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Abstract

We formalize notions of robustness for composite estimators via the notion of
a breakdown point. A composite estimator successively applies two (or more)
estimators: on data decomposed into disjoint parts, it applies the first estimator on
each part, then the second estimator on the outputs of the first estimator. And so
on, if the composition is of more than two estimators. Informally, the breakdown
point is the minimum fraction of data points which if significantly modified will
also significantly modify the output of the estimator, so it is typically desirable to
have a large breakdown point. Our main result shows that, under mild conditions
on the individual estimators, the breakdown point of the composite estimator is the
product of the breakdown points of the individual estimators. We also demonstrate
several scenarios, ranging from regression to statistical testing, where this analysis
is easy to apply, useful in understanding worst case robustness, and sheds powerful
insights onto the associated data analysis.

1 Introduction

Robust statistical estimators [5, 7] (in particular, resistant estimators), such as the median, are an
essential tool in data analysis since they are provably immune to outliers. Given data with a large
fraction of extreme outliers, a robust estimator guarantees the returned value is still within the non-
outlier part of the data. In particular, the role of these estimators is quickly growing in importance
as the scale and automation associated with data collection and data processing becomes more
commonplace. Artisanal data (hand crafted and carefully curated), where potential outliers can be
removed, is becoming proportionally less common. Instead, important decisions are being made
blindly based on the output of analysis functions, often without looking at individual data points
and their effect on the outcome. Thus using estimators as part of this pipeline that are not robust are
susceptible to erroneous and dangerous decisions as the result of a few extreme and rogue data points.

Although other approaches like regularization and pruning a constant number of obvious outliers
are common as well, they do not come with the important guarantees that ensure these unwanted
outcomes absolutely cannot occur.

In this paper we initiate the formal study of the robustness of composition of estimators through the
notion of breakdown points. These are especially important with the growth of data analysis pipelines
where the final result or prediction is the result of several layers of data processing. When each layer
in this pipeline is modeled as an estimator, then our analysis provides the first general robustness
analysis of these processes.

The breakdown point [4, 3] is a basic measure of robustness of an estimator. Intuitively, it describes
how many outliers can be in the data without the estimator becoming unreliable. However, the
literature is full of slightly inconsistent and informal definitions of this concept. For example:
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• Aloupis [1] write “the breakdown point is the proportion of data which must be moved to
infinity so that the estimator will do the same.”

• Huber and Ronchetti [8] write “the breakdown point is the smallest fraction of bad observa-
tions that may cause an estimator to take on arbitrarily large aberrant values."

• Dasgupta, Kumar, and Srikumar [14] write “the breakdown point of an estimator is the
largest fraction of the data that can be moved arbitrarily without perturbing the estimator to
the boundary of the parameter space.”

All of these definitions have similar meanings, and they are typically sufficient for the purpose of
understanding a single estimator. However, they are not mathematically rigorous, and it is difficult to
use them to discuss the breakdown point of composite estimators.

Composition of Estimators. In a bit more detail (we give formal definitions in Section 2.1), an
estimator E maps a data set to single value in another space, sometimes the same as a single data
point. For instance the mean or the median are simple estimators on one-dimensional data. A
composite E1-E2 estimator applies two estimators E1 and E2 on data stored in a hierarchy. Let
P = {P1, P2, . . . , Pn} be a set of subdata sets, where each subdata set Pi = {pi,1, pi,2, . . . , pi,k}
has individual data readings. Then the E1-E2 estimator reports E2(E1(P1), E1(P2), . . . , E1(Pn)),
that is the estimator E2 applied to the output of estimator E1 on each subdata set.

1.1 Examples of Estimator Composition

Composite estimators arise in many scenarios in data analysis.

