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Abstract

Probabilistic inference serves as a popular model for neural processing. It is
still unclear, however, how approximate probabilistic inference can be accurate
and scalable to very high-dimensional continuous latent spaces. Especially as
typical posteriors for sensory data can be expected to exhibit complex latent
dependencies including multiple modes. Here, we study an approach that can
efficiently be scaled while maintaining a richly structured posterior approximation
under these conditions. As example model we use spike-and-slab sparse coding for
V1 processing, and combine latent subspace selection with Gibbs sampling (select-
and-sample). Unlike factored variational approaches, the method can maintain
large numbers of posterior modes and complex latent dependencies. Unlike pure
sampling, the method is scalable to very high-dimensional latent spaces. Among all
sparse coding approaches with non-trivial posterior approximations (MAP or ICA-
like models), we report the largest-scale results. In applications we firstly verify the
approach by showing competitiveness in standard denoising benchmarks. Secondly,
we use its scalability to, for the first time, study highly-overcomplete settings for
V1 encoding using sophisticated posterior representations. More generally, our
study shows that very accurate probabilistic inference for multi-modal posteriors
with complex dependencies is tractable, functionally desirable and consistent with
models for neural inference.

1 Introduction

The sensory data that enters our brain through our sensors has a high intrinsic dimensionality and
it is complex and ambiguous. Image patches or small snippets of sound, for instance, often do
not contain sufficient information to identify edges or phonemes with high degrees of certainty.
Probabilistic models are therefore very well suited to maintain uncertainty encodings. Given an
image patch, for instance, high probabilities for an edge in one location impacts the probabilities
for other components resulting in complex dependencies commonly known as "explaining-away"
effects. Such dependencies in general include (anti-)correlations, higher-order dependencies and
multiple posterior modes (i.e., alternative interpretations of a patch). Furthermore, sensory data
is typically composed of many different elementary constituents (e.g., an image patch contains
some of a potentially very large number of components) resulting in sparse coding models aiming
at increasing overcompleteness [1]. If sensory data gives rise to complex posterior dependencies
and has high intrinsic dimensionality, how can we study inference and learning in such settings?
To date most studies, e.g. of V1 encoding models, have avoided the treatment of complex latent
dependencies by assuming standard sparse models with Laplace priors [2, 3, 1]; high-dimensional
problems can then be addressed by applying maximum a-posteriori (MAP) approximations for the
resulting mono-modal posteriors. Other scalable approaches such as independent component analysis
(ICA) or singular value decomposition (K-SVD) [4, 5] do not encode for data uncertainty, which
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avoids posterior estimations altogether. For advanced data models, which we expect to be required,
e.g., for visual data, neither MAP nor a non-probabilistic treatment can be expected to be sufficient.
It was, for example, in a number of studies shown that sparse coding models with more flexible
spike-and-slab priors are (A) more closely aligned with the true generative process e.g. for images,
and are (B) resulting in improved functional performance [6, 7]. Spike-and-slab priors do, however,
result in posteriors with complex dependencies including many modes [8, 7]. Inference w.r.t. to
spike-and-slab sparse coding is therefore well suited to, in general, study efficient inference and
learning with complex posteriors in high-dimensions. Results for spike-and-slab sparse coding are,
furthermore, of direct interest for other important models such as hierarchical communities of experts
[9], deep Boltzmann Machines (see [6]), or convolutional neural networks [10]. Also for these
typically deep systems very high-dimensional inference and learning is of crucial importance.

So far, intractable inference for spike-and-slab sparse coding was approximated using sampling or
factored variational approaches. While sampling approaches can in principle model any dependencies
including multiple modes, they have been found challenging to train at scale, with the largest scale
applications going to few hundred of latents [11, 12]. Compared to sampling, approaches using
factored variational approximations can not model as complex posterior dependencies because they
assume posterior independence (no correlations etc), however, they can capture multiple modes
and are scalable to several hundreds up to thousands of latents [8, 6]. In this work we combine the
accuracy of sampling approaches and the scalability of variational approaches by applying select-and-
sample [13] to scale spike-and-slab sparse coding to very high latent dimensions. In contrast to using
a factored approximation, we here select low dimensional subspaces of the continuous hidden space,
and then apply sampling to approximate posteriors within these lower dimensional spaces.

