested in the exact recovery and support recovery performance
of the HTP-style methods. A pseudo-code of HTP is outlined in Algorithm 1 which is also known as
GraHTP in (Yuan et al., 2014). Although this type of methods have been extensively analyzed in the
original paper (Foucart, 2011) for compressive sensing and several recent followup work (Yuan et al.,
2014; Jain et al., 2014, 2016) for generic sparse minimization, the state-of-the-art is only able to de-
rive convergence rates and parameter estimation error bounds for HTP. It remains an open and chal-
lenging problem to analyze its ability to exactly recover the global sparse minimizer of Problem (1)
in general settings. Actually, the support/structure recovery analysis is the main challenge in many
important sparsity models including compressive sensing and graphical models learning (Jalali et al.,
2011; Ravikumar et al., 2011): once the support is recovered, computing the actual nonzero coeffi-
cients just boils down to solving a convex minimization problem restricted on the supporting set.

Since the output of HTP is always k-sparse, the existing estimation error results in (Foucart, 2011;
Yuan et al., 2014; Jain et al., 2014) naturally imply some support recovery conditions. For example,
for perfect measurements, the results in (Foucart, 2011; Yuan et al., 2014) guarantee that HTP can
exactly recover the underlying true sparse model parameters. For noisy models, roughly speaking,
as long as the smallest (in magnitude) nonzero entry of the k-sparse minimizer of (1) is larger than
the estimation error bound of HTP, an exact recovery of the minimizer can be guaranteed. However,
these pieces of support recovery results implied by the estimation error bound turn out to be loose
when compared to the main results we will derive in the current paper.

Algorithm 1: Hard Thresholding Pursuit.
Input :Loss function f(x), sparsity level k, step-size η.
Initialization x(0) = 0, t = 1.
Output :x(t).
repeat

(S1) Compute x̃(t) = x(t−1) − η∇f(x(t−1));
(S2) Select F (t) = supp(x̃(t), k) be the indices of x̃(t) with the largest k absolute values;
(S3) Compute x(t) = argmin{f(x), supp(x) ⊆ F (t)};
(S4) Update t← t+ 1;

until F (t) = F (t−1);

1.2 Overview of our results

The core contribution in this work is a deterministic support recovery analysis of HTP-style meth-
ods which to our knowledge has not been systematically conducted elsewhere in literature. Our first
result (see Theorem 1) shows that HTP as described in Algorithm 1 is able to exactly recover the
k-sparse minimizer x⋆ = argmin∥x∥0≤k f(x) if x⋆

min, i.e., the smallest non-zero entry of x⋆, is sig-
nificantly larger than ∥∇f(x⋆)∥∞ and certain RIP-type condition can be fulfilled as well. Moreover,
the exact recovery can be guaranteed in finite running of Algorithm 1 with geometric rate of conver-
gence. Our second result (see Theorem 2) shows that the support recovery of an arbitrary k-sparse
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Table 1: Comparison between our results and several prior results on HTP-style algorithms.

Related Work Target Solution RIP Condition Free Support Recovery

(Foucart, 2011) True k-sparse signal x × ×
(Yuan et al., 2014) Arbitrary x̄ with ∥x̄∥0 ≤ k × ×

(Jain et al., 2014)
x̄ = argmin∥x∥0≤k̄ f(x)

for proper k̄ ≪ k

√
×

Ours Arbitrary x̄ with ∥x̄∥0 ≤ k
× (for ∥x̄∥0 = k),
√

(for ∥x̄∥0 ≪ k)

√

vector x̄ can be guaranteed if x̄min is well discriminated from
√
k∥∇f(x⋆)∥∞ or ∥∇f(x⋆)∥∞, pend-

ing on the optimality of x̄ over its own supporting set. Our third result (see Theorem 3) shows that
HTP is able to recover the support of certain relaxed sparse minimizer x̄ with ∥x̄∥0 ≪ k under
an arbitrary restricted strong condition number. More formally, given the restricted strong smooth-
ness/convexity (see Definition 1) constants M2k and m2k, the recovery of supp(x̄) is possible if
k ≥ (1 + 16M2

2k/m
2
2k)k̄ and the smallest non-zero element in x̄ is significantly larger than the

rooted objective value gap
√
f(x̄)− f(x⋆). The support recovery can also be guaranteed in finite

iteration for this case. By specifying our deterministic analysis to least squared regression and logis-
tic regression, we are able to obtain the sparsistency guarantees of HTP for these statistical learning
examples. Monte-Carlo simulation results confirm our theoretical predictions. Table 1 summarizes
a high-level comparison between our work and the state-of-the-art analysis for HTP-style methods.

