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Abstract

We study the problem of efficiently estimating the coefficients of generalized linear
models (GLMs) in the large-scale setting where the number of observations n is
much larger than the number of predictors p, i.e. n � p � 1. We show that in
GLMs with random (not necessarily Gaussian) design, the GLM coefficients are
approximately proportional to the corresponding ordinary least squares (OLS) coef-
ficients. Using this relation, we design an algorithm that achieves the same accuracy
as the maximum likelihood estimator (MLE) through iterations that attain up to a
cubic convergence rate, and that are cheaper than any batch optimization algorithm
by at least a factor of O(p). We provide theoretical guarantees for our algorithm,
and analyze the convergence behavior in terms of data dimensions. Finally, we
demonstrate the performance of our algorithm through extensive numerical studies
on large-scale real and synthetic datasets, and show that it achieves the highest
performance compared to several other widely used optimization algorithms.

1 Introduction
We consider the problem of efficiently estimating the coefficients of generalized linear models (GLMs)
when the number of observations n is much larger than the dimension of the coefficient vector p,
(n � p � 1). GLMs play a crucial role in numerous machine learning and statistics problems, and
provide a miscellaneous framework for many regression and classification tasks. Celebrated examples
include ordinary least squares, logistic regression, multinomial regression and many applications
involving graphical models [MN89, WJ08, KF09].

The standard approach to estimating the regression coefficients in a GLM is the maximum likelihood
method. Under standard assumptions on the link function, the maximum likelihood estimator (MLE)
can be written as the solution to a convex minimization problem [MN89]. Due to the non-linear
structure of the MLE problem, the resulting optimization task requires iterative methods. The most
commonly used optimization technique for computing the MLE is the Newton-Raphson method,
which may be viewed as a reweighted least squares algorithm [MN89]. This method uses a second
order approximation to benefit from the curvature of the log-likelihood and achieves locally quadratic
convergence. A drawback of this approach is its excessive per-iteration cost of O(np

2
). To remedy

this, Hessian-free Krylov sub-space based methods such as conjugate gradient and minimal residual
are used, but the resulting direction is imprecise [HS52, PS75, Mar10]. On the other hand, first order
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approximation yields the gradient descent algorithm, which attains a linear convergence rate with
O(np) per-iteration cost. Although its convergence rate is slow compared to that of second order
methods, its modest per-iteration cost makes it practical for large-scale problems. In the regime
n � p, another popular optimization technique is the class of Quasi-Newton methods [Bis95, Nes04],
which can attain a per-iteration cost of O(np), and the convergence rate is locally super-linear; a
well-known member of this class of methods is the BFGS algorithm [Nes04]. There are recent studies
that exploit the special structure of GLMs [Erd15], and achieve near-quadratic convergence with a
per-iteration cost of O (np), and an additional cost of covariance estimation.

In this paper, we take an alternative approach to fitting GLMs, based on an identity that is well-known
in some areas of statistics, but appears to have received relatively little attention for its computational
implications in large scale problems. Let �glm denote the GLM regression coefficients, and let �ols

denote the corresponding ordinary least squares (OLS) coefficients (this notation will be defined
more precisely in Section 2). Then, under certain random predictor (design) models,

�

glm / �

ols

. (1)

For logistic regression with Gaussian design (which is equivalent to Fisher’s discriminant analysis),
(1) was noted by Fisher in the 1930s [Fis36]; a more general formulation for models with Gaussian
design is given in [Bri82]. The relationship (1) suggests that if the constant of proportionality is
known, then �

glm can be estimated by computing the OLS estimator, which may be substantially
simpler than finding the MLE for the original GLM. Our work in this paper builds on this idea.

Our contributions can be summarized as follows.

1. We show that �glm is approximately proportional to �

ols in random design GLMs, regardless
of the predictor distribution. That is, we prove

�

�

�

glm � c ⇥ �

ols

�

�

1 . 1

p

, for some c 2 R.

2. We design a computationally efficient estimator for �glm by first estimating the OLS co-
efficients, and then estimating the proportionality constant c . We refer to the resulting
estimator as the Scaled Least Squares (SLS) estimator and denote it by ˆ

�

sls. After estimating
the OLS coefficients, the second step of our algorithm involves finding a root of a real valued
function; this can be accomplished using iterative methods with up to a cubic convergence
rate and only O(n) per-iteration cost. This is cheaper than the classical batch methods
mentioned above by at least a factor of O(p).