2 The Spike-and-Slab Sparse Coding Model and Parameter Optimization

The spike-and-slab sparse coding model (see [8, 6] and citations therein) used for our study assumes
a Bernoulli prior over all H components of the the binary latent vector�b ∈ {0, 1}H , with a Gaussian
prior (the ‘slab’) for the continuous latent vector �z ∈ RH :

p(�b |Θ) =
�

h π
bh (1− π)1−bh , p(�z |Θ) =

�
h N (zh; µh,ψ

2
h), (1)

where π defines the probability of bh being equal to one and where �µ ∈ RH and �ψ ∈ RH parameterize
the Gaussian slab. A spike-and-slab hidden variable �s ∈ RH is then generated by a pointwise
multiplication: �s = (�b� �z), i.e., sh = bh zh. Given the hidden variable �s, we follow standard sparse
coding by linearly superimposing a set of latent components (i.e., W�s =

�
h
�Whsh) to initialize the

mean of a Gaussian noise model:
p(�y |�s,Θ) =

�
d N (yd;

�
h Wdhsh,σ

2
d), (2)

which then generates us the observed data �y ∈ RD. Here the columns of the matrix W ∈ RD×H

are each a latent component �Wh that is associated with a spike-and-slab latent variable sh. We use
�σ ∈ RD to parameterize the observation noise. The parameters of the generative model (1) to (2)
are together denoted by Θ = (π, �µ, �ψ,W,�σ). To find the values of Θ, we seek to maximize the data
likelihood L =

�N
n=1 p(�y

(n) |Θ) under the spike-and-slab data model and given a set of N data
points {�y (n)}n=1,...,N . To derive a learning algorithm, we apply expectation maximization (EM) in
its free-energy formulation. In our case the free-energy is given by:

F(q,Θ) =
N�

n=1

�
log p(�y (n),�s |Θ)

�
n
+H(q(n)), where � f(�s) �n =

�
q(n)(�s) f(�s)d�s

is the expectation under q(n), a distribution over the latent space and H( · ) denotes the Shannon
entropy. Given the free-energy, the parameter updates are canonically derived by setting the partial
derivatives of F(q,Θ) w.r.t. the parameters to zero. For the spike-and-slab sparse coding model (1)
and (2), we obtain (similar to [8, 6, 7]) the following closed-form M-step equations:

π =
1
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�
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�
n
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with sh = bh zh and |�x| = �
h xh as defined above.

3 Approximate Inference With Select-and-Sample

The optimal choices for the distributions q(n)(�s) for the expectations in (3) and (4) are the posteriors
p(�s | �y (n),Θ), but neither the posteriors nor their corresponding expectation values are computation-
ally tractable for high dimensions. However, a crucial observation that we exploit in our work is
that for observed data such as natural sensory input or data generated by a sparse coding model, the
activity of latent components (or causes) can be expected to be concentrated in low-dimensional
subspaces. In other words, for a given observed data point, all except for a very small fraction
of the latent components can be assumed to be non-causal or irrelevant, hence the corresponding
latent space can be neglected for the integration over �s. For a sparse initiation (i.e., π � 1) of the
spike-and-slab model (1) to (2), we consider such low dimensional subspaces to be spanned by a few
(approximately πH) of the H latent space coordinates. If we denote by J (n) the subspace containing
the large majority of posterior mass for a given data point �y (n), an approximation to p(�s | �y (n),Θ) is
then given by the following truncated distribution:

q(n)(�s;Θ) =
p(�s | �y (n),Θ)�

�s �∈J (n)

p(�s � | �y (n),Θ) d�s �
δ(�s ∈ J (n)), (5)

where δ(�s ∈ J (n)) is an indicator function, taking the value δ(�s ∈ J (n)) = 1 only if �s ∈ J (n)

and zero otherwise. Truncated approximations have previously been shown to work efficiently and
accurately for challenging data models [14, 15, 16]. Latents were restricted to be binary, however,
and scalability was previously limited by the combinatorics within the selected latent subsets. For
our aim of very large scale applications, we therefore apply the select-and-sample approach [13] and
use a sampling approximation that operates within the subspaces J (n). Unlike [13] who used binary
latents, we here apply the approximation to the continuous latent space of spike-and-slab sparse
coding. Formally, this means that we first use the posterior approximation q(n)(�s) in Eqn. 5 and then
approximate the expectation values w.r.t. q(n)(�s) using sampling (see illustration of Alg. 1):