1.3 Notation and organization

Notation Let x ∈ Rp be a vector and F be an index set. We denote [x]i the ith entry of vector x, xF

the restriction of x to index set F and xk the restriction of x to the top k (in absolute vale) entries.
The notation supp(x) represents the index set of nonzero entries of x and supp(x, k) represents the
index set of the top k (in absolute vale) entries of x. We conventionally define ∥x∥∞ = maxi |[x]i|
and define xmin = mini∈supp(x) |[x]i|.
Organization This paper proceeds as follows: In §2, we analyze the exact recovery performance of
HTP. The applications of our analysis to least squared regression and logistic regression models are
presented in §3. Monte-Carlo simulation results are reported in §4. We conclude this paper in §5.
Due to space limit, all the technical proofs of our results are deferred to an appendix section which
is included in the supplementary material.

2 A Deterministic Exact Recovery Analysis

In this section, we analyze the exact support recovery performance of HTP as outlined in Algo-
rithm 1. In large picture, the theory developed in this section can be decomposed into the following
three ingredients:

• First, we will investigate the support recovery behavior of the global k-sparse minimizer
x⋆ = argmin∥x∥0≤k f(x). The related result is summarized in Proposition 1.

• Second, we will present in Theorem 1 the guarantee of HTP for exactly recovering x⋆.
• Finally, by combining the the above two results we will be able to establish the support re-

covery result of HTP in Theorem 2. Furthermore, we derive an RIP-condition-free support
recovery result in Theorem 3.

Our analysis relies on the conditions of Restricted Strong Convexity/Smoothness (RSC/RSS) which
are conventionally used in previous analysis for HTP (Yuan et al., 2014; Jain et al., 2014).
Definition 1 (Restricted Strong Convexity/Smoothness). For any integer s > 0, we say f(x) is
restricted ms-strongly convex and Ms-smooth if there exist ms,Ms > 0 such that

ms

2
∥x− y∥2 ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ ≤ Ms

2
∥x− y∥2, ∀∥x− y∥0 ≤ s. (2)
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The ratio Ms/ms, which measures the curvature of the loss function over sparse subspaces, will be
referred to as restricted strong condition number in this paper.

2.1 Preliminary: Support recovery of x⋆

Given a target solution x̄, the following result establishes some sufficient conditions under which x⋆

is able to exactly recover the supporting set of x̄. A proof of this result is provided in Appendix B
(see the supplementary file).
Proposition 1. Assume that f is M2k-smooth and m2k-strongly convex. Let x̄ be an arbitrary
k-sparse vector. Let x̄⋆ = argminsupp(x)⊆supp(x̄) f(x) and l̄ > 0 be a scalar such that

f(x̄⋆) = f(x̄) + ⟨∇f(x̄), x̄⋆ − x̄⟩+ l̄

2
∥x̄⋆ − x̄∥21.

Then we have supp(x̄) = supp(x⋆) if either of the following two conditions is satisfied:

(1) x̄min ≥ 2
√
2k

m2k
∥∇f(x̄)∥∞;

(2) x̄min ≥
(

ϑ̄
M2k

+ 2ϑ̄+2
l̄

)
∥∇f(x̄)∥∞, m2k

M2k
≥ max

{
3ϑ̄+1
4ϑ̄

,
√
3
2

}
, for some θ̄ > 1.

Remark 1. The quantity l̄ actually measures the strong-convexity of f at the point (x̄⋆ − x̄) in
ℓ1-norm. From its definition we can verify that l̄ is valued in the interval [m2k/k,M2k] if x̄ ̸=
x̄⋆. The closer l̄ is to M2k, the weaker lower bound condition can be imposed on x̄min in the
condition (2). In (Nutini et al, 2015), a similar strong-convexity measurement has been defined
over the entire vector space for refined convergence analysis of the coordinate descent methods.
Different from (Nutini et al, 2015), we only require such an ℓ1-norm strong-convexity condition holds
at certain target points of interest. Particularly if x̄ = x̄⋆, i.e., x̄ is optimal over its supporting set,
then we may simply set l̄ =∞ in Proposition 1.

