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Abstract

Recently, several works have shown that natural modifications of the classical
conditional gradient method (aka Frank-Wolfe algorithm) for constrained convex
optimization, provably converge with a linear rate when: i) the feasible set is a
polytope, and ii) the objective is smooth and strongly-convex. However, all of these
results suffer from two significant shortcomings:

1. large memory requirement due to the need to store an explicit convex de-
composition of the current iterate, and as a consequence, large running-time
overhead per iteration

2. the worst case convergence rate depends unfavorably on the dimension
In this work we present a new conditional gradient variant and a corresponding
analysis that improves on both of the above shortcomings. In particular:

1. both memory and computation overheads are only linear in the dimension
2. in case the optimal solution is sparse, the new convergence rate replaces a

factor which is at least linear in the dimension in previous work, with a linear
dependence on the number of non-zeros in the optimal solution

At the heart of our method and corresponding analysis, is a novel way to compute
decomposition-invariant away-steps. While our theoretical guarantees do not apply
to any polytope, they apply to several important structured polytopes that capture
central concepts such as paths in graphs, perfect matchings in bipartite graphs,
marginal distributions that arise in structured prediction tasks, and more. Our
theoretical findings are complemented by empirical evidence which shows that our
method delivers state-of-the-art performance.

1 Introduction

The efficient reduction of a constrained convex optimization problem to a constrained linear optimiza-
tion problem is an appealing algorithmic concept, in particular for large-scale problems. The reason
is that for many feasible sets of interest, the problem of minimizing a linear function over the set
admits much more efficient methods than its non-linear convex counterpart. Prime examples for this
phenomenon include various structured polytopes that arise in combinatorial optimization, such as
the path polytope of a graph (aka the unit flow polytope), the perfect matching polytope of a bipartite
graph, and the base polyhedron of a matroid, for which we have highly efficient combinatorial
algorithms for linear minimization that rely heavily on the specific rich structure of the polytope
[21]. At the same time, minimizing a non-linear convex function over these sets usually requires the
use of generic interior point solvers that are oblivious to the specific combinatorial structure of the
underlying set, and as a result, are often much less efficient. Indeed, it is for this reason, that the
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conditional gradient (CG) method (aka Frank-Wolfe algorithm), a method for constrained convex
optimization that is based on solving linear subproblems over the feasible domain, has regained much
interest in recent years in the machine learning, signal processing and optimization communities. It
has been recently shown that the method delivers state-of-the-art performance on many problems of
interest, see for instance [14, 17, 4, 10, 11, 22, 19, 25, 12, 15].

As part of the regained interest in the conditional gradient method, there is also a recent effort to
understand the convergence rates and associated complexities of conditional gradient-based methods,
which are in general far less understood than other first-order methods, e.g., the projected gradient
method. It is known, already from the first introduction of the method by Frank and Wolfe in the
1950’s [5] that the method converges with a rate of roughly O(1/t) for minimizing a smooth convex
function over a convex and compact set. However, it is not clear if this convergence rate improves
under an additional standard strong-convexity assumption. In fact, certain lower bounds, such as in
[18, 8], suggest that such improvement, even if possible, should come with a worse dependence on
the problem’s parameters (e.g., the dimension). Nevertheless, over the past years, various works tried
to design natural variants of the CG method that converge provably faster under the strong convexity
assumption, without dramatically increasing the per-iteration complexity of the method. For instance,
GuéLat and Marcotte [9] showed that a CG variant which uses the concept of away-steps converges
exponentially fast in case the objective function is strongly convex, the feasible set is a polytope,
and the optimal solution is located in the interior of the set. A similar result was presented by Beck
and Teboulle [3] who considered a specific problem they refer to as the convex feasibility problem
over an arbitrary convex set. They also obtained a linear convergence rate under the assumption that
an optimal solution that is far enough from the boundary of the set exists. In both of these works,
the exponent depends on the distance of the optimal solution from the boundary of the set, which
in general can be arbitrarily small. Later, Ahipasaoglu et al. [1] showed that in the specific case of
minimizing a smooth and strongly convex function over the unit simplex, a variant of the CG method
which also uses away-steps, converges with a linear rate. Unfortunately, it is not clear from their
analysis how this rate depends on natural parameters of the problem such as the dimension and the
condition number of the objective function.