� f(�s) �n =

�
q(n)(�s) f(�s) d�s ≈ 1

M

M�

m=1

f(�s (m)),where �s (m) ∼ q(n)(�s) , (6)

M is the number of samples and f(�s) can be any argument of the expectation values in (3) and (4).

It remains to be shown how difficult sampling from q(n)(�s) is compared to directly sampling
form the full posterior p(�s | �y (n),Θ). The index function δ(�s ∈ J (n)) means that we can clamp
all values of �s to zero but we have to answer the question how the remaining sh are sampled. A
closer analysis of the problem shows that the distribution to sample in the reduced space is given
by the posterior w.r.t. a truncated generative model. To show this, let us first introduce some
notation: Let us denote by I a subset of the indices of the latent variables �s, i.e., I ⊆ {1, . . . , H},
and let us use H\I as an abbreviation for {1, . . . , H}\I. The vector �sI w.r.t. I is then, as
customary, a vector in R|I| defined by those entries sh with h ∈ I. In analogy, we take a ma-
trix WI ∈ RD×|I| to be defined by row vectors (�wT

d )I where �wT
d are the row vectors of W ∈ RD×H .

Proposition 1. Consider the spike-and-slab generative model (1) to (2) with parameters Θ,
and let ΘI(n) = (π, �µI(n) , �ψI(n) ,WI(n) ,�σ) be the parameters of a truncated spike-and-slab model
with H � = dim(I(n)) dimensional latent space. Then it applies that sampling from the truncated
distribution in (5) is equivalent to sampling from the posterior p(�sI(n) | �y (n),ΘI(n)) of the truncated
spike-and-slab model, while all values sh with h �∈ I(n) are clamped to zero.

Proof. If I(n) denotes the indices of those latents sh that span the subspace in which
the posterior mass of p(�s | �y (n),Θ) is concentrated, then these subsets are given by
J (n) = {�s ∈ RH |�sH\I(n) = �0}, i.e., δ(�s ∈ J (n)) can be rewritten as

�
h�∈I(n) δ(sh = 0).

Considering (5), we can therefore set the corresponding values �sH\I(n) = �0. We now drop the
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superscript n for readability and first derive:

p(�sI ,�sH\I = �0, �y |Θ)

= N (�y;WI�sI +WH\I�0,�σ)
� �

h∈I
Bern(bh;π)N (zh;µh,ψh)

� � �

h�∈I
Bern(bh = 0;π)N (zh;µh,ψh)

�

= p(�sI , �y |ΘI)U(�sH\I = �0,Θ) with U(�sH\I ,Θ) = p(�sH\I |ΘH\I),

i.e., the joint with �sH\I = �0 is given by the joint of the truncated model multiplied by a term not
depending on �sI such that:

q(�s;Θ) =
p(�sI ,�sH\I = �0, �y |Θ) δ(�s ∈ J )�

�s �∈J
p(�s �

I ,�s
�
H\I = �0, �y |Θ) d�s �

=
p(�sI , �y |ΘI)U(�sH\I = �0,Θ) δ(�s ∈ J )�

�s �∈J
p(�s �

I , �y |ΘI) d�s
� U(�sH\I = �0,Θ)

=
p(�sI , �y |ΘI)�

�s �
p(�s �

I , �y |ΘI) d�s
�
I

�

h�∈I
δ(sh = 0) = p(�sI | �y,ΘI)

�

h�∈I
δ(sh = 0) . (7)

�
Following the proof, Proposition 1 applies for any generative model p(�s, �y |Θ) for which applies
p(�sI ,�sH\I = �0, �y |Θ) = p(�sI , �y |ΘI)U(�sH\I = �0, �y,Θ). This includes a large class of models
such as linear and non-linear spike-and-slab models, and potentially hierarchical models such as
SBNs. Proposition 1 does not apply in general, however (we exploit specific model properties).