3. For random design GLMs with sub-Gaussian predictors, we show that
�

�

�

ˆ

�

sls � �

glm

�

�

�

1
. 1

p

+

r

p

n/max {log(n), p} .

This bound characterizes the performance of the proposed estimator in terms of data dimen-
sions, and justifies the use of the algorithm in the regime n � p � 1.

4. We study the statistical and computational performance of ˆ

�

sls, and compare it to that of the
MLE (using several well-known implementations), on a variety of large-scale datasets.

The rest of the paper is organized as follows: Section 1.1 surveys the related work and Section 2
introduces the required background and the notation. In Section 3, we provide the intuition behind the
relationship (1), which are based on exact calculations for GLMs with Gaussian design. In Section 4,
we propose our algorithm and discuss its computational properties. Section 5 provides a thorough
comparison between the proposed algorithm and other existing methods. Theoretical results may be
found in Section 6. Finally, we conclude with a brief discussion in Section 7.

1.1 Related work
As mentioned in Section 1, the relationship (1) is well-known in several forms in statistics. Brillinger
[Bri82] derived (1) for models with Gaussian predictors. Li & Duan [LD89] studied model misspeci-
fication problems in statistics and derived (1) when the predictor distribution has linear conditional
means (this is a slight generalization of Gaussian predictors). More recently, Stein’s lemma [BEM13]
and the relationship (1) has been revisited in the context of compressed sensing [PV15, TAH15],
where it has been shown that the standard lasso estimator may be very effective when used in models
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where the relationship between the expected response and the signal is nonlinear, and the predictors
(i.e. the design or sensing matrix) are Gaussian. A common theme for all of this previous work is that
it focuses solely on settings where (1) holds exactly and the predictors are Gaussian (or, in [LD89],
nearly Gaussian). Two key novelties of the present paper are (i) our focus on the computational
benefits following from (1) for large scale problems with n � p � 1; and (ii) our rigorous analysis
of models with non-Gaussian predictors, where (1) is shown to be approximately valid.

2 Preliminaries and notation
We assume a random design setting, where the observed data consists of n random iid pairs (y1, x1),
(y2, x2), . . ., (yn, xn); yi 2 R is the response variable and xi = (xi1, . . . , xip)

T 2 Rp is the vector
of predictors or covariates. We focus on problems where fitting a GLM is desirable, but we do not
need to assume that (yi, xi) are actually drawn from the corresponding statistical model (i.e. we
allow for model misspecification).

The MLE for GLMs with canonical link is defined by

ˆ

�

mle

= argmax

�2Rp

1

n

n
X

i=1

yihxi,�i � (hxi,�i). (2)

where h·, ·i denotes the Euclidean inner-product on Rp, and is a sufficiently smooth convex function.
The GLM coefficients �glm are defined by taking the population average in (2):

�

glm

= argmax

�2Rp
E [yihxi,�i � (hxi,�i)] . (3)

While we make no assumptions on  beyond smoothness, note that if  is the cumulant generating
function for yi | xi, then we recover the standard GLM with canonical link and regression parameters
�

glm [MN89]. Examples of GLMs in this form include logistic regression, with (w) = log{1+e

w};
Poisson regression, with  (w) = e

w; and linear regression (least squares), with  (w) = w

2
/2.

Our objective is to find a computationally efficient estimator for �

glm. The alternative estima-
tor for �glm proposed in this paper is related to the OLS coefficient vector, which is defined by
�

ols

:

= E[xix
T
i ]

�1E [xiyi]; the corresponding OLS estimator is ˆ

�

ols

:

= (XTX)

�1XT
y, where

X = (x1, . . . , xn)
T is the n⇥ p design matrix and y = (y1, . . . , yn)

T 2 Rn.

