Efficient Neural Codes under Metabolic Constraints
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Abstract

Neural codes are inevitably shaped by various kinds of biological constraints, e.g.
noise and metabolic cost. Here we formulate a coding framework which explicitly
deals with noise and the metabolic costs associated with the neural representation of
information, and analytically derive the optimal neural code for monotonic response
functions and arbitrary stimulus distributions. For a single neuron, the theory
predicts a family of optimal response functions depending on the metabolic budget
and noise characteristics. Interestingly, the well-known histogram equalization
solution can be viewed as a special case when metabolic resources are unlimited.
For a pair of neurons, our theory suggests that under more severe metabolic
constraints, ON-OFF coding is an increasingly more efficient coding scheme
compared to ON-ON or OFF-OFF. The advantage could be as large as one-fold,
substantially larger than the previous estimation. Some of these predictions could
be generalized to the case of large neural populations. In particular, these analytical
results may provide a theoretical basis for the predominant segregation into ON-
and OFF-cells in early visual processing areas. Overall, we provide a unified
framework for optimal neural codes with monotonic tuning curves in the brain, and
makes predictions that can be directly tested with physiology experiments.

1 Introduction

The efficient coding hypothesis [} 2] plays a fundamental role in understanding neural codes,
particularly in early sensory processing. Going beyond the original idea of redundancy reduction by
Horace Barlow [2], efficient coding has become a general conceptual framework for studying optimal
neural coding [3 14} 5, 16} 7} (8} 9} [10} [11} [12} [13} [14]]. Efficient coding theory hypothesizes that the
neural code is organized in a way such that maximal information is conveyed about the stimulus
variable. Notably, any formulation of efficient coding necessarily relies on a set of constraints due
to real world limitations imposed on neural systems. For example, neural noise, metabolic energy
budgets, tuning curve characteristics and the size of the neural population all can have impacts on the
quality of the neural code.

Most previous studies have only considered a small subset of these constraints. For example, the
original redundancy reduction argument proposed by Barlow has focused on utilizing the dynamical
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range of the neurons efficiently [2,[15], but did not take neural noise model and energy consumption
into consideration. Some studies explicitly dealt with the metabolic costs of the system but did not
consider the constraints imposed by the limited firing rates of neurons as well as their detailed tuning
properties [116, (7,17, [18]. As another prominent example, histogram equalization has been proposed
as the mechanism for determining the optimal tuning curve of a single neuron with monotonic
response characteristics [19]. However, this result only holds for a specific neural noise model and
does not take metabolic costs into consideration either. In terms of neural population, most previous
studies have focused on bell-shaped tuning curves. Optimal neural coding for neural population with
monotonic tuning curves have received much less attention [20, 21]].

We develop a formulation of efficient coding that explicitly deals with multiple biologically relevant
constraints, including neural noise, limited range of the neural output, and metabolic consumption.
With this formulation, we can study neural codes based on monotonic response characteristics that
have been frequently observed in biological neural systems. We are able to derive analytical solutions
for a wide range of conditions in the small noise limit. We present results for neural populations of
different sizes, including the cases of a single neuron, pairs of neurons, as well as a brief treatment for
larger neural populations. The results are in general agreements with observed coding schemes for
monotonic tuning curves. The results also provide various quantitative predictions which are readily
testable with targeted physiology experiments.

2 Optimal Code for a Single Neuron

2.1 Models and Methods

We start with the simple case where a scalar stimulus s with prior p(s) is encoded by a single neuron.
To model the neural response for a stimulus s, we first denote the mean output level as a deterministic
function h(s). Here h(s) could denote the mean firing rate in the context of rate coding or just the
mean membrane potential. In either case, the actual response r is noisy and can be modeled by a
probabilistic model P(r|h(s)). Throughout the paper, we limit the neural codes to be monotonic
functions h(s). The mutual information between the input stimulus  and the neural response is
denoted as MI(s, ).