Recently, Garber and Hazan presented a linearly-converging CG variant for polytopes without any
restrictions on the location of the optimum [8]. In a later work, Lacoste-Julien and Jaggi [16] gave
a refined affine-invariant analysis of an algorithm presented in [9] which also uses away steps, and
showed that it also converges exponentially fast in the same setting as the Garber-Hazan result. More
recently, Beck and Shtern [2] gave a different, duality-based, analysis for the algorithm of [9], and
showed that it can be applied to a wider class of functions than purely strongly convex functions.
However, the explicit dependency of their convergence rate on the dimension is suboptimal, compared
to [8, 16]. Aside from the polytope case, Garber and Hazan [7] have shown that in case the feasible
set is strongly-convex and the objective function satisfies certain strong convexity-like proprieties,
then the standard CG method converges with an accelerated rate of O(1/t2). Finally, in [6] Garber
showed a similar improvement (roughly quadratic) for the spectrahedron – the set of unit trace
positive semidefinite matrices.

Despite the exponential improvement in convergence rate for polytopes obtained in recent results,
they all suffer from two major drawbacks. First, while in terms of the number of calls per-iteration to
the linear optimization oracle, these methods match the standard CG method, i.e., a single call per
iteration, the overhead of other operations both in terms of running time and memory requirements is
significantly worse. The reason is that in order to apply the so-called away-steps, which all methods
use, they require to maintain at all times an explicit decomposition of the current iterate into vertices
of the polytope. In the worst case, maintaining such a decomposition and computing the away-steps
require both memory and per-iteration runtime overheads that are at least quadratic in the dimension.
This is much worse than the standard CG method, whose memory and runtime overheads are only
linear in the dimension. Second, the convergence rate of all previous linearly convergent CG methods
depends explicitly on the dimension. While it is known that this dependency is unavoidable in certain
cases, e.g., when the optimal solution is, informally speaking, dense (see for instance the lower bound
in [8]), it is not clear that such an unfavorable dependence is mandatory when the optimum is sparse.

In this paper, we revisit the application of CG variants to smooth and strongly-convex optimization
over polytopes. We introduce a new variant which overcomes both of the above shortcomings from
which all previous linearly-converging variants suffer. The main novelty of our method, which is the
key to its improved performance, is that unlike previous variants, it is decomposition-invariant, i.e., it
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Paper #iterations to ✏ err. #LOO calls runtime memory
Frank & Wolfe [5] �D2/✏ 1 n n

Garber & Hazan [8] nD2
log(1/✏) 1 nmin(n, t) nmin(n, t)

Lacoste-Julien & Jaggi [16] nD2
log(1/✏) 1 nmin(n, t) nmin(n, t)

Beck & Shtern [2] n2D2
log(1/✏) 1 nmin(n, t) nmin(n, t)

This paper card(x⇤
)D2

log(1/✏) 2 n n

Table 1: Comparison with previous work. We define  := �/↵, we let n denote the dimension and D
denote the Euclidean diameter of the polytope. The third column gives the number of calls to the
linear optimization oracle per iteration, the fourth column gives the additional arithmetic complexity
at iteration t, and the fifth column gives the worst case memory requirement at iteration t. The
bounds for the algorithms of [8, 16, 2], which are independent of t, assume an algorithmic version of
Carathéodory’s theorem, as fully detailed in [2]. The bound on number of iterations of [16] depends
on the squared inverse pyramidal width of P , which is difficult to evaluate, however, this quantity is
at least proportional to n.

does not require to maintain an explicit convex decomposition of the current iterate. This principle
proves to be crucial both for eliminating the memory and runtime overheads, as well as to obtaining
shaper convergence rates for instances that admit a sparse optimal solution.

A detailed comparison of our method to previous art is shown in Table 1. We also provide in Section
5 empirical evidence that the proposed method delivers state-of-the-art performance on several tasks
of interest. While our method is less general than previous ones, i.e., our theoretical guarantees do not
hold for arbitrary polytopes, they readily apply to many structured polytopes that capture important
concepts such as paths in graphs, perfect matchings in bipartite graphs, Markov random fields, and
more.

2 Preliminaries

Throughout this work we let k · k denote the standard Euclidean norm. Given a point x 2 Rn, we let
card(x) denote the number of non-zero entries in x.
Definition 1. We say that a function f(x) : Rn ! R is ↵-strongly convex w.r.t. a norm k · k, if for
all x, y 2 Rn it holds that f(y) � f(x) +rf(x) · (y � x) + ↵

2 kx� yk2.
Definition 2. We say that a function f(x) : Rn ! R is �-smooth w.r.t. a norm k · k, if for all
x, y 2 Rn it holds that f(y)  f(x) +rf(x) · (y � x) + �

2 kx� yk2.