Uncertain Data. For instance, in the last decade there has been increased focus on the study
of uncertainty data [10, 9, 2] where instead of analyzing a data set, we are given a model of the
uncertainty of each data point. Consider tracking the summarization of a group of n people based
on noisy GPS measurements. For each person i we might get k readings of their location Pi, and
use these k readings as a discrete probability distribution of where that person might be. Then in
order to represent the center of this set of people a natural thing to do would be to estimate the
location of each person as xi ← E1(Pi), and then use these estimates to summarize the entire group
E2(x1, x2, . . . , xn). Using the mean as E1 and E2 would be easy, but would be susceptible to even
a single outrageous outlier (all people are in Manhattan, but a spurious reading was at (0, 0) lat-long,
off the coast of Africa). An alternative is to use the L1-median for E1 and E2, that is known to have
an optimal breakdown point of 0.5. But what is the breakdown point of the E1-E2 estimator?

Robust Analysis of Bursty Behavior. Understanding the robustness of estimators can also be
critical towards how much one can “game” a system. For instance, consider a start-up media website
that gets bursts of traffic from memes they curate. They publish a statistic showing the median of the
top half of traffic days each month, and aggregate these by taking the median of such values over the
top half of all months. This is a composite estimator, and they proudly claim, even through they have
bursty traffic, it is robust (each estimator has a breakdown point of 0.25). If this composite estimator
shows large traffic, should a potential buyer of this website by impressed? Is there a better, more
robust estimator the potential buyer could request? If the media website can stagger the release of its
content, how should they distribute it to maximize this composite estimator?

Part of the Data Analysis Pipeline. This process of estimator composition is very common in
broad data analysis literature. This arises from the idea of an “analysis pipeline” where at several
stages estimators or analysis is performed on data, and then further estimators and analysis are
performed downstream. In many cases a robust estimator like the median is used, specifically for its
robustness properties, but there is no analysis of how robust the composition of these estimators is.

1.2 Main Results

This paper initiates the formal and general study of the robustness of composite estimators.

• In Subsection 2.1, we give two formal definitions of breakdown points which are both
required to prove composition theorem. One variant of the definition closely aligns with
other formalizations [4, 3], while another is fundamentally different.

• The main result provides general conditions under which an E1-E2 estimator with break-
down points β1 and β2, has a breakdown point of β1β2 (Theorem 2 in Subsection 2.2).
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• Moreover, by showing examples where our conditions do not strictly apply, we gain an
understanding of how to circumvent the above result. An example is in composite percentile
estimators (e.g., E1 returns the 25th percentile, and E2 the 75th percentile of a ranked set).
These composite estimators have larger breakdown point than β1 · β2.

• The main result can extended to multiple compositions, under suitable conditions, so for
instance anE1-E2-E3 estimator has a breakdown point of β1β2β3 (Theorem 3 in Subsection
2.3). This implies that long analysis chains can be very suspect to a few carefully places
outliers since the breakdown point decays exponentially in the length of the analysis chain.

• In Section 3, we highlight several applications of this theory, including robust regression,
robustness of p-values, a depth-3 composition, and how to advantageously manipulate the
observation about percentile estimator composition. We demonstrate a few more applications
with simulations in Section 4.

2 Robustness of Estimator Composition

2.1 Formal Definitions of Breakdown Points
In this paper, we give two definitions for the breakdown point: Asymptotic Breakdown Point and
Asymptotic Onto-Breakdown Point. The first definition, Asymptotic Breakdown Point, is similar
to the classic formal definitions in [4] and [3] (including their highly technical nature), although
their definitions of the estimator are slightly different leading to some minor differences in special
cases. However our second definition, Asymptotic Onto-Breakdown Point, is a structurally new
definition, and we illustrate how it can result in significantly different values on some common and
useful estimators. Our main theorem will require both definitions, and the differences in performance
will lead to several new applications and insights.

We define an estimator E as a function from the collection of some finite subsets of a metric space
(X , d) to another metric space (X ′, d′):

E : A ⊂ {X ⊂X | 0 < |X| <∞} 7→X ′, (1)

where X is a multiset. This means if x ∈ X then x can appear more than once in X , and the
multiplicity of elements will be considered when we compute |X|.