Sampling. In previous work [7], posteriors for spike-and-slab sparse coding have been evaluated
exhaustively within selected I(n) which resulted in scalability to be strongly limited by the dimen-
sionality of I(n). Based on Proposition 1, we can now overcome this bottleneck by using sampling
approximations within the subspaces J (n), and we have shown that such sampling is equivalent to
sampling w.r.t. to a much lower dimensional spike-and-slab model. The dimensionality of J (n) is
still non-trivial, however, and we use a Markov chain Monte Carlo (MCMC) approach, namely Gibbs
sampling for efficient scalability. Following Proposition 1 we derive a sampler for the spike-and-slab
model (1) to (2) and later apply it for the needed (low) dimensionality.

While the result of sampling from posteriors of truncated models applies for a broad class of spike-
and-slab models (Proposition 1), we can here exploit a further specific property of the model (1) to
(2). As has previously been observed and exploited in different contexts [8, 12, 17], the Gaussian
slab and the Gaussian noise model can be combined using Gaussian identities such that integrals over
the continuous latents �z are solvable analytically. Here we can use this observation for the derivation
of a Gibbs sampler. For this we first devise a latent variable Markov chain such that its target density
is given by the following conditional posterior distribution:

p(sh|�sH\h, �y, θ) ∝ p(sh|θ)
�

d

p(yd|sh,�sH\h, θ)

=
�
(1− π) δ̃(sh) + πN (sh; µh,ψ

2
h)
� �

d

N (sh; νd,ϕ
2
d) , (8)

where δ̃(.) is the Dirac delta to represent the spike at zero and where νd = (yd −�
h�\h Wdh�sh�)/Wdh and ϕ2

d = σ2
d/W

2
dh. Using Gaussian identities we obtain:

p(sh|�sH\h, �y, θ) ∝
�
(1− π)N (sh; υ,φ

2) δ̃(sh) + πN (sh; τ,ω
2)
�
, (9)

where υ = φ2
�

d νd/ϕ
2
d and φ2 = (

�
d 1/ϕ

2
d)

−1, whereas τ = ω2 (υ/φ2 + µh/ψ
2
h) and ω2 =

(1/φ2 + 1/ψ2
h)

−1. We can observe that the conditional posterior (9) of sh retains the form of a
spike-and-slab distribution. We can therefore simply compute the cumulative distribution function
(CDF) of (9) to simulate sh from the exact conditional distribution (sh ∼ p(sh|�sH\h , �y, θ)) by means
of inverse transform sampling.

Selecting. The Gibbs sampler can now be applied to generate posterior samples for a truncated
spike-and-slab model (defined using parameters ΘI(n)). We also obtain a valid approximation, of
course, without selection (I = {1,. . . ,H}) but MCMC samplers in very high dimensional spaces
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Algorithm 1: Select-and-sample for spike-and-slab sparse coding (S5C)

init Θ;
repeat

for (n = 1, ..., N) do
for (h = 1, ..., H) do

compute Sh(�y
(n)) as in (10);

define I(n) as in (11);
for (m = 1, . . . ,M ) do

draw �s
(m)

I(n) ∼ p(�sI(n) | �y (n),ΘI(n)) using (9);

compute � f(�s) �n = 2
M

�M
m=M

2 +1 f(�s
(m));

compute M-step with arguments f(�s) as in (3) and (4);
until (until Θ have converged); Illustration of general application.

with complex posterior structure are known to be challenging (convergence to target distributions
can be very slow). The problems typically increase superlinearly with hidden dimensionality but
for intermediate dimensions, a Gibbs sampler can be very fast and accurate. By using subspaces
J (n) with intermediate dimensionality, therefore, results in very efficient and accurate sampling
approximations within these spaces. An overall very accurate approximation is then obtained if the
subspaces are well selected and if they do contain the large majority of posterior mass. By using
exact EM it was indeed previously shown for spike-and-slab sparse coding [7] that almost all posterior
mass, e.g., for naturally mixed sound sources, is concentrated in collections of low-dimensional
subspaces (also compare [18]). To define a subspace J (n) given a data point �y (n), we follow earlier
approaches [15, 14] and first define an efficiently computable selection function to choose those
latents that are the most likely to have generated the data point. We use the selection function in [7]
which is given by:

Sh(�y
(n),Θ) =

�
d N (�y

(n)
d ; Wdhµh,σd +W 2

dh/ψh) ∝ p(�y (n) |�b = �bh,Θ), (10)

where�bh represents a singleton state with only component h being equal to one. The subsets are then
defined as follows:

I(n) is the set of H � indices such that ∀h ∈ I(n) ∀h� �∈ I(n) : Sh(�y
(n),Θ) > Sh�(�y (n),Θ). (11)

We then use J (n) = {�s |�sH\I(n) = �0} as above. In contrast to previous approaches with H � typically
< 10, H � can be chosen relatively large here because the Gibbs sampler is still very efficient and
precise for H � > 10 (we will go up H � = 40).

By combining selection procedure and the Gibbs sampler using Proposition 1, we obtain the efficient
approximate EM algorithm summarized in Alg. 1. It will be referred to as S5C (see Alg. 1 caption).
Note that we will, for all experiments, always discard the first half of the drawn samples as burn-in.

4 Numerical Experiments

In all the experiments, the initial values of π were drawn from a uniform distribution on the interval
[0.1, 0.5] (i.e., intermediately sparse), �µ was initialized with normally distributed random values,
ψh was set to 1 and σd was initialized with the standard deviation of yd. The elements of W were
iid drawn from a normal distribution with zero mean and a standard deviation of 5.0. We used a
multi-core parallelized implementation and executed the algorithm on up to 1000 CPU cores.

Verification of functional accuracy. We first investigate the accuracy and convergence properties
of our method on ground-truth data which was generated by the spike-and-slab data model (1) and
(2) itself. We used H = 10 hidden variables and D = 5× 5 and generative fields �Wh in the form
of five horizontal and five vertical bars. As is customary for such bars like data (e.g., [15] and cites
therein) we take each field to contribute to a data point with probability π = 2

H . We then randomly
make each of the 5 vertical and 5 horizontal bars positive or negative by assigning them a value of 5
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Figure 1: Functional accuracy of S5C. A Artificial ground-truth data. B Likelihoods during learning
(Alg. 1) for different H �. C Denoising performance of S5C on the ‘house’ benchmark as used for
other methods (MTMKL [8], K-SVD [4], Beta process [11] and GSC-ET [7]. Bold values highlight
the best performing algorithm. ∗Value not bold-faced as noise variance is assumed known a-priori[4].
D Top: Noisy image with σ = 25. Bottom: State-of-the art denoising result after S5C was applied.

or −5, while the non-bar pixels are assigned zero value. The parameters of the latent slabs µh and
ψh are set to 0.0 and 1.0, respectively, and we set the observation noise to σd = 1.0. We generate
N = 5000 data points with this setting (see Fig. 1A for examples).

We apply the S5C algorithm (Alg. 1) with H = 10 latents and M = 40 samples per data point and
use two settings for preselection: (A) no preselection (H � = H = 10) and (B) subspace preselection
using H � = 5. We did ten runs per setting using different initializations per run as above. For setting
(A), i.e. pure Gibbs sampling, the algorithm recovered, after 150 EM iterations, the generating bars
in 2 of the 10 runs. For setting (B) convergence was faster and in 9 of the 10 runs all bars were
recovered after 50 EM iterations. Fig. 1B shows for all 20 runs likelihoods during learning (which
are still tractable for H = 10). These empirical results show the same effect for a continuous latent
variable model as was previously reported for non-continuous latents [19, 20]: preselection helps
avoiding local optima (presumably because poor non-sparse solutions are destabilized using subspace
selection).