The first-order optimality condition implies that for a ↵-strongly convex f , if x⇤ is the unique
minimizer of f over a convex and compact set K ⇢ Rn, then for all x 2 K it holds that

f(x)� f(x⇤
) � ↵

2

kx� x⇤k2. (1)

2.1 Setting

In this work we consider the optimization problem min

x2P f(x), where we assume that:

• f(x) is ↵-strongly convex and �-smooth with respect to the Euclidean norm.
• P is a polytope which satisfies the following two properties:

1. P can be described algebraically as P = {x 2 Rn |x � 0, Ax = b} .
2. All vertices of P lie on the hypercube {0, 1}n.

We let x⇤ denote the (unique) minimizer of f over P , and we let D denote the Euclidean diameter of
P , namely, D = max

x,y2P kx� yk. We let V denote the set of vertices of P , where according to
our assumptions, it holds that V ✓ {0, 1}n.

While the polytopes that satisfy the above assumptions are not completely general, these assumptions
already capture several important concepts such as paths in graphs, perfect-matchings, Markov
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random fields, and more. Indeed, a surprisingly large number of applications from machine learning,
signal processing and other domains are formulated as optimization problems in this category (e.g.,
[13, 15, 16]). We give detailed examples of such polytopes in Section A in the appendix. Importantly,
the above assumptions allow us to get rid of the dependency of the convergence rate on certain
geometric parameters (such as  , ⇠ in [8] or the pyramidal width in [16]), which can be polynomial
in the dimension, and hence result in an impractical convergence rate. Finally, for many of these
polytopes, the vertices are sparse, i.e., for any vertex v 2 V , card(v) << n. In this case, when the
optimum x⇤ can be decomposed as a convex combination of only a few vertices (and thus, sparse by
itself), we get a sharper convergence rate that depends on the sparsity of x⇤ and not explicitly on the
dimension, as in previous work. We believe that our theoretical guarantees could be well extended to
more general polytopes, as suggested in Section C in the appendix; we leave this extension for future
work.

3 Our Approach

In order to better communicate our ideas, we begin by first briefly introducing the standard conditional
gradient method and its accelerated away-steps-based variants. We discuss both the blessings and
shortcomings of these away-steps-based variants in Subsection 3.1. Then, in Subsection 3.2, we
present our new method, a decomposition-invariant away-steps-based conditional gradient algorithm,
and discuss how it addresses the shortcomings of previous variants.

3.1 The conditional gradient method and acceleration via away-steps

The standard conditional gradient algorithm is given below (Algorithm 1). It is well known that
when setting the step-size ⌘

t

in an appropriate way, the worst case convergence rate of the method is
O(�D2/t) [13]. This convergence rate is tight for the method in general, see for instance [18].

Algorithm 1 Conditional Gradient
1: let x1 be some vertex in V
2: for t = 1... do
3: v

t

 argmin

v2V v ·rf(x
t

)

4: choose a step-size ⌘
t

2 (0, 1]
5: x

t+1  x
t

+ ⌘
t

(v
t

� x
t

)

6: end for

Algorithm 2 Pairwise Conditional Gradient
1: let x1 be some vertex in V
2: for t = 1... do
3: let

Pkt
i=1 �

(i)
t v

(i)
t be an explicitly main-

tained convex decomposition of xt

4: v

+
t  argminv2V v ·rf(xt)

5: jt  argminj2[kt] v
(j)
t · (�rf(xt))

6: choose a step-size ⌘t 2 (0, �

(jt)
t ]

7: xt+1  xt + ⌘t(v
+
t � v

(jt)
t )

8: update the convex decomposition of xt+1

9: end for

Consider the iterate of Algorithm 1 on iteration t, and let x
t

=

P
k

i=1 �ivi be its convex decomposition
into vertices of the polytope P . Note that Algorithm 1 implicitly discounts each coefficient �

i

by
a factor (1 � ⌘

t

), in favor of the new added vertex v
t

. A different approach is not to decrease all
vertices in the decomposition of x

t

uniformly, but to more-aggressively decrease vertices that are
worse than others with respect to some measure, such as their product with the gradient direction.
This key principle proves to be crucial to breaking the 1/t rate of the standard method, and to achieve
a linear convergence rate under certain strong-convexity assumptions, as described in the recent
works [8, 16, 2]. For instance, in [8] it has been shown, via the introduction of the concept of a Local
Linear Optimization Oracle, that using such a non-uniform reweighing rule, in fact approximates a
certain proximal problem, that together with the shrinking effect of strong convexity, as captured by
Eq. (1), yields a linear convergence rate. We refer to these methods as away-step-based CG methods.
As a concrete example, which will also serve as a basis for our new method, we describe the pairwise
variant recently studied in [16], which applies this principle in Algorithm 2.1 Note that Algorithm 2
decreases the weight of exactly one vertex in the decomposition: that with the largest product with
the gradient.