Finite Sample Breakdown Point. For estimator E defined in (1) and positive integer n we define
its finite sample breakdown point gE(n) over a set M as

gE(n) =

{
max(M) if M 6= ∅
0 if M = ∅ (2)

where for ρ(x′, X) = maxx∈X d(x′, x) is the distance from x′ to the furthest point in X ,

M = {m ∈ [0, n] | ∀X ∈ A , |X| = n,∀ G1 > 0,∃ G2 = G2(X,G1) s.t. ∀X ′ ∈ A ,

if |X ′| = n and |{x′ ∈ X ′ | ρ(x′, X) > G1}| ≤ m then d′(E(X), E(X ′)) ≤ G2}.
(3)

For an estimator E in (1) and X ∈ A , the finite sample breakdown point gE(n) means if the number
of unbounded points in X ′ is at most gE(n), then E(X ′) will be bounded. Lets break this definition
down a bit more. The definition holds over all data sets X ∈ A of size n, and for all values G1 > 0
and some value G2 defined as a function G2(X,G1) of the data set X and value G1. Then gE(n) is
the maximum value m (over all X , G1, and G2 above) such that for all X ′ ∈ A with |X ′| = n then
|{x′ ∈ X ′ | ρ(x′, X) > G1}| ≤ m (that is at most m points are further than G1 from X) where the
estimators are close, d′(E(X), E(X ′)) ≤ G2.

For example, consider a point set X = {0, 0.15, 0.2, 0.25, 0.4, 0.55, 0.6, 0.65, 0.72, 0.8, 1.0} with
n = 11 and median 0.55. If we set G1 = 3, then we can consider sets X ′ of size 11 with fewer
than m points that are either greater than 3 or less than −2. This means in X ′ there are at most m
points which are greater than 3 or less than −2, and all other n−m points are in [−2, 3]. Under these
conditions, we can (conservatively) set G2 = 4, and know that for values of m as 1, 2, 3, 4, or 5, then
the median of X ′ must be between −3.45 and 4.55; and this holds no matter where we set those m
points (e.g., at 20 or at 1000). This does not hold for m ≥ 6, so gE(11) = 5.
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Asymptotic Breakdown Point. If the limit limn→∞
gE(n)

n exists, then we define this limit

β = lim
n→∞

gE(n)

n
(4)

as the asymptotic breakdown point, or breakdown point for short, of the estimator E.
Remark 1. It is not hard to see that many common estimators satisfy the conditions. For example, the
median, L1-median [1], and Siegel estimators [11] all have asymptotic breakdown points of 0.5.

Asymptotic Onto-Breakdown Point. For an estimator E given in (1) and positive integer n, if
M̃ = {0 ≤ m ≤ n | ∀ X ∈ A , |X| = n, ∀ y ∈ X ′, ∃ X ′ ∈ A s.t. |X ′| = n, |X ∩ X ′| =
n−m,E(X ′) = y} is not empty, we define

fE(n) = min(M̃). (5)

The definition of fE(n) implies, if we change fE(n) elements in X , we can make E become any
value in X ′: it is onto. In contrast gE(n) only requires E(X ′) to become far from E(X), perhaps
only in one direction. Then the asymptotic onto-breakdown point is defined as the following limit if
it exists

lim
n→∞

fE(n)

n
. (6)

Remark 2. For a quantile estimator E that returns a percentile other than the 50th, then
limn→∞

gE(n)
n 6= limn→∞

fE(n)
n . For instance, if E returns the 25th percentile of a ranked set,

setting only 25% of the data points to −∞ causes E to return −∞; hence limn→∞
gE(n)

n = 0.25.
And while any value less than the original 25th percentile can also be obtained; to return a value
larger than the largest element in the original set, at least 75% of the data must be modified, thus
limn→∞

fE(n)
n = 0.75.

As we will observe in Section 3, this nuance in definition regarding percentile estimators will allow
for some interesting composite estimator design.