We formulate the efficient coding problem as the maximization of the mutual information between the
stimulus and the response, e.g., MI(s, r) [3]. To complete the formulation of this problem, it is crucial
to choose a set of constraints which characterizes the limited resource available to the neural system.
One important constraint is the finite range of the neural output [19]. Another constraint is on the
mean metabolic cost [[16, (717, (18], which limits the mean activity level of neural output, averaged
over the stimulus prior. Under these constraints, the efficient coding problem can mathematically be
formulated as following:

maximize MI(s,r)
subjectto 0 < A(s) < rmax, H(s) >0 (range constraint)
E;[K(h(s))] < Kt (metabolic constraint)

We seek the optimal response function 4(s) under various choices of the neural noise model P(r|h(s))
and certain metabolic cost function K (h(s)), as discussed below.

Neural Noise Models: Neural noise can often be well characterized by a Poisson distribution at
relatively short time scale [22]]. Under the Poisson noise model, the number of spikes N7 over a
duration of T is a Poisson random variable with mean h(s)T and variance h(s)T. In the long T limit,
the mean response = N7 /T approximately follows a Gaussian distribution

r~ N(h(s), h(s)/T) (D

Non-Poisson noise have also been observed physiologically. In these cases, the variance of response
Nr can be greater or smaller than the mean firing rate [22} 23] 24, 25]]. We thus consider a more
generic family of noise models parametrized by «

7~ N(h(s), h(s)*/T) 2

This generalized family of noise model naturally includes the additive Gaussian noise case (when
o = 0), which is useful for describing the stochasticity of the membrane potential of a neuron.



Metabolic Cost: We model the metabolic cost K is a power-law function of the neural output
K (h(s)) = h(s)” 3)

where 3 > 0 is a parameter to model how does the energy cost scale up as the neural output is
increasing. For a single neuron we will demonstrate with the general energy cost function but when
we generalize to the case of multiple neurons, we will assume § = 1 for simplicity. Note that
it does not require extra effort to solve the problem if the cost function takes the general form of
K (h(s)) = Ko+ K1h(s)?, as reported in [26]. This is because of the linear nature of the expectation
term in the metabolic constraint.

2.2 Derivation of the Optimal A(s)

This efficient coding problem can be greatly simplified due to the fact that it is invariant under any
re-parameterization of the stimulus variable s. We take this advantage by mapping s to another
uniform random variable u € [0, 1] via the cumulative distribution function u = F'(s) [27]. If we
choose g(u) = g(F(s)) = h(s), it suffices to solve the following new problem which optimizes g(u)
for a re-parameterized input v with uniform prior

maximize MI(u, )
subjectto 0 < g(u) < rmax, ¢ (u) >0
E,[K(g(uw))] £ Ko

Once the optimal form of g, (u) is obtained, the optimal %, (s) is naturally given by g.(F(s)). To
solve this simplified problem, first we express the objective function in terms of g(u). In the small
noise limit (large integration time T'), the Fisher information Ir(u) of the neuron with noise model
in Eq. (2) is calculated and the mutual information can be approximated as (see [28l [14])

g (u)?

Ir(w) = T 5L+ o) “)
MI(u,r) = H(U) + % / p(u) log I (u) du — % /0 log Z/(%)a du + %logT Lo (5)

where H(U) = 0 is the entropy and p(u) = 1{o<yu<1y is the density of the uniform distribution.
Furthermore, each constraints can be rewritten as integrals of ¢’(u) and g(u) respectively:

g(1) — g(0) =/0 g (u) du < Toax (6)

1
B, [K (g(u))] = / 9(w)? du < Koo @)

This form of the problem (Eq. 5-7) can be analytically solved by using the Lagrangian multiplier
method and the optimal response function must take the form

0) = e | 375" (0@)] 1) = 9(F9) ®)
where ¢ &f (1—a/2)/8, ~4(x) &f /Ow 297 exp(—2) dz. )

The function -y, (z) is called the incomplete gamma function and Ve ! is its inverse. Due to space

limitation we only present a sketch derivation. Readers who are interested in the detailed proof are
referred to the supplementary materials.