1While the convergence rate of this pairwise variant, established in [16], is significantly worse than other
away-step-based variants, here we show that a proper analysis yields state-of-the-art performance guarantees.
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It is important to note that since previous away-step-based CG variants do not decrease the coefficients
in the convex decomposition of the current iterate uniformly, they all require to explicitly store and
maintain a convex decomposition of the current iterate. This issue raises two main disadvantages:
Superlinear memory and running-time overheads Storing a decomposition of the current iterate
as a convex combination of vertices generally requires O(n2

) memory in the worst case. While
the away-step-based variants increase the size of the decomposition by at most a single vertex per
iteration, they also typically exhibit linear convergence after performing at least ⌦(n) steps [8, 16, 2],
and thus, this O(n2

) estimate still holds. Moreover, since these methods require i) to find the worst
vertex in the decomposition, in terms of dot-product with current gradient direction, and ii) to update
this decomposition at each iteration (even when using sophisticated update techniques such as in [2]),
then the worst case per-iteration overhead in terms of computation is also ⌦(n2

).
Decomposition-specific performance The choice of away-step depends on the specific decomposi-
tion that is maintained by the algorithm. Since the feasible point x

t

may admit several different convex
decompositions, committing to one such decomposition, might result in sub-optimal away-steps. As
observable in Table 1, for certain problems in which the optimal solution is sparse, all analyses of
previous away-steps-based variants are significantly suboptimal, since they all depend explicitly on
the dimension. This seems to be an unavoidable side-effect of being decomposition-dependent. On
the other hand, the fact that our new approach is decomposition-invariant allows us to obtain sharper
convergence rates for such instances.

3.2 A new decomposition-invariant pairwise conditional gradient method

Our main observation is that in many cases of interest, given a feasible iterate x
t

, one can in fact
compute an optimal away-step from x

t

without relying on any single specific decomposition. This
observation allows us to overcome both of the main disadvantages of previous away-step-based CG
variants. Our algorithm, which we refer to as a decomposition-invariant pairwise conditional gradient
(DICG), is given below in Algorithm 3.

Algorithm 3 Decomposition-invariant Pairwise Conditional Gradient
1: input: sequence of step-sizes {⌘t}t�1

2: let x0 be an arbitrary point in P
3: x1  argminv2V v ·rf(x0)

4: for t = 1... do
5: v

+
t  argminv2V v ·rf(xt)

6: define the vector ˜rf(xt) 2 Rn as follows: [ ˜rf(xt)]i :=

⇢
[rf(xt)]i if xt(i) > 0

�1 if xt(i) = 0

7: v

�
t  argminv2V v · (� ˜rf(xt))

8: choose a new step-size ⌘̃t using one of the following two options:
Option 1: predefined step-size

let �t be the smallest natural number such that 2��t  ⌘t, and set a new step-size ⌘̃t  2

��t

Option 2: line-search
�t  max�2[0,1]{xt + �(v

+
t � v

�
t ) � 0}, ⌘̃t  min⌘2(0,�t] f(xt + ⌘(v

+
t � v

�
t ))

9: xt+1  xt + ⌘̃t(v
+
t � v

�
t )

10: end for

The following observation shows the optimality of away-steps taken by Algorithm 3.
Observation 1 (optimal away-steps in Algorithm 3). Consider an iteration t of Algorithm 3 and
suppose that the iterate x

t

is feasible. Let x
t

=

P
k

i=1 �ivi for some integer k, be an irreducible
way of writing x

t

as a convex sum of vertices of P , i.e., �
i

> 0 for all i 2 [k]. Then it holds that
8i 2 [k] : v

i

·rf(x
t

)  v�
t

·rf(x
t

), and �
t

� min{x
t

(i) | i 2 [n], x
t

(i) > 0}.