After having verified the functioning of S5C on artificial data, we turned to verifying the approach on
a denoising benchmark, which is standard for sparse coding. We applied S5C using a noisy “house”
image [following 11, 4, 8, 7]. We used three different levels of added Gaussian noise (σ = 15, 25, 50).
For each setting we extract 8 × 8 patches from 256 × 256 noisy image, visiting a whole grid of
250 × 250 pixels by shifting (vertically and horizontally) 1 pixel at a time. In total we obtained
N = 62, 001 overlapping image patches as data points. We applied the S5C algorithm with H = 256,
select subspaces with H � = 40 and used M = 100 samples per subspace. Fig. 1C,D show the
obtained results and a comparison to alternative approaches. As can be observed, S5C is competitive
to other approaches and results in higher peak signal-to-noise ratios (PSNRs) (see [7] for details)
than, e.g., K-SVD or factored variational EM approaches (MTMKL) for σ = 25 and 50. Even though
S5C uses the additional sampling approximation in the selected subspaces, it is also competitive to
ET-GSC [7], which is less efficient as it sums exhaustively within subspaces. For σ = 25 S5C even
outperforms ET-GSC presumably because S5C allows for selecting larger subspaces. In general we
observed increased improvement with the number of samples, but improvements with H saturated
after about H = 256.

Large-scale application and V1 encoding. Since sparse coding was first suggested as coding model
for primary visual cortex [21], a main goal has been its application to very high latent dimensions
because V1 is believed to be highly overcomplete [1]. Furthermore, for very large hidden dimensions,
non-standard generative fields were observed [1], a finding which is of significant relevance for
the ongoing debate of how and where increasingly complex structures in the visual system may be
processed. Here we applied S5C with H = 10 000 hidden dimensions to demonstrate scalability
of the method, and to study highly-overcomplete V1 encoding based on a posterior approximation
capturing rich structure. For our application we used the standard van Hateren database [22], extracted
N = 106 image patches of size 16× 16, and applied pseudo-whitening following [21]. We applied
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Figure 2: Selection of different types
of generative fields as learned by S5C
using H = 10, 000 latent dimensions
(see Suppl. for all fields). Gabor-like
fields are the most frequent type (Gabors,
ridgelets, gratings), followed by globu-
lar fields, curved fields and corner-like
fields. We also observed textures other

than gratings. Gabors, curved and corner fields were almost all among the 30% most frequently acti-
vated fields. Ridgelets, globular fields and gratings were typically among the 30-80% most used fields.

S5C for 50 EM iterations to the data using H � = 20 dimensional subspaces and M = 50 samples
per data point. After learning we observed a large number of generative fields specialized to image
components. Like in recent large-scale applications of standard sparse coding [1] we found fields
that did not specialize (about 1% in [1] and about 12% for S5C). The higher percentage for S5C may
be due to the five-fold higher dimensionality used here. For the fields specialized to components,
we observed a large number of Gabor-like fields including ridgelets and gratings (names follow [1]).
Furthermore, we observed globular fields that have been observed experimentally [23] and are subject
of a number of recent theoretical studies (e.g., [14, 3]). Notably, we also observed a number of curved
fields and fields sensitive to corner-like structures (Fig. 2 shows some examples). Curved fields
have so far only been described to emerge from sparse coding once before [1] and for convolutional
sparse coding in two cases [24, 25] (to the knowledge of the authors) but have been suggested for
technical applications much earlier [26] (a link that was not made, so far). Corner-like structures
have previously not been observed for sparse coding presumably because of lower dimensional latent
spaces (also not in [1] but compare convolutional extensions [24, 16, 25]). The numbers of curved (a
few hundred) and corner-like fields (a few tens) are small but we almost exclusively find those fields
among the 20% most frequently used fields (we order according to average approx. posterior, see
supplement). Neural responses to corner-like sensitivities are typically associated with higher-level
processing in the visual pathway. Our results may be evidence for such structures to emerge together,
e.g., with Gabors for very large latent dimensionality (as expected for V1). In general, the statistics
of generative field shapes can be influenced by many factors including preprocessing details, sparsity,
local optima or details of the learning algorithms. However, because of the applied approximation,
S5C can avoid the for MAP based approaches required choice of the sparsity penalty [1]. Instead we
statistically infer the sparsity level which is well interpretable for hard sparsity, and which corresponds
for our application to Hπ = 6.2 components per patch (also compare [14, 20]). In the supplement
we provide the full set of the H = 10 000 learned generative fields.