Let us now turn to some intuitive conclusions behind this solution (also see Fig[I] in which we
have assumed 7, = 1 for simplicity). From Eq. (8), it is clear that the optimal solution g(u)
depend on the constant a which should be determined by equalizing the metabolic constraint (see the
horizontal dash lines in Fig). Furthermore, the optimal solution h(s) depends on the specific input
distribution p(s). Depending on the relative magnitude of 7y, and K



e Range constraint dominates: This is the case when there is more than sufficient energy to
achieve the optimal solution so that the metabolic constraint becomes completely redundant.
Determined by «, 8 and 7yax, Kunre 1S the energy consumption of the optimal code with
unconstrained metabolic budget. When the available metabolic cost exceeds this threshold
Kiotar > Kinre, the constant a is very close to zero and the optimal g(u) is proportional to a
power function g(u) = Tmax ul/4. See red curves in Fig

e Both constraints: This is the general case when Ky, < K. The constant a is set to the
minimum value for which the metabolic constraint is satisfied. See purple curves in Fig[T]

e Metabolic constraint dominates: This happens when K, << K. In this case a is
often very large. See blue curves in Fig[T]
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Figure 1: Deriving optimal tuning curves g(u) and corresponding h(s) for different prior distributions
and different noise models. Top row: constant Gaussian noise («, 3,¢) = (0,1, 1); Bottom row:
Poisson noise (a, 8,q) = (1,1,1/2). (a) A segment of the inverse incomplete gamma function
is cropped out by dashed boxes. The higher the horizontal dash lines (constant a), the lower the
average metabolic cost, which corresponds to a more substantial metabolic constraint. We thus
use “low",“high" and “max" to label the energy costs under different metabolic constraints. (b) The
optimal solution g(u) for a uniform variable u. (c) The corresponding optimal & (s) for Gaussian prior.
(d) The corresponding optimal A(s) for Gamma distribution p(s) oc s77 1 exp(—s). Specifically for
this prior, the optimal tuning curve is exactly linear without maximum response constraint. (e-h)
Similar to (a-d), but for Poisson noise.

2.3 Properties of the Optimal A (s)

We have predicted the optimal response function for arbitrary values of o (which corresponds to the
noise model) and 3 (which quantifies the metabolic cost model). Here we specifically focus on a few
situations with most biological relevance.

We begin with the simple additive Gaussian noise model, i.e. @ = 0. This model could provide a
good characterization of the response mapping from the input stimulus to the membrane potential
of a neuron [19]. With more than sufficient metabolic supply, the optimal solution falls back to the
histogram equalization principle where each response magnitude is utilized to the same extent (red
curve in Fig. [Tb and Fig[2h). With less metabolic budget, the optimal tuning curve bends downwards
to satisfy this constraint and large responses will be penalized, resulting in more density at smaller
response magnitude (purple curve in Fig[Zh). In the other extreme, when the available metabolic
budget Ko is diminishing, the response magnitude converges to the max-entropy distribution under
the metabolic constraint E[g(u)?] = const (blue curve in Fig).

Next we discuss the case of Poisson spiking neurons. In the extreme case when the range constraint
dominates, the model predicts a square tuning curve for uniform input (red curve in Fig[Tf), which is
consistent with previous studies [29,|30]. We also found that Poisson noise model leads to heavier



penalization on large response magnitude compared to Gaussian noise, suggesting an interaction
between noise and metabolic cost in shaping the optimal neural response distribution. In the other
extreme when Koy goes to 0, the response distribution converges to a gamma distribution, with heavy
tail (see Fig[2). Our analytical result gives a simple yet quantitative explanation of the emergence of
sparse coding [7] from an energy-efficiency perspective.
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Figure 2: Probability of generating certain response g(u) based on the optimal tuning of a single
neuron under (a) Gaussian noise model and (b) Poisson noise model. In the extreme case of Gaussian
noise with effectively no metabolic constraint, the distribution is uniformly distributed on the whole
range.

3 Optimal Code for a Pair of Neurons

We next study the optimal coding in the case of two neurons with monotonic response functions. We
denote the neural responses as r = (11, r2). Therefore the efficient coding problem becomes:

maximize MI(s,r)
subjectto 0 < hy(s) < rpax, ¢ =1,2. (range constraint)
E [K(h1(s)) + K(ha(s))] < 2K (metabolic constraint)
Assuming the neural noise is independent across neurons, the system of two neurons has total Fisher

information just as the linear sum of Fisher information contributed from each neuron I (s) =
Ii(s) + I2(s).

3.1 Optimal response functions

Previous studies on neural coding with monotonic response functions have typically assumed that each
h;(s) has sigmoidal shape. It is important to emphasize that we do not make any a priori assumptions
on the detailed shape of the tuning curve other than being monotonic and smooth. We define each
neuron’s active region A; = A U A7, where Af = {s|h}(s) > 0}, A; = {s| — h/(s) > 0}. Due
to the monotonicity of tuning curve, either Azr or A; has to be empty.