2.2 Definition of E1-E2 Estimators, and their Robustness
We consider the following two estimators:

E1 : A1 ⊂ {X ⊂X1 | 0 < |X| <∞} 7→X2, (7)
E2 : A2 ⊂ {X ⊂X2 | 0 < |X| <∞} 7→X ′

2 , (8)
where any finite subset of E1(A1), the range of E1, belongs to A2. Suppose Pi ∈ A1, |Pi| = k for
i = 1, 2, · · · , n and Pflat = ]ni=1Pi, where ] means if x appears n1 times in X1 and n2 times in X2

then x appears n1 + n2 times in X1 ]X2. We define

E(Pflat) = E2 (E1(P1), E1(P2), · · · , E1(Pn)) . (9)

Theorem 1. Suppose gE1(k) and gE2(n) are the finite sample breakdown points of estimators E1

and E2 which are given by (7) and (8) respectively. If gE(nk) is the finite sample breakdown
point of E given by (9), then we have gE2(n)gE1(k) ≤ gE(nk). If β1 = limk→∞

gE1
(k)

k , β2 =

limn→∞
gE2

(n)

n and β = limn,k→∞
gE(nk)

nk all exist, then we have β1β2 ≤ β.

The proof of Theorem 1 and other theorems can be found in the full version of this paper [12].
Remark 3. Under the condition of Theorem 1, we cannot guarantee β = β1β2. For example, suppose
E1 andE2 take the 25th percentile and the 75th percentile of a ranked set of real numbers respectively.
So, we have β1 = β2 = 1

4 . However, β = 1
4 ·

3
4 = 3

16 .

In fact, the limit of gE(nk)
nk as n, k →∞ may even not exist. For example, suppose E1 takes the 25th

percentile of a ranked set of real numbers. When n is odd E2 takes the the 25th percentile of a ranked
set of n real numbers, and when n is even E2 takes the the 75th percentile of a ranked set of n real
numbers. Thus, β1 = β2 = 1

4 , but gE(nk) ≈ 1
4nk if n is odd, and gE(nk) ≈ 1

4 ·
3
4nk if n is even,

which implies limn,k→∞
gE(nk)

nk does not exist.

Therefore, to guarantee β exist and β = β1β2, we introduce the definition of asymptotic onto-
breakdown point in (6). As shown in Remark 2, the values of (4) and (6) may be not equal. However,
with the condition of the asymptotic breakdown point and asymptotic onto-breakdown point of E1

being the same, we can finally state our desired clean result.
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Theorem 2. For estimators E1, E2 and E given by (7), (8) and (9) respectively, suppose gE1(k),
gE2(n) and gE(nk) are defined by (2), and fE1(k) is defined by (5). Moreover, E1 is an onto function
and for any fixed positive integer n we have

∃ X ∈ A2, |X| = n,G1 > 0, s.t. ∀ G2 > 0,∃ X ′ ∈ A2 satisfying

|X ′| = n, |X ′ \X| = gE2(n) + 1, and d′2(E2(X), E2(X ′)) > G2,
(10)

where d′2 is the metric of space X ′
2 . If β1 = limk→∞

gE1
(k)

k = limk→∞
fE1

(k)

k , and β2 =

limn→∞
gE2

(n)

n both exist, then β = limn,k→∞
gE(nk)

nk exists, and β = β1β2.
Remark 4. Without the introduction of fE(n), we cannot even guarantee β ≤ β1 or β ≤ β2 only
under the condition of Theorem 1, even if E1 and E2 are both onto functions. For example, for any
P = {p1, p2, · · · , pk} ⊂ R and X = {x1, x2, · · · , xn} ⊂ R, we define E1(P ) = 1/median(P )
(if median(P ) 6= 0, otherwise define E1(P ) = 0) and E2(X) = median(y1, y2, · · · , yn), where yi
(1 ≤ y ≤ n) is given by yi = 1/xi (if xi 6= 0, otherwise define yi = 0). Since gE1(k) = gE2(n) = 0
for all n, k, we have β1 = β2 = 0. However, in order to make E2(E1(P1), E1(P2), · · · , E1(Pn))→
+∞, we need to make about n

2 elements in {E(P1), E(P2), · · · , E(Pn)} go to 0+. To make
E1(Pi)→ 0+, we need to make about k

2 points in Pi go to +∞. Therefore, we have gE(nk) ≈ n
2 ·

k
2

and β = 1
4 .