Additionally, throughout the text we let [m]={1, 2, ...,m}, for positive integers m, and we denote
the size of a set S by |S|. The m-th derivative of a function g : R ! R is denoted by g

(m). For
a vector u 2 Rp and a n ⇥ p matrix U, we let kukq and kUkq denote the `q-vector and -operator
norms, respectively. If S ✓ [n], let US denote the |S|⇥ p matrix obtained from U by extracting the
rows that are indexed by S. For a symmetric matrix M 2 Rp⇥p, �max(M) and �min(M) denote the
maximum and minimum eigenvalues, respectively. ⇢k(M) denotes the condition number of M with
respect to k-norm. We denote by Nq the q-variate normal distribution.

3 OLS is equivalent to GLM up to a scalar factor
To motivate our methodology, we assume in this section that the covariates are multivariate normal,
as in [Bri82]. These distributional assumptions will be relaxed in Section 6.
Proposition 1. Assume that the covariates are multivariate normal with mean 0 and covariance
matrix ⌃ = E

⇥

xix
T
i

⇤

, i.e. xi ⇠ Np(0,⌃). Then �

glm can be written as

�

glm

= c ⇥ �

ols

,

where c 2 R satisfies the equation 1 = c E
⇥

 

(2)
(hx,�olsic )

⇤

.

Proof of Proposition 1. The optimal point in the optimization problem (3), has to satisfy the following
normal equations,

E [yixi] = E
h

xi 
(1)

(hxi,�i)
i

. (4)

Now, denote by �(x | ⌃) the multivariate normal density with mean 0 and covariance matrix ⌃. We
recall the well-known property of Gaussian density d�(x | ⌃)/dx = �⌃�1

x�(x | ⌃). Using this
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Algorithm 1 SLS: Scaled Least Squares Estimator

Input: Data (yi, xi)
n
i=1

Step 1. Compute the least squares estimator: ˆ

�

ols and ŷ = Xˆ

�

ols.
For a sub-sampling based OLS estimator, let S ⇢ [n] be a
random subset and take ˆ

�

ols

=

|S|
n (XT

SXS)
�1XT

y.
Step 2. Solve the following equation for c 2 R: 1 =

c
n

Pn
i=1 

(2)
(c ŷi).

Use Newton’s root-finding method:
Initialize c = 2/Var (yi);
Repeat until convergence:

c c� c

1
n

Pn
i=1 

(2)
(c ŷi)� 1

1
n

Pn
i=1

�

 

(2)
(c ŷi) + c 

(3)
(c ŷi)

 .

Output: ˆ

�

sls

= c⇥ ˆ

�

ols.

and integration by parts on the right hand side of the above equation, we obtain

E
h

xi 
(1)

(hxi,�i)
i

=

Z

x 

(1)
(hx,�i)�(x | ⌃) dx = ⌃�E

h

 

(2)
(hxi,�i)

i

(5)

(this is basically the Stein’s lemma). Combining this with the identity (4), we conclude the proof.

Proposition 1 and its proof provide the main intuition behind our proposed method. Observe that
in our derivation, we only worked with the right hand side of the normal equations (4) which does
not depend on the response variable yi. The equivalence holds regardless of the joint distribution of
(yi, xi), whereas in [Bri82], yi is assumed to follow a single index model. In Section 6, where we
extend the method to non-Gaussian predictors, (5) is generalized via the zero-bias transformations.

3.1 Regularization
A version of Proposition 1 incorporating regularization — an important tool for datasets where p is
large relative to n or the predictors are highly collinear — is also possible, as outlined briefly in this
section. We focus on `

2-regularization (ridge regression) in this section; some connections with lasso
(`1-regularization) are discussed in Section 6 and Corollary 1.

For � � 0, define the `2-regularized GLM coefficients,

�

glm

� = argmax

�2Rp
E [yihxi,�i � (hxi,�i)]� �

2

k�k22 (6)

and the corresponding `

2-regularized OLS coefficients �

ols

� =

�

E
⇥

xix
T
i

⇤

+ �I
��1 E [xiyi] (so

�

glm

= �

glm

0 and �

ols

= �

ols

0 ). The same argument as above implies that

�

glm

� = c ⇥ �

ols

� , where � = �c . (7)

This suggests that the ordinary ridge regression for the linear model can be used to estimate the
`

2-regularized GLM coefficients �glm

� . Further pursuing these ideas for problems where regularization
is a critical issue may be an interesting area for future research.