2.2 Main results: Support recovery of HTP

Equipped with Proposition 1, it will be straightforward to guarantee the support recovery of HTP if
we can derive sufficient conditions under which HTP is able to exactly recover x⋆. Denote F ⋆ =
supp(x⋆). Intuitively, x⋆

min should be significantly larger than ∥∇f(x⋆)∥∞ to attract HTP to be
stuck at x⋆ (see Lemma 5 in Appendix B for a formal elaboration). The exact recovery analysis
also relies on the following quantity △−⋆ which measures the gap between the minimal k-sparse
objective value f(x∗) and the remaining ones over supporting sets other than supp(x∗):

△−⋆ := f(x−⋆)− f(x⋆),

where x−⋆ = argmin∥x∥0≤k,supp(x)̸=supp(x⋆),f(x)>f(x⋆) f(x). Intuitively, the larger △−⋆ is, the
easier and faster x⋆ can be recovered by HTP. It is also reasonable to expect that the step-size η
should be well bounded away from zero to avoid undesirable early stopping.

Inspired by these intuitive points, we present the following theorem which guarantees the exact
recovery of HTP when the restricted strong condition number is well bounded. A proof of this
theorem is provided in Appendix C (see the supplementary file).
Theorem 1. Assume that f is M2k-smooth and m2k-strongly convex. Assume that ϑ⋆ :=
M2kx

⋆
min

∥∇f(x⋆)∥∞
> 1 and m2k

M2k
≥ 7ϑ⋆+1

8ϑ⋆ . If we set the step-size to be η = m2k

M2
2k

, then the optimal

k-sparse solution x⋆ is unique and HTP will terminate with output x(t) = x⋆ after at most

t =

⌈
M3

2k

m2
2k(M2k −m2k)

ln
△(0)

△−⋆

⌉
steps of iteration, where △(0) = f(x(0)) − f(x⋆) and △−⋆ =
min∥x∥0≤k,supp(x)̸=supp(x⋆),f(x)>f(x⋆) {f(x)− f(x⋆)}.
Remark 2. Theorem 1 suggests that HTP is able to exactly recover x⋆ provided that x⋆

min is strictly
larger than ∥∇f(x⋆)∥∞/M2k and the restricted strong condition number is well bounded, i.e.,
M2k/m2k ≤ 8θ⋆

7θ⋆+1 < 1.14.

4



As a consequence of Proposition 1 and Theorem 1, the following theorem establishes the perfor-
mance of HTP for recovering the support of an arbitrary k-sparse vector. A proof of this result is
provided in Appendix D (see the supplementary file).
Theorem 2. Let x̄ be an arbitrary k-sparse vector and l̄ be defined in Proposition 1. Assume that
the conditions in Theorem 1 hold. Then HTP will output x(t) satisfying supp(x(t)) = supp(x̄) in
finite iteration, provided that either of the following two conditions is satisfied in addition:

(1) x̄min ≥
2
√
2k

m2k
∥∇f(x̄)∥∞; (2) x̄min ≥

(
ϑ⋆

M2k
+

2ϑ⋆ + 2

l̄

)
∥∇f(x̄)∥∞.

In the following theorem, we further show that for proper k̄ < k, HTP method is able to recover
the support of certain desired k̄-sparse vector without assuming bounded restricted strong condition
numbers. A proof of this theorem can be found in Appendix E (see the supplementary file).
Theorem 3. Assume that f is M2k-smooth and m2k-strongly convex. Let x̄ be an arbitrary k̄-sparse
vector satisfying k ≥

(
1 +

16M2
2k

m2
2k

)
k̄. Set the step-size to be η = 1

2M2k
.

(a) If x̄min >
√

2(f(x̄)−f(x⋆))
m2k

, then HTP will terminate in finite iteration with output x(t)

satisfying supp(x̄) ⊆ supp(x(t)).