Figure 3: The y-axis shows
the highest reported latent
dimensionality for different
sparse coding algorithms
(cont. latents), and the x-
axis the accuracy of poste-
rior approximations. Within
each column, entries are or-
dered (left-to-right) w.r.t. the
publication year. 1st col-
umn: Sparse coding systems
using one latent state for in-
ference (eg., MAP-like [27,
28, 1] or SAILnet [3] or K-
SVD [4, 5]). 2nd: Approx-
imate posteriors in the form
of factored variational distri-

butions that can capture multiple modes but assume posterior independence among the latents sh
(MTMKL [8], S3C [6]). 3rd: Sampling based approximations [11, 12] and truncated approximations
(ssMCA [20], GSC-ET [7]) that capture multiple posterior modes and complex latent dependencies.
Following [6] we also included ssRBM for comparison. 4th: Full posterior with exact EM [17].
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5 Discussion

In this study we have applied a select-and-sample approach [13] to derive and study an approximate
EM algorithm applicable to models with very large-scale latent spaces. Select-and-sample combines
sampling with subspace preselection [15, 14] and has previously been applied as model for neural in-
ference using binary latents [13]. Furthermore, it has been used to overcome analytical intractabilities
of a non-linear sparse coding model [20]. Here, we for the first time apply select-and-sample to scale
a standard linear sparse coding model with spike-and-slab prior up to very large hidden dimensions.
Spike-and-slab sparse coding is hereby not only more expressive than standard Laplace or binary
priors [8, 12, 7, 20] but results in properties that we can exploit for our approximation. We have thus
analytically shown (Proposition 1) that select-and-sample is applicable to a large class of models with
hard sparsity (giving justification also to earlier applications [20]).

Empirically, we have, firstly, shown that select-and-sample for spike-and-slab sparse coding (S5C)
maintains the functional competitiveness of alternative approaches (Fig. 1). Secondly, we demon-
strated efficiency by scaling S5C up to very high-dimensional latent spaces (we go up to 10 000). For
comparison, Fig. 3 shows the largest reported latent spaces of different sparse coding approaches
depending on the posterior structure that can be captured. Non-probabilistic approaches (e.g., K-SVD
[4, 5]) are known to scale relatively well, and, likewise, approaches using MAP approximations
[2, 3, 1] have been shown to be applicable to large scales. None of these approaches captures
posterior dependencies or multiple posterior modes given a data point, however. Factored variational
approaches can be scaled to very high-dimensional latent spaces and can capture multiple posterior
modes. No latent dependencies in the posterior are modeled, however, which has previously been
reported to result in disadvantageous behavior (e.g. [29, 7]). In contrast to MAP-based or factored
approaches, sampling approaches can model both multiple posterior modes and complex latent
dependencies. Some models hereby additionally include a more Bayesian treatment of parameters
[11, 12] (also compare [8]) which can be considered more general than approaches followed in
other work (see Fig. 3). The scalability of sampling based approaches has been limited, however.
Among those models capturing the crucial posterior structure, S5C shows, to the knowledge of the
authors, the largest scale applicability. This is even the case if approaches using factored posteriors
are included. Notably there is also little reported for very large hidden dimensions for MAP based
or deterministic approaches (compare, e.g., [5]), although scalability should be less of an issue. In
general it may well be that a method is scalable to larger than the reported latent spaces but that such
increases do not result in functional benefits.
For probabilistic approaches, the requirement for approximations with high accuracy have been
identified also in other very promising work [30, 31] which uses different approaches that were,
so far, applied to much smaller scales. For the select-and-sample method and the spike-and-slab
sparse coding model, the high-dimensional applicability means that this or similar approaches are
a promising candidate for models such as DBNs, SBNs or CNNs because of their close relation to
spike-and-slab models and their typically similarly large scale settings. Here we have studied an
application of S5C to standard image patches, primarily to demonstrate scalability. The obtained
non-standard generative fields may by themselves, however, be of relevance for V1 encoding (Fig. 2)
and they show that spike-and-slab models may be very suitable generalized V1 models. From a
probabilistic view on neural processing, the accuracy that can be provided by select-and-sample
inference is hereby very desirable and is consistent, e.g., with sampling-based interpretations of neural
variability [32]. Here we have shown that such probabilistic approximations are also functionally
competitive and scalable to very large hidden dimensions.
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