Proof. Let x
t

=

P
k

i=1 �ivi be a convex decomposition of x
t

into vertices of P , for some integer
k, where each �

i

is positive. Note that it must hold that for any j 2 [n] and any i 2 [k], x
t

(j) =
0) v

i

(j) = 0, since by our assumption V ⇢ Rn

+. The observation then follows directly from the
definition of v�

t

.

We next state the main theorem of this paper, which bounds the convergence rate of Algorithm 3. The
proof is provided in Section B.3 in the appendix.
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Theorem 1. Let M1 =

p
↵/(8card(x⇤

)) and M2 = �D2/2. Consider running Algorithm 3 with

Option 1 as the step-size, and suppose that 8t � 1 : ⌘
t

=

�
M1/(2

p
M2)

� �
1�M2

1 /(4M2)
� t�1

2 .
Then, the iterates of Algorithm 3 are always feasible, and 8t � 1:

f(x
t

)� f(x⇤
)  �D2

2

exp

✓
� ↵

8�D2card(x⇤
)

t

◆
.

We now turn to make several remarks regarding Algorithm 3 and Theorem 1:

The so-called dual gap, defined as g
t

:= (x
t

� v+
t

) ·rf(x
t

), which serves as a certificate for the
sub-optimality of the iterates of Algorithm 3, also converges with a linear rate, as we prove in Section
B.4 in the appendix.

Note that despite the different parameters of the problem at hand (e.g., ↵,�, D, card(x⇤
)), running

the algorithm with Option 1 for choosing the step-size, for which the guarantee of Theorem 1
holds, requires knowing a single parameter, i.e., M1/

p
M2. In particular, it is an easy consequence

that running the algorithm with an estimate M 2 [0.5M1/
p
M2, M1/

p
M2], will only affect the

leading constant in the convergence rate listed in the theorem. Hence, M1/
p
M2 could be efficiently

estimated via a logarithmic-scale search.

Theorem 1 improves significantly over the convergence rate established for the pairwise conditional
gradient variant in [16]. In particular, the number of iterations to reach an ✏ error in the analysis of
[16] depends linearly on |V|!, where |V| is the number of vertices of P .

4 Analysis

Throughout this section we let h
t

denote the approximation error of Algorithm 3 on iteration t, for
any t � 1, i.e., h

t

= f(x
t

)� f(x⇤
).

4.1 Feasibility of the iterates generated by Algorithm 3

We start by proving that the iterates of Algorithm 3 are always feasible. While feasibility is straight-
forward when using the the line-search option to set the step-size (Option 2), it is less obvious when
using Option 1. We will make use of the following observation, which is a simple consequence of the
optimal choice of v�

t

and our assumptions on P . A proof is given in Section B.1 in the appendix.
Observation 2. Suppose that on some iteration t of Algorithm 3, the iterate x

t

is feasible, and that
the step-size is chosen using Option 1. Then, if for all i 2 [n] for which x

t

(i) 6= 0 it holds that
x
t

(i) � ⌘̃
t

, the following iterate x
t+1 is also feasible.

Lemma 1 (feasibility of iterates under Option 1). Suppose that the sequence of step-sizes {⌘
t

}
t�1 is

monotonically non-increasing, and contained in the interval [0, 1]. Then, the iterates generated by
Algorithm 3 using Option 1 for setting the step-size, are always feasible.

Proof. We are going to prove by induction that on each iteration t there exists a non-negative integer-
valued vector s

t

2 Nn, such that for any i 2 [n], it holds that x
t

(i) = 2

��ts
t

(i). The lemma
then follows since, by definition, ⌘̃

t

= 2

��t , and by applying Observation 2. The base case t = 1

holds since x1 is a vertex of P and thus for any i 2 [n] we have that x1(i) 2 {0, 1} (recall that
V ⇢ {0, 1}n). On the other hand, since ⌘1  1, it follows that �1 � 0. Thus, there indeed exists a
non-negative integer-valued vector s1, such that x1 = 2

��1s1.