4 SLS: Scaled Least Squares estimator for GLMs
Motivated by the results in the previous section, we design a computationally efficient algorithm for
any GLM task that is as simple as solving the least squares problem; it is described in Algorithm 1.
The algorithm has two basic steps. First, we estimate the OLS coefficients, and then in the second
step we estimate the proportionality constant via a simple root-finding algorithm.

There are numerous fast optimization methods to solve the least squares problem, and even a
superficial review of these could go beyond the page limits of this paper. We emphasize that this
step (finding the OLS estimator) does not have to be iterative and it is the main computational
cost of the proposed algorithm. We suggest using a sub-sampling based estimator for �ols, where
we only use a subset of the observations to estimate the covariance matrix. Let S ⇢ [n] be a
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Figure 1: Logistic regression with general Gaussian design. The left plot shows the computational cost (time)
for finding the MLE and SLS as n grows and p = 200. The right plot depicts the accuracy of the estimators.
In the regime where the MLE is expensive to compute, the SLS is found much more rapidly and has the same
accuracy. R’s built-in functions are used to find the MLE.

random sub-sample and denote by XS the sub-matrix formed by the rows of X in S. Then the
sub-sampled OLS estimator is given as ˆ

�

ols

=

�

1
|S|X

T
SXS

��1 1
nX

T
y. Properties of this estimator

have been well-studied [Ver10, DLFU13, EM15]. For sub-Gaussian covariates, it suffices to use
a sub-sample size of O (p log(p)) [Ver10]. Hence, this step requires a single time computational
cost of O �|S|p2 + p

3
+ np

� ⇡ O �

pmax{p2 log(p), n}�. For other approaches, we refer reader to
[RT08, DLFU13] and the references therein.

The second step of Algorithm 1 involves solving a simple root-finding problem. As with the first
step of the algorithm, there are numerous methods available for completing this task. Newton’s
root-finding method with quadratic convergence or Halley’s method with cubic convergence may be
appropriate choices. We highlight that this step costs only O (n) per-iteration and that we can attain up
to a cubic rate of convergence. The resulting per-iteration cost is cheaper than other commonly used
batch algorithms by at least a factor of O (p) — indeed, the cost of computing the gradient is O (np).
For simplicity, we use Newton’s root-finding method initialized at c = 2/Var (yi). Assuming that
the GLM is a good approximation to the true conditional distribution, by the law of total variance and
basic properties of GLMs, we have

Var (yi) = E [Var (yi | xi)] + Var (E [yi | xi]) ⇡ c

�1
 + Var

�

 

(1)
(hxi,�i)

�

. (8)

It follows that this initialization is reasonable as long as c�1
 ⇡ E [Var (yi | xi)] is not much smaller

than Var
�

 

(1)
(hxi,�i)

�

. Our experiments show that SLS is very robust to initialization.

In Figure 1, we compare the performance of our SLS estimator to that of the MLE, when both are used
to analyze synthetic data generated from a logistic regression model under general Gaussian design
with randomly generated covariance matrix. The left plot shows the computational cost of obtaining
both estimators as n increases for fixed p. The right plot shows the accuracy of the estimators. In the
regime n � p � 1 — where the MLE is hard to compute — the MLE and the SLS achieve the same
accuracy, yet SLS has significantly smaller computation time. We refer the reader to Section 6 for
theoretical results characterizing the finite sample behavior of the SLS.

5 Experiments
This section contains the results of a variety of numerical studies, which show that the Scaled Least
Squares estimator reaches the minimum achievable test error substantially faster than commonly used
batch algorithms for finding the MLE. Both logistic and Poisson regression models (two types of
GLMs) are utilized in our analyses, which are based on several synthetic and real datasets.

Below, we briefly describe the optimization algorithms for the MLE that were used in the experiments.

1. Newton-Raphson (NR) achieves locally quadratic convergence by scaling the gradient by
the inverse of the Hessian evaluated at the current iterate. Computing the Hessian has a
per-iteration cost of O �

np

2
�

, which makes it impractical for large-scale datasets.
2. Newton-Stein (NS) is a recently proposed second-order batch algorithm specifically de-

signed for GLMs [Erd16]. The algorithm uses Stein’s lemma and sub-sampling to efficiently
estimate the Hessian with O (np) per-iteration cost, achieving near quadratic rates.
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Figure 2: Performance of SLS compared to that of MLE obtained with various optimization algorithms on
several datasets. SLS is represented with red straight line. The details are provided in Table 1.

3. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is the most popular and stable quasi-Newton
method [Nes04]. At each iteration, the gradient is scaled by a matrix that is formed
by accumulating information from previous iterations and gradient computations. The
convergence is locally super-linear with a per-iteration cost of O (np).

4. Limited memory BFGS (LBFGS) is a variant of BFGS, which uses only the recent iterates
and gradients to approximate the Hessian, providing significant improvement in terms of
memory usage. LBFGS has many variants; we use the formulation given in [Bis95].

5. Gradient descent (GD) takes a step in the opposite direction of the gradient, evaluated at
the current iterate. Its performance strongly depends on the condition number of the design
matrix. Under certain assumptions, the convergence is linear with O (np) per-iteration cost.

6. Accelerated gradient descent (AGD) is a modified version of gradient descent with an
additional “momentum” term [Nes83]. Its per iteration cost is O (np) and its performance
strongly depends on the smoothness of the objective function.

For all the algorithms, the step size at each iteration is chosen via the backtracking line search [BV04].

Recall that the proposed Algorithm 1 is composed of two steps; the first finds an estimate of the
OLS coefficients. This up-front computation is not needed for any of the MLE algorithms described
above. On the other hand, each of the MLE algorithms requires some initial value for �, but no such
initialization is needed to find the OLS estimator in Algorithm 1. This raises the question of how the
MLE algorithms should be initialized, in order to compare them fairly with the proposed method. We
consider two scenarios in our experiments: first, we use the OLS estimator computed for Algorithm 1
to initialize the MLE algorithms; second, we use a random initial value.

On each dataset, the main criterion for assessing the performance of the estimators is how rapidly the
minimum test error is achieved. The test error is measured as the mean squared error of the estimated
mean using the current parameters at each iteration on a test dataset, which is a randomly selected
(and set-aside) 10% portion of the entire dataset. As noted previously, the MLE is more accurate
for small n (see Figure 1). However, in the regime considered here (n � p � 1), the MLE and the
SLS perform very similarly in terms of their error rates; for instance, on the Higgs dataset, the SLS
and MLE have test error rates of 22.40% and 22.38%, respectively. For each dataset, the minimum
achievable test error is set to be the maximum of the final test errors, where the maximum is taken
over all of the estimation methods. Let ⌃(1) and ⌃(2) be two randomly generated covariance matrices.
The datasets we analyzed were: (i) a synthetic dataset generated from a logistic regression model
with iid {exponential(1)�1} predictors scaled by ⌃(1); (ii) the Higgs dataset (logistic regression)
[BSW14]; (iii) a synthetic dataset generated from a Poisson regression model with iid binary(±1)
predictors scaled by ⌃(2); (iv) the Covertype dataset (Poisson regression) [BD99].

In all cases, the SLS outperformed the alternative algorithms for finding the MLE by a large margin,
in terms of computation. Detailed results may be found in Figure 2 and Table 1. We provide additional
experiments with different datasets in the Supplementary Material.
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Table 1: Details of the experiments shown in Figure 2.
MODEL LOGISTIC REGRESSION POISSON REGRESSION
DATASET ⌃⇥{EXP(1)-1} HIGGS [BSW14] ⌃⇥BER(±1) COVERTYPE [BD99]
SIZE n = 6.0 ⇥ 105 , p = 300 n = 1.1⇥107 , p = 29 n = 6.0⇥105 , p = 300 n = 5.8⇥105 , p = 53
INITIALIZED RND OLS RND OLS RND OLS RND OLS
PLOT (A) (B) (C) (D) (E) (F) (G) (H)
METHOD TIME IN SECONDS / NUMBER OF ITERATIONS (TO REACH MIN TEST ERROR)
SLS 8.34/4 2.94/3 13.18/3 9.57/3 5.42/5 3.96/5 2.71/6 1.66/20
NR 301.06/6 82.57/3 37.77/3 36.37/3 170.28/5 130.1/4 16.7/8 32.48/18
NS 51.69/8 7.8/3 27.11/4 26.69/4 32.71/5 36.82/4 21.17/10 282.1/216
BFGS 148.43/31 24.79/8 660.92/68 701.9/68 67.24/29 72.42/26 5.12/7 22.74/59
LBFGS 125.33/39 24.61/8 6368.1/651 6946.1/670 224.6/106 357.1/88 10.01/14 10.05/17
GD 669/138 134.91/25 100871/10101 141736/13808 1711/513 1364/374 14.35/25 33.58/87
AGD 218.1/61 35.97/12 2405.5/251 2879.69/277 103.3/51 102.74/40 11.28/15 11.95/25