2.3 Multi-level Composition of Estimators
To study the breakdown point of composite estimators with more than two levels, we introduce the
following estimator:

E3 : A3 ⊂ {X ⊂X ′
2 | 0 < |X| <∞} 7→X ′

3 , (11)

where any finite subset of E2(A2), the range of E2, belongs to A3. Suppose Pi,j ∈ A1, |Pi,j | = k

for i = 1, 2, · · · , n, j = 1, 2, · · · ,m and P j
flat = ]ni=1Pi,j , Pflat = ]mj=1P

j
flat. We define

E(Pflat) = E3

(
E2(P̃ 1

flat), E2(P̃ 2
flat), · · · , E2(P̃m

flat)
)
, (12)

where P̃ j
flat = {E1(P1,j), E1(P2,j), · · · , E1(Pn,j)}, for j = 1, 2, · · · ,m.

From Theorem 2, we can obtain the following theorem about the breakdown point of E in (12).
Theorem 3. For estimators E1, E2, E3 and E given by (7), (8), (11) and (12) respectively, suppose
gE1

(k), gE2
(n), gE3

(m) and gE(mnk) are defined by (2), and fE1
(k), fE2

(n) are defined by (5).
Moreover, E1 and E2 are both onto functions, and for any fixed positive integer m we have

∃ X ∈ A3, |X| = m,G1 > 0, s.t. ∀ G2 > 0,∃ X ′ ∈ A3

satisfying |X ′| = m, |X ′ \X| = gE3
(m) + 1, and d′3(E3(X), E3(X ′)) > G2,

where d′3 is the metric of space X ′
3 . If β1 = limk→∞

gE1
(k)

k = limk→∞
fE1

(k)

k , β2 =

limn→∞
gE2

(n)

n = limn→∞
fE2

(n)

n and β3 = limm→∞
gE3

(m)

m all exist, then we have β =

limm,n,k→∞
gE(mnk)

mnk exists, and β = β1β2β3 .

3 Applications

3.1 Application 1 : Balancing Percentiles

For n companies, for simplicity, assume each company has k employees. We are interested in the
income of the regular employees of all companies, not the executives who may have much higher pay.
Let pi,j represents the income of the jth employee in the ith company. Set Pflat = ]ni=1Pi where the
ith company has a set Pi = {pi,1, pi,2, · · · , pi,k} ⊂ R and for notational convenience pi,1 ≤ pi,2 ≤
· · · ≤ pi,k for i ∈ {1, 2, · · · , n}. Suppose the income data Pi of each company is preprocessed by a
45-percentile estimator E1 (median of lowest 90% of incomes), with breakdown point β1 = 0.45. In
theory E1(Pi) can better reflect the income of regular employees in a company, since there may be
about 10% of employees in the management of a company and their incomes are usually much higher
than that of common employees. So, the preprocessed data is X = {E1(P1), E1(P2), · · · , E1(Pn)}.
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If we define E2(X) = median(X) and E(Pflat) = E2(X), then the breakdown point of E2 is
β2 = 0.5, and the breakdown points of E is β = β1β2 = 0.225.

However, if we use another E2, then E can be more robust. For example, for X = {x1, x2, · · · , xn}
where x1 ≤ x2 ≤ · · · ≤ xn, we can define E2 as the 55-percentile estimator (median of largest
90% of incomes). In order to make E(Pflat) = E2(X) = E2(E1(P1), E1(P2), · · · , E1(Pn)) go to
infinity, we need to either move 55% points of X to −∞ or move 45% points of X to +∞. In either
case, we need to move about 0.45 · 0.55nk points of Pflat to infinity. This means the breakdown point
of E is β = 0.45 · 0.55 = 0.2475 which is greater than 0.225.

This example implies if we know how the raw data is preprocessed by estimator E1, we can choose a
proper estimator E2 to make the E1-E2 estimator more robust.