(b) Furthermore, if x̄min > 1.62
√

2(f(x̄)−f(x⋆))
m2k

, then HTP will terminate in finite iteration

with output x(t) satisfying supp(x(t), k̄) = supp(x̄).
Remark 3. The main message conveyed by the part (a) of Theorem 3 is: If the nonzero elements
in x̄ are significantly larger than the rooted objective value gap

√
f(x̄)− f(x⋆), then supp(x̄) ⊆

supp(x(t)) can be guaranteed by HTP with sufficiently large sparsity level k. Intuitively, the closer
f(x̄) is to f(x⋆), the easier the conditions can be satisfied. Given that f(x̄) is close enough to
the unconstrained global minimizer of f (i.e., the global minimizer of f is nearly sparse), we will
have f(x̄) close enough to f(x⋆) since f(x̄) − f(x⋆) ≤ f(x̄) − minx f(x). In the ideal case
where the sparse vector x̄ is an unconstrained minimum of f , we will have f(x̄) = f(x⋆), and thus
supp(x̄) ⊆ supp(x(t)) holds under arbitrarily large restricted strong condition number.

The part (b) of Theorem 3 shows that under almost identical conditions (up to a slightly increased
numerical constant) to those in Part(a), HTP will output x(t) of which the top k̄ entries are exactly
the supporting set of x̄. The implication of this result is: in order to recover certain k̄-sparse signals,
one may run HTP with a properly relaxed sparsity level k until convergence and then preserve the
top k̄ entries of the k-sparse output as the final k̄-sparse solution.

2.3 Comparison against prior results

It is interesting to compare our support recovery results with those implied by the parameter estima-
tion error bounds obtained in prior work (Yuan et al., 2014; Jain et al., 2014). Actually, parameter
estimation error bound naturally leads to the so called x-min condition which is key to the support
recovery analysis. For example, it can be derived from the bounds in (Yuan et al., 2014) that under
proper RIP condition ∥x(t)− x̄∥ = O(

√
k∥∇f(x̄)∥∞) when t is sufficiently large. This implies that

as long as the x̄min is significantly larger than such an estimation error bound, exact recovery of x̄
can be guaranteed. In the meantime, the results in (Jain et al., 2014) show that for some k̄-sparse
minimizer of (1) with k̄ = O

(
m2

2k

M2
2k
k
)

, it holds for arbitrary restrictive strong condition number that

∥x(t) − x̄∥ = O(
√
k∥∇f(x̄)∥∞) when t is sufficiently large. Provided that x̄min is significantly

larger than such an error bound, it will hold true that supp(x̄) ⊆ supp(x(t)). Table 2 summarizes
our support recovery results and those implied by the state-of-the-art results regarding target solu-
tion, dependency on RIP-type conditions and x-min condition. From this table, we can see that the
x-min condition in Theorem 1 for recovering the global minimizer x⋆ is weaker than those implied
in (Yuan et al., 2014) in the sense that the former is not dependent on a factor

√
k. Also our x-min

condition in Theorem 3 is weaker than those implied in (Jain et al., 2014) because; 1) our bound
O(

√
f(x̄)− f(x⋆)) is not explicitly dependent on a multiplier

√
k; and 2) it can be verified from

the restricted strong-convexity of f that
√
f(x̄)− f(x⋆) ≤

√
k∥∇f(x̄)∥∞/

√
2m2k.
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Table 2: Comparison between our support recovery conditions and those implied by the existing
estimation error bounds for HTP-style methods.

Results Target Solution RIP Cond. X-min Condition

(Yuan et al., 2014) Arbitrary k-sparse x̄ Required x̄min > O(
√
k∥∇f(x̄)∥∞)

(Jain et al., 2014) ∥x̄∥0 = O
(
(m2k

M2k
)2k

)
Free x̄min > O(

√
k∥∇f(x̄∥∞)

Theorem 1 x⋆ = argmin∥x∥0≤k f(x) Required x⋆
min > O(∥∇f(x⋆)∥∞)

Theorem 2 Arbitrary k-sparse x̄ Required
x̄min > O(

√
k∥∇f(x̄)∥∞)

or x̄min > O(∥∇f(x̄)∥∞)

Theorem 3 ∥x̄∥0 = O
(
(m2k

M2k
)2k

)
Free x̄min > O

(√
f(x̄)− f(x⋆)

)

It is also interesting to compare the support recovery result in Proposition 1 with those known for
the following ℓ1-regularized estimator:

min
x∈Rp

f(x) + λ∥x∥1,

where λ is the regularization strength parameter. Recently, a unified sparsistency analysis for this
type of convex-relaxed estimator was provided in (Li et al., 2015). We summarize in below a com-
parison between our Proposition 1 and the state-of-the-art results in (Li et al., 2015) with respect to
several key conditions:

• Local structured smoothness/convexity condition: Our analysis only requires first-order
local structured smoothness/convexity conditions (i.e., RSC/RSS) while the analysis
in (Li et al., 2015, Theorem 5.1, Condition 1) relies on certain second-order and third-order
local structured smoothness conditions.