6 Theoretical results
In this section, we use the zero-bias transformations [GR97] to generalize the equivalence between
OLS and GLMs to settings where the covariates are non-Gaussian.
Definition 1. Let z be a random variable with mean 0 and variance �

2. Then, there exists a
random variable z

⇤ that satisfies E [zf(z)] = �

2E[f (1)
(z

⇤
)], for all differentiable functions f . The

distribution of z⇤ is said to be the z-zero-bias distribution.

The existence of z⇤ in Definition 1 is a consequence of Riesz representation theorem [GR97]. The
normal distribution is the unique distribution whose zero-bias transformation is itself (i.e. the normal
distribution is a fixed point of the operation mapping the distribution of z to that of z⇤).

To provide some intuition behind the usefulness of the zero-bias transformation, we refer back to the
proof of Proposition 1. For simplicity, assume that the covariate vector xi has iid entries with mean 0,
and variance 1. Then the zero-bias transformation applied to the j-th normal equation in (4) yields

E [yixij ] = E
h

xij 
(1)

�

xij�j + ⌃k 6=jxik�k

�

i

| {z }

j-th normal equation

= �jE
h

 

(2)
�

x

⇤
ij�j + ⌃k 6=jxik�ik

�

i

| {z }

Zero-bias transformation

. (9)

The distribution of x⇤
ij is the xij-zero-bias distribution and is entirely determined by the distribution

of xij ; general properties of x⇤
ij can be found, for example, in [CGS10]. If � is well spread, it turns

out that taken together, with j = 1, . . . , p, the far right-hand side in (9) behaves similar to the right
side of (5), with ⌃ = I; that is, the behavior is similar to the Gaussian case, where the proportionality
relationship given in Proposition 1 holds. This argument leads to an approximate proportionality
relationship for non-Gaussian predictors, which, when carried out rigorously, yields the following.
Theorem 1. Suppose that the covariate vector xi has mean 0 and covariance matrix ⌃ and, fur-
thermore, that the random vector ⌃�1/2

xi has independent entries and its sub-Gaussian norm is
bounded by . Assume that the function  (2) is Lipschitz continuous with constant k. Let k�k2 = ⌧

and assume � is r-well-spread in the sense that ⌧/ k�k1 = r

p
p for some r 2 (0, 1]. Then, for

c = 1/E
⇥

 

(2)
(hxi,�

glmi)⇤, and ⇢ = ⇢1(⌃1/2
) denoting the condition number of ⌃1/2, we have

�

�

�

�

1

c 
⇥ �

glm � �

ols

�

�

�

�

1
 ⌘

p

, where ⌘ = 8k

3
⇢k⌃1/2k1(⌧/r)

2
. (10)

Theorem 1 is proved in the Supplementary Material. It implies that the population parameters �ols

and �

glm are approximately equivalent up to a scaling factor, with an error bound of O (1/p). The
assumption that �glm is well-spread can be relaxed with minor modifications. For example, if we
have a sparse coefficient vector, where supp(�

glm

) = {j; �glm

j 6= 0} is the support set of �glm, then
Theorem 1 holds with p replaced by the size of the support set.