3.2 Application 2 : Regression of L1 Medians

Suppose we want to use linear regression to robustly predict the weight of a person from his or
her height, and we have multiple readings of each person’s height and weight. The raw data is
Pflat = ]ni=1Pi where for the ith person we have a set Pi = {pi,1, pi,2, · · · , pi,k} ⊂ R2 and
pi,j = (xi,j , yi,j) for i ∈ {1, 2, · · · , n}, j ∈ {1, 2, · · · , k}. Here, xi,j and yi,j are the height and
weight respectively of the ith person in their jth measurement.

One “robust” way to process this data, is to first pre-process each Pi with its L1-median [1]:
(x̄i, ȳi)← E1(Pi), where E1(Pi) = L1-median(Pi) has breakdown point β1 = 0.5. Then we could
generate a linear model to predict weight ŷi = ax+b from the Siegel Estimator [11]: E2(Z) = (a, b),
with breakdown point β2 = 0.5. From Theorem 2 we immediately know the breakdown point of
E(Pflat) = E2(E1(P1), E1(P2), · · · , E1(Pn)) is β = β1β2 = 0.5 · 0.5 = 0.25.

Alternatively, taking the Siegel estimator of Pflat (i.e., returning E2(Pflat)) would have a much larger
breakdown point of 0.5. So a seemingly harmless operation of normalizing the data with a robust
estimator (with optimal 0.5 breakdown point) drastically decreases the robustness of the process.

3.3 Application 3 : Significance Thresholds

Suppose we are studying the distribution of the wingspread of fruit flies. There are n = 500 flies,
and the variance of the true wingspread among these flies is on the order of 0.1 units. Our goal is to
estimate the 0.05 significance level of this distribution of wingspread among normal flies.

To obtain a measured value of the wingspread of the ith fly, denoted Fi, we measure the wingspread
of ith fly k = 100 times independently, and obtain the measurement set Pi = {pi,1, pi,2, · · · , pi,k}.
The measurement is carried out by a machine automatically and quickly, which implies the variance
of each Pi is typically very small, perhaps only 0.0001 units, but there are outliers in Pi with small
chance due to possible machine malfunction. This malfunction may be correlated to individual
flies because of anatomical issues, or it may have autocorrelation (the machine jams for a series of
consecutive measurements).

To perform hypothesis testing we desire the 0.05 significance level, so we are interested in the 95th
percentile of the set F = {F1, F2, · · · , Fn}. So a post processing estimator E2 returns the 95th per-
centile of F and has a breakdown point of β2 = 0.05 [6]. Now, we need to design an estimator E1 to
process the raw data Pflat = ]ni=1Pi to obtain F = {F1, F2, · · · , Fn}. For example, we can defineE1

as Fi = E1(Pi) = median(Pi) and estimator E as E(Pflat) = E2(E1(P1), E1(P2), · · · , E1(Pn)).

Then, the breakdown point ofE1 is 0.5. Since the breakdown point ofE2 is 0.05, the breakdown point
of the composite estimator E is β = β1β2 = 0.5 · 0.05 = 0.025. This means if the measurement
machine malfunctioned only 2.5% of the time, we could have an anomalous significant level, leading
to false discovery. Can we make this process more robust by adjusting E1?

Actually, yes!, we can use another pre-processing estimator to get a more robust E. Since the variance
of each Pi is only 0.0001, we can let E1 return the 5th percentile of a ranked set of real numbers, then
there is not much difference between E1(Pi) and the median of Pi. (Note: this introduces a small
amount of bias that can likely be accounted for in other ways.) In order to make E(Pflat) = E2(F )
go to infinity we need to move 5% points of X to −∞ (causing E2 to give an anomalous value) or
95% points of X to +∞ (causing many, 95%, of the E1 values, to give anomalous values). In either
case, we need to move about 5% · 95% points of Pflat to infinity. So, the breakdown points of E is
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β = 0.05 · 0.95 = 0.0475 which is greater than 0.025. That is, we can now sustain up to 4.75% of
the measurement machine’s reading to be anomalous, almost double than before, without leading to
an anomalous significance threshold value.

This example implies if we know the post-processing estimator E2, we can choose a proper method
to preprocess the raw data to make the E1-E2 estimator more robust.