• Irrepresentablility condition: Our analysis is free of the Irrepresentablility Condition which
is usually required to guarantee the sparsistency of ℓ1-regularized estimators (Li et al.,
2015, Theorem 5.1, Condition 3).

• RIP-type condition: The analysis in (Li et al., 2015) is free of RIP-type condition, while
ours is partially relying on such a condition (see Condition (2) of Proposition 1).

• X-min condition: Comparing to the x-min condition required in (Li et al., 2015, Theorem
5.1, Condition 4), which is of order O(

√
k∥∇f(x̄)∥∞), the x-min condition (1) in Propo-

sition 1 is at the same order while the x-min condition (2) is weaker as it is not explicitly
dependent on

√
k.

3 Applications to Statistical Learning Models

In this section, we apply our support recovery analysis to several sparse statistical learning mod-
els, deriving concrete sparsistency conditions in each case. Given a set of n independently drawn
data samples {(u(i), v(i))}ni=1, we are interested in the following sparsity-constrained empirical loss
minimization problem:

min
w

f(w) :=
1

n

n∑
i=1

ℓ(w⊤u(i), v(i)), subject to ∥w∥0 ≤ k.

where ℓ(·, ·) is a loss function measuring the discrepancy between prediction and response and w is
a set of parameters to be estimated. In the subsequent subsections, we will investigate sparse linear
regression and sparse logistic regression as two popular examples of the above formulation.

3.1 Sparsity-constrained linear regression

Given a k̄-sparse parameter vector w̄, let us consider the samples are generated according to the
linear model v(i) = w̄⊤u(i) + ε(i) where ε(i) are n i.i.d. sub-Gaussian random variables with
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parameter σ. The sparsity-constrained least squared linear regression model is then given by:

min
w

f(w) =
1

2n

n∑
i=1

∥v(i) − w⊤u(i)∥2, subject to ∥w∥0 ≤ k. (3)

Suppose u(i) are drawn from Gaussian distribution with covariance Σ. Then it holds with high
probability that f(w) has RSC constant m2k ≥ λmin(Σ)−O(k log p/n) and RSS constant M2k ≤
λmax(Σ) + O(k log p/n), and∥∇f(w̄)∥∞ = O

(
σ
√
log p/n

)
. From Theorem 2 we know that

for sufficiently large n, if the condition number λmax(Σ)/λmin(Σ) is well bounded and w̄min >

O
(
σ
√
k̄ log p/n

)
, then supp(w̄) can be recovered by HTP after sufficient iteration. Since ε(i)

are sub-Gaussian, we have f(w̄) = 1
2n

∑n
i=1 ∥ε(i)∥2 ≤ σ2 holds with high probability. From

Theorem 3 we can see that if w̄min > 1.62σ
√
2/m2k, then supp(w̄) can be recovered, with high

probability, by HTP with a sufficiently large sparsity level and a k̄-sparse truncation postprocessing.

3.2 Sparsity-constrained logistic regression

Logistic regression is one of the most popular models in statistical learning. In this model the relation
between the random feature vector u ∈ Rp and its associated random binary label v ∈ {−1,+1}
is determined by the conditional probability P(v|u; w̄) = exp(2vw̄⊤u)/(1 + exp(2vw̄⊤u)). Given
a set of n independently drawn data samples {(u(i), v(i))}ni=1, the sparse logistic regression model
learns the parameters w so as to minimize the logistic log-likelihood over sparsity constraint:

min
w

f(w) =
1

n

n∑
i=1

log(1 + exp(−2v(i)w⊤u(i))), subject to ∥w∥0 ≤ k. (4)

It has been shown in (Bahmani et al., 2013, Corollary 1) that under mild conditions, f(w) has RSC
and RSS with overwhelming probability. Suppose u(i) are sub-Gaussian with parameter σ, then it
is known from (Yuan et al., 2014) that ∥∇f(w̄)∥∞ = O

(
σ
√
log p/n

)
. Then from Theorem 2 we

know that if the restrictive strong condition number is well bounded and w̄min > O
(
σ
√
k̄ log p/n

)
,

then supp(w̄) can be recovered by HTP after sufficient iteration. By using Theorem 3 and the fact√
f(w̄)− f(w⋆) = O(

√
k∥∇f(x̄)∥∞), we can show that if w̄min > O

(
σ
√

k̄ log p/n
)

, then with
high probability, supp(w̄) can be recovered by HTP using a sufficiently large sparsity level k and
proper postprocessing, without assuming bounded sparse condition number.