An interesting consequence of Theorem 1 and the remarks following the theorem is that whenever
an entry of �glm is zero, the corresponding entry of �ols has to be small, and conversely. For � � 0,
define the lasso coefficients

�

lasso

� = argmin

�2Rp

1

2

E
⇥

(yi � hxi,�i)2
⇤

+ � k�k1 . (11)
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Corollary 1. For any � � ⌘/|supp(�glm

)|, if E [xi] = 0 and E
⇥

xix
T
i

⇤

= I, we have
supp(�

lasso

) ⇢ supp(�

glm

). Further, if � and �

glm also satisfy that 8j 2 supp(�

glm

), |�glm

j | >
c 

�

�+ ⌘/|supp(�glm

)|�, then we have supp(�

lasso

) = supp(�

glm

).

So far in this section, we have only discussed properties of the population parameters, such as �glm.
In the remainder of this section, we turn our attention to results for the estimators that are the main
focus of this paper; these results ultimately build on our earlier results, i.e. Theorem 1.

In order to precisely describe the performance of ˆ

�

sls, we first need bounds on the OLS estimator.
The OLS estimator has been studied extensively in the literature; however, for our purposes, we
find it convenient to derive a new bound on its accuracy. While we have not seen this exact bound
elsewhere, it is very similar to Theorem 5 of [DLFU13].
Proposition 2. Assume that E [xi] = 0, E

⇥

xix
T
i

⇤

= ⌃, and that ⌃�1/2
xi and yi are sub-Gaussian

with norms  and �, respectively. For �min denoting the smallest eigenvalue of ⌃, and |S| > ⌘p,
�

�

�

ˆ

�

ols � �

ols

�

�

�

2
 ⌘�

�1
/2

min

r

p

|S| , (12)

with probability at least 1� 3e

�p, where ⌘ depends only on � and .

Proposition 2 is proved in the Supplementary Material. Our main result on the performance of ˆ

�

sls is
given next.
Theorem 2. Let the assumptions of Theorem 1 and Proposition 2 hold with E[k⌃�1/2

xk2] = µ̃

p
p.

Further assume that the function f(z) = zE
⇥

 

(2)
(hx,�olsiz)⇤ satisfies f(c̄) > 1 +

¯

�

p
p for some c̄

and ¯

� such that the derivative of f in the interval [0, c̄] does not change sign, i.e., its absolute value is
lower bounded by � > 0. Then, for n and |S| sufficiently large, we have

�

�

�

ˆ

�

sls � �

glm

�

�

�

1
 ⌘1

1

p

+ ⌘2

r

p

min {n/ log(n), |S|/p} , (13)

with probability at least 1� 5e

�p, where the constants ⌘1 and ⌘2 are defined by
⌘1 =⌘kc̄

3
⇢k⌃1/2k1(⌧/r)

2 (14)

⌘2 =⌘c̄�

�1/2
min

⇣

1 + �

�1
�

1/2
min k�olsk1 max {(b+ k/µ̃), kc̄}

⌘

, (15)

and ⌘ > 0 is a constant depending on  and �.

Note that the convergence rate of the upper bound in (13) depends on the sum of the two terms, both
of which are functions of the data dimensions n and p. The first term on the right in (13) comes from
Theorem 1, which bounds the discrepancy between c ⇥ �

ols and �

glm. This term is small when p is
large, and it does not depend on the number of observations n.

The second term in the upper bound (13) comes from estimating �

ols and c . This term is increasing
in p, which reflects the fact that estimating �

glm is more challenging when p is large. As expected,
this term is decreasing in n and |S|, i.e. larger sample size yields better estimates. When the full OLS
solution is used (|S| = n), the second term becomes O(

p

pmax{log(n), p}/n) = O(p/

p
n), for p

sufficiently large. This suggests that n should be at least of order p2 for good performance.

7 Discussion

In this paper, we showed that the coefficients of GLMs and OLS are approximately proportional
in the general random design setting. Using this relation, we proposed a computationally efficient
algorithm for large-scale problems that achieves the same accuracy as the MLE by first estimating the
OLS coefficients and then estimating the proportionality constant through iterations that can attain
quadratic or cubic convergence rate, with only O (n) per-iteration cost.

We briefly mentioned that the proportionality between the coefficients holds even when there is
regularization in Section 3.1. Further pursuing this idea may be interesting for large-scale problems
where regularization is crucial. Another interesting line of research is to find similar proportionality
relations between the parameters in other large-scale optimization problems such as support vector
machines. Such relations may reduce the problem complexity significantly.
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