3.4 Application 4 : 3-Level Composition

Suppose we want to use a single value to represent the temperature of the US in a certain day.
There are m = 50 states in the country. Suppose each state has n = 100 meteorological stations,
and the station i in state j measures the local temperature k = 24 times to get the data Pi,j =

{ti,j,1, ti,j,2, · · · , ti,j,k}. We define P j
flat = ]ni=1Pi,j , Pflat = ]mj=1P

j
flat and

E1(Pi,j) = median(Pi,j), E2(P j
flat) = median (E1(P1,j), E1(P1,j), · · · , E1(Pn,j))

E(Pflat) = E3(E2(P 1
flat), E2(P 2

flat), · · · , E2(Pm
flat)) = median(E2(P 1

flat), E2(P 2
flat), · · · , E2(Pm

flat)).

So, the break down points of E1, E2 and E3 are β1 = β2 = β3 = 0.5. From Theorem 3, we know
the break down point of E is β = β1β2β3 = 0.125. Therefore, we know the estimator E is not very
robust, and it may be not a good choice to use E(Pflat) to represent the temperature of the US in a
certain day.

This example illustrates how the more times the raw data is aggregated, the more unreliable the final
result can become.

4 Simulation: Estimator Manipulation
In this simulation we actually construct a method to relocate an estimator by modifying the smallest
number of points possible. We specifically target the L1-median of L1-medians since its somewhat
non-trivial to solve for the new location of data points.

In particular, given a target point p0 ∈ R2 and a set of nk points Pflat = ]ni=1Pi,
where Pi = {pi,1, pi,2, · · · , pi,k} ⊂ R2, we use simulation to show that we only need
to change ñk̃ points of Pflat, then we can get a new set P̃flat = ]ni=1P̃i such that
median(median(P̃1),median(P̃2), · · · ,median(P̃n)) = p0. Here, the "median" means L1-median,
and

ñ =

{
1
2n if n is even
1
2 (n+ 1) if n is odd

, k̃ =

{
1
2k if k is even
1
2 (k + 1) if k is odd

.

To do this, we first show that, given k points S = {(xi, yi) | 1 ≤ i ≤ k} in R2, and a target point
(x0, y0), we can change k̃ points of S to make (x0, y0) as the L1-median of the new set. As n and k
grow, then ñk̃/(nk) = 0.25 is the asymptotic breakdown point of this estimator, as a consequence of
Theorem 2, and thus we may need to move this many points to get the result.

If (x0, y0) is the L1-median of the set {(xi, yi) | 1 ≤ i ≤ k}, then we have [13]:
k∑

i=1

xi − x0√
(xi − x0)2 + (yi − y0)2

= 0,

k∑
i=1

yi − y0√
(xi − x0)2 + (yi − y0)2

= 0. (13)

We define ~x = (x1, x2, · · · , xk̃), ~y = (y1, y2, · · · , yk̃) and

h(~x, ~y) =

(
k∑

i=1

xi − x0√
(xi − x0)2 + (yi − y0)2

)2

+

(
k∑

i=1

yi − y0√
(xi − x0)2 + (yi − y0)2

)2

.

Since (13) is the sufficient and necessary condition for L1-median, if we can find ~x and ~y such that
h(~x, ~y) = 0, then (x0, y0) is the L1-median of the new set.

Since

∂xih(~x, ~y) =2
( k∑

j=1

xj − x0√
(xj − x0)2 + (yj − y0)2

) (yi − y0)
2(

(xi − x0)2 + (yi − y0)2
) 3

2

− 2
( k∑

j=1

yj − y0√
(xj − x0)2 + (yj − y0)2

) (xi − x0)(yi − y0)(
(xi − x0)2 + (yi − y0)2

) 3
2

,
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∂yih(~x, ~y) =− 2
( k∑

j=1

xj − x0√
(xj − x0)2 + (yj − y0)2

) (xi − x0)(yi − y0)(
(xi − x0)2 + (yi − y0)2

) 3
2

+ 2
( k∑

j=1

yj − y0√
(xj − x0)2 + (yj − y0)2

) (xi − x0)
2(

(xi − x0)2 + (yi − y0)2
) 3

2

,

we can use gradient descent to compute ~x, ~y to minimize h. For the input S = {(xi, yi)|1 ≤ i ≤ k},
we choose the initial value ~x0 = {x1, x2, · · · , xk̃}, ~y0 = {y1, y2, · · · , yk̃}, and then update ~x and ~y
along the negative gradient direction of h, until the Euclidean norm of gradient is less than 0.00001.