4 Numerical Results

In this section, we conduct a group of Monte-Carlo simulation experiments on sparse linear regres-
sion and sparse logistic regression models to verify our theoretical predictions.

Data generation: We consider a synthetic data model in which the sparse parameter w̄ is a p = 500
dimensional vector that has k̄ = 50 nonzero entries drawn independently from the standard Gaussian
distribution. Each data sample u is a normally distributed dense vector. For the linear regression
model, the responses are generated by v = uw̄ + ε where ε is a standard Gaussion noise. For the
logistic regression model, the data labels, v ∈ {−1, 1}, are then generated randomly according to
the Bernoulli distribution P(v = 1|u; w̄) = exp(2w̄⊤u)/(1 + exp(2w̄⊤u)). We allow the sample
size n to be varying and for each n, we generate 100 random copies of data independently.

Evaluation metric: In our experiment, we test HTP with varying sparsity level k ≥ k̄. We use two
metrics to measure the support recovery performance. We say a relaxed support recovery is success-
ful if supp(w̄) ⊆ supp(w(t)) and an exact support recovery is successful if supp(w̄) = supp(w(t), k̄).
We replicate the experiment over the 100 trials and record the percentage of successful relaxed sup-
port recovery and percentage of successful exact support recovery for each configuration of (n, k).

Results: Figure 1 shows the percentage of relaxed/exact success curves as functions of sample size
n under varying sparsity level k. From the curves in Figure 1(a) for the linear regression model we
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(a) Linear Regression
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(b) Logistic Regression

Figure 1: Chance of relaxed success (left panel) and exact success (right panel) curves for linear
regression and logistic regression models.
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Figure 2: HTP versus IHT: Chance of relaxed and exact success of support recovery.

can make two observations: 1) for each curve, the chance of success increases as n increases, which
matches the results in Theorem 1 and Theorem 2; 2) HTP has the best performance when using
sparsity level k = 70 > k̄. Also it can be seen that the percentage of relaxed success is less sensitive
to k than the percentage of exact success. These observations match the prediction in Theorem 3.
Similar observations can be made from the curves in Figure 1(b) for the logistic regression model.

We have also compared HTP with IHT (Blumensath & Davies, 2009) in support recovery perfor-
mance. Note that IHT is a simplified variant of HTP without the debiasing operation (S3) in Algo-
rithm 1. Our exact support recovery analysis for HTP builds heavily upon such a debiasing operation.
Figure 2 shows the chance of success curves for these two methods with sparsity level k = 70. Fig-
ure 2(a) shows that in linear regression model, HTP is superior to IHT when the sample size n is
relatively small and they become comparable as n increases. Figure 2(b) indicates that HTP slightly
outperforms IHT when applied to the considered logistic regression task. From this group of re-
sults we can draw the conclusion that the debiasing step of HPT does have significant impact on
improving the support recovery performance especially in small sample size settings.

5 Conclusions

In this paper, we provided a deterministic support recovery analysis for HTP-style methods widely
used in sparse learning. Theorem 1 establishes sufficient conditions for exactly recovering the global
k-sparse minimizer x⋆ of the NP-hard problem (1). Theorem 2 provides sufficient conditions to
guarantee the support recovery of an arbitrary k-sparse target solution. Theorem 3 further shows
that even when the restricted strong condition number can be arbitrarily large, HTP is still able
to recover a target sparse solution by using certain relaxed sparsity level in the algorithm. We
have applied our deterministic analysis to sparse linear regression and sparse logistic regression
to establish the sparsistency of HTP in these statistical learning models. Based on our theoretical
justification and numerical observation, we conclude that HTP-style methods are not only accurate in
parameter estimation, but also powerful for exactly recovering sparse signals even in noisy settings.
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