We find the following results (proof in the supplementary materials)

1. Different neurons should have non-overlapping active regions.

2. If the metabolic constraint is binding, ON-OFF coding is better than ON-ON coding or OFF-
OFF coding. Otherwise all three coding schemes can achieve the same mutual information.

3. For ON-OFF coding, it is better to have ON regions on the right side.

4. For ON-ON coding (or OFF-OFF), each neuron should have roughly the same tuning curve
hi(s) ~ h;(s) while still have disjoint active regions. Note that a conceptually similar
coding scheme has been previously discussed by [29]. Within the ON-pool or OFF-pool,
the optimal tuning curve is same as the optimal solution from the single neuron case.

In Fig[3p-d, we illustrate how these conclusions can be used to determine the optimal pair of neurons,
assuming additive Gaussian noise o = 0 and linear metabolic cost 5 = 1 (for other « and 3 the
process is similar). Our analytical results allow us to predict the precise shape of the optimal response
functions, which goes beyond previous work on ON-OFF coding schemes [[13}[31]].



3.2 Comparison between ON-OFF and ON-ON codes

We aim to compare the coding performance of ON-OFF and ON-ON codes. In Fig[3e we show how
the mutual information depends on the available metabolic budget. For both ON-FF and ON-ON
scheme, the mutual information is monotonically increasing as a function of energy available. We
compare these two curves in two different ways. First, we notice that both mutual information curve
saturate the limit at Kon.on = 0.57max and Kon.opr = 0.257,¢ respectively (see the red tuning
curves in Fig[3p-d). Note that this specific saturation limit is only valid for « = 0 and 3 = 1. For
any other mutual information, we find out that the optimal ON-ON pair (or OFF-OFF pair) always
cost twice energy compared to the optimal ON-OFF pair. Second, one can compare the ON-ON and
ON-OFF scheme by fixing the energy available. The optimal mutual information achieved by ON-ON
neurons is always smaller than that achieved by ON-OFF neurons and the difference is plotted in
Fig When the available energy is extremely limited Koy << Tmax, such difference saturates at —1
in the logarithm space of MI (base 2). This shows that, in the worst scenario, the ON-ON code is only
half as efficient as the ON-OFF code from mutual information perspective. In other words, it would
take twice the amount of time 7" for the ON-ON code to convey same amount of mutual information
as the ON-OFF code under same noise level.

These analyses quantitatively characterize the advantage of ON-OFF over ON-ON and show how it
varies when the relative importance of the metabolic constraint changes. The encoding efficiency of
ON-OFF ranges from double (with very limited metabolic budget) to equal amount of the ON-ON
efficiency (with unlimited metabolic budget). This wide range includes the previous conclusion
reported by Gjorgjieva et.al., where a mild advantage (~ 15%) of ON-OFF scheme is found under
short integration time limit [31]. It is well known that the split of ON and OFF pathways exists in
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Figure 3: The optimal response functions for a pair of neurons assuming Gaussian noise. (a) The
optimal response functions for a uniform input distribution assuming ON-OFF coding scheme. Solid
red curve and dash red curve represent the optimal response functions for a pair of neurons with no
metabolic constraint (“max cost"). Solid blue and dash blue curves are the optimal response functions
with substantial metabolic constraint (“low cost"). (b) Similar to panel a, but for input stimuli with
heavy tail distribution. (c) The optimal response functions for a uniform input distribution assuming
ON-ON coding scheme. Solid and dash red curves are for no metabolic constraint. Notice that two
curves appear to be identical but are actually different at finer scales (see the inserted panel). Solid
and dash blue are for substantial metabolic constraint. (d) Similar to panel c, but for input stimuli
with heavy tail distribution. (e) A comparison between the ON-ON and ON-OFF schemes. The
z-axis represents how substantial the metabolic constraint is — any value greater than the threshold
0.5 implies no metabolic constraint in effect. The y-axis represents the mutual information, relative
to the maximal achievable mutual information without metabolic constraints (which is the same
for ON-ON and ON-OFF schemes). The green dash line represents the difference between the
information transmitted by the two schemes. Negative difference indicates an advantage of ON-OFF
over ON-ON.



the retina of many species [32}[33]. The substantial increase of efficiency under strong metabolic
constraint we discovered supports the argument that metabolic constraint may be one of the main
reasons for such pathway splitting in evolution.