The algorithm framework is then as follows, using the above gradient descent formulation at each step.
We first compute the L1-median mi for each Pi, and then change ñ points in {m1,m2, · · · ,mn} to
obtain {m′

1,m
′
2, · · · ,m′

ñ,mñ+1, · · · ,mn} such that median(m′
1,m

′
2, · · · ,m′

ñ,mñ+1, · · · ,mn) =

p0. For each m′
i, we change k̃ points in Pi to obtain P̃i = {p′i,1, p′i,2, · · · , p′i,k̃, pi,k̃+1, · · · , pi,k}

such that median(P̃i) = m′
i. Thus, we have

median
(
median(P̃1), · · · ,median(P̃ñ),median(Pñ+1), · · · ,median(Pn)

)
= p0. (14)

To show a simulation of this process, we use a uniform distribution to randomly generate nk
points in the region [−10, 10] × [−10, 10], and generate a target point p0 = (x0, y0) in the region
[−20, 20] × [−20, 20], and then use our algorithm to change ñk̃ points in the given set, to make
the new set satisfy (14). Table 1 shows the result of running this experiment for different n and
k, where (x′0, y

′
0) is the median of medians for the new set obtained by our algorithm. It lists the

various values n and k, the corresponding values ñ and k̃ of points modified, and the target point
and result of our algorithm. If we reduce the terminating condition, which means increasing the
number of iteration, we can obtain a more accurate result, but only requiring the Euclidean norm of
gradient to be less than 0.00001, we get very accurate results, within about 0.01 in each coordinate.
We illustrate the results of this process graphically for a example in Table 1: for the cases n = 5,

−10 −5 0 5 10 15

−10

−5

0

5

10

15

20

25

The given points that are not changed
The given points that are changed
The new locations for those changed points
The medians of old subsets
The medians of new subsets
The median of medians for the given points
The target point

Figure 1: The running result for the case n = 5,
k = 8, (x0, y0) = (0.99, 1.01) in Table 1.

n k ñ k̃ (x0, y0) (x′
0, y

′
0)

5 8 3 4 (0.99, 1.01) (0.99, 1.01)

5 8 3 4 (10.76, 11.06) (10.70 11.06)

10 5 5 3 (-13.82, -4.74) (-13.83, -4.74)

50 20 25 10 ( -14.71, -13.67) (-14.72, -13.67)

100 50 50 25 ( -14.07, 18.36) ( -14.07, 18.36)

500 100 250 50 (-15.84, -6.42) (-15.83, -6.42)

1000 200 500 100 (18.63, -12.10) (18.78, -12.20)

Table 1: The running result of simulation.

k = 8, (x0, y0) = (0.99, 1.01), wihch is shown in Figure 1. In this figure, the green star is the
target point. Since n = 5, we use five different markers (circle, square, upward-pointing triangle,
downward-pointing triangle, and diamond) to represent five kinds of points. The given data Pflat are
shown by black points and unfilled points. Our algorithm changes those unfilled points to the blue
ones, and the green points are the medians of the new subsets. The red star is the median of medians
for Pflat, and other red points are the median of old subsets. So, we only changed 12 points out of 40,
and the median of medians for the new data set is very close to the target point.

5 Conclusion
We define the breakdown point of the composition of two or more estimators. These definitions
are technical but necessary to understand the robustness of composite estimators. Generally, the
composition of two of more estimators is less robust than each individual estimator. We highlight a
few applications and believe many more exist. These results already provide important insights for
complex data analysis pipelines common to large-scale automated data analysis.
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