In a recent study by Karklin and Simoncelli [13]], it is observed numerically that ON-OFF coding
scheme can naturally emerge when a linear-nonlinear population of neurons are trained to maximize
mutual information with image input and under metabolic constraint. It is tempting to speculate a
generic connection of these numerical observations to our theoretical results, although our model is
much more simplified in the sense that we do not directly model the higher dimensional stimulus
(natural image) but just a one dimensional projection (local contrast). Intriguingly, we find that if the
inputs follow certain heavy tail distribution ( Fig[3p), the optimal response functions are two rectified
non-linear functions which split the encoding range. Such rectified non-linearity is consistent with
both the non-linearity observed physiologically[34]] and the numerical results in [13] .

4 Discussion

In this paper we presented a theoretical framework for studying optimal neural codes under biologi-
cally relevant constraints. Compared to previous works, we emphasize the importance of two types of
constraint — the noise characteristics of the neural responses and the metabolic cost. Throughout the
paper, we have focused on neural codes with smooth monotonic response functions. We demonstrated
that, maybe surprisingly, analytical solutions exist for a wide family of noise characteristics and
metabolic cost functions. These analytical results rely on the techniques of approximating mutual
information using Fisher information. There are cases when such approximation would bread down,
in particular for short integration time or non-Gaussian noise. For a more detailed discussion on the
validity of Fisher approximation, see [29} (14} |35]].

We have focused on the cases of a single neuron and a pair of neurons. However, the framework
can be generalized to the case of larger population of neurons. For the case of N = 2k (k is large)
neurons, we again find the corresponding optimization problem could be solved analytically by
exploiting the Fisher information approximation of mutual information [28,|14]]. Interestingly, we
found the optimal codes should be divided into two pools of neurons of equal size k. One pool
of neuron with monotonic increasing response function (ON-pool), and the other with monotonic
decreasing response function (OFF-pool). For neurons within the same pool, the optimal response
functions appear to be identical on the macro-scale but are quite different when zoomed in. In fast,
the optimal code must have disjoint active regions for each neuron. This is similar to what has been
illustrated in the inset panel of Fig[3c, where two seemingly identical tuning curves for ON-neurons
are compared. We can also quantify the increase of the mutual information by using optimal coding
schemes versus using all ON neurons (or all OFF). Interestingly, some of the key results presented in
the Fig 3e for the a pair of neurons generalize to 2K case. When N = 2k + 1, the optimal solution is
similar to N = 2k for a large pool of neurons. However, when £ is small, the difference caused by
asymmetry between ON/OFF pools can substantially change the configuration of the optimal code.

Due to the limited scope of the paper, we have ignored several important aspects when formulating
the efficient coding problem. First, we have not modeled the spontaneous activity (baseline firing rate)
of neurons. Second, we have not considered the noise correlations between the responses of neurons.
Third, we have ignored the noise in the input to the neurons. We think that the first two factors
are unlikely to change our main results. However, incorporating the input noise may significantly
change the results. In particular, for the cases of multiple neurons, our current results predict that
there is no overlap between the active regions of the response functions for ON and OFF neurons.
However, it is possible that this prediction does not hold in the presence of the input noise. In that
case, it might be beneficial to have some redundancy by making the response functions partially
overlap. Including these factors into the framework should facilitate a detailed and quantitative
comparison to physiologically measured data in the future. As for the objective function, we have
only considered the case of maximizing mutual information; it is interesting to see whether the results
can be generalized to other objective functions such as, e.g., minimizing decoding error[36}37]. Also,
our theory is based on a one dimensional input. To fully explain the ON-OFF split in visual pathway,
it seems necessary to consider a more complete model with the images as the input. To this end, our
current model lacks the spatial component, and it doesn’t explain the difference between the number
of ON and OFF neurons in retina [38]. Nonetheless, the insight from these analytical results based
on the simple model may prove to be useful for a more complete understanding of the functional



organization of the early visual pathway. Last but not least, we have assumed a stationary input
distribution. However, in the natural environment the input distribution often fluctuate at different
time scales, it remains to be investigated how to incorporate these dynamical aspects into a theory of
efficient coding.
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