Suppose now that the induction holds for some t � 1. Since by definition of v�
t

, subtracting ⌘̃
t

v�
t

from x
t

can only decrease positive entries in x
t

(see proof of Observation 2), and both v�
t

, v+
t

are
vertices of P (and thus in {0, 1}n), and ⌘̃

t

= 2

��t , it follows that each entry i in x
t+1 is given by:

xt+1(i) = 2

��t

8
<

:

st(i) if st(i) � 1 & v

�
t (i) = v

+
t (i) = 1 or v�t (i) = v

+
t (i) = 0

st(i)� 1 if st(i) � 1 & v

�
t (i) = 1 & v

+
t (i) = 0

st(i) + 1 if v�t (i) = 0 & v

+
t (i) = 1

Thus, x
t+1 can also be written in the form 2

��t s̃
t+1 for some s̃

t+1 2 Nn. By definition of �
t

and the
monotonicity of {⌘

t

}
t�1, we have that 2��t

2��t+1
is a positive integer. Thus, setting s

t+1 =

2��t

2��t+1
s̃
t+1,

the induction holds also for t+ 1.
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4.2 Bounding the per-iteration error-reduction of Algorithm 3

The following technical lemma is the key to deriving the linear convergence rate of our method, and
in particular, to deriving the improved dependence on the sparsity of x⇤, instead of the dimension. At
a high-level, the lemma translates the `2 distance between two feasible points into a `1 distance in a
simplex defined over the set of vertices of the polytope.
Lemma 2. Let x, y 2 P . There exists a way to write x as a convex combination of vertices of P ,
x =

P
k

i=1 �ivi for some integer k, such that y can be written as y =

P
k

i=1(�i��i

)v
i

+(

P
k

i=1 �i

)z

with �

i

2 [0,�
i

] 8i 2 [k],z 2 P , and
P

k

i=1 �i


p

card(y)kx� yk.

The proof is given in Section B.2 in the appendix. The next lemma bounds the per-iteration improve-
ment of Algorithm 3 and is the key step to proving Theorem 1. We defer the rest of the proof of
Theorem 1 to Section B.3 in the appendix.
Lemma 3. Consider the iterates of Algorithm 3, when the step-sizes are chosen using Option 1. Let
M1 =

p
↵/(8card(x⇤

)) and M2 = �D2/2. For any t � 1 it holds that h
t+1  h

t

� ⌘
t

M1h
1/2
t

+

⌘2
t

M2.

Proof. Define �

t

=

p
2card(x⇤

)h
t

/↵, and note that from Eq. (1) we have that �

t

�p
card(x⇤

)kx
t

� x⇤k. As a first step, we are going to show that the point y
t

:= x
t

+�

t

(v+
t

� v�
t

)

satisfies: y
t

·rf(x
t

)  x⇤ ·rf(x
t

). From Lemma 2 it follows that we can write x as a convex com-
bination x

t

=

P
k

i=1 �ivi and write x⇤ as x⇤
=

P
k

i=1(�i ��

i

)v
i

+

P
k

i=1 �i

z, where �
i

2 [0,�
i

],
z 2 P , and

P
k

i=1 �i

 �

t

. It holds that

(y
t

� x
t

) ·rf(x
t

) = �

t

(v+
t

� v�
t

) ·rf(x
t

) 
X

k

i=1
�

i

(v+
t

� v�
t

) ·rf(x
t

)


X

k

i=1
�

i

(z � v
i

) ·rf(x
t

) = (x⇤ � x
t

) ·rf(x
t

),

where the first inequality follows since (v+
t

� v�
t

) ·rf(x
t

)  0, and the second inequality follows
from the optimality of v+

t

and v�
t

(Observation 1). Rearranging, we have that indeed
�
x
t

+�

t

(v+
t

� v�
t

)

�
·rf(x

t

)  x⇤ ·rf(x
t

). (2)

Observe now that from the definition of ⌘̃
t

it follows for any t � 1 that ⌘t

2  ⌘̃
t

 ⌘
t

. Using the
smoothness of f(x) we have that

ht+1 = f(xt + ⌘̃t(v
+
t � v

�
t ))� f(x

⇤
)  ht + ⌘̃t(v

+
t � v

�
t ) ·rf(xt) +

⌘̃

2
t �

2

kv+t � v

�
t k2

 ht + ⌘̃t(v
+
t � v

�
t ) ·rf(xt) +

⌘̃

2
t �D

2

2

 ht +
⌘t

2

(v

+
t � v

�
t ) ·rf(xt) +

⌘

2
t �D

2

2

= ht +
⌘t

2�t

�
(xt +�t(v

+
t � v

�
t )� xt

�
·rf(xt) +

⌘

2
t �D

2

2

 ht +
⌘t

2�t
(x

⇤ � xt) ·rf(xt) +
⌘

2
t �D

2

2

 ht �
⌘t

2�t
ht +

⌘

2
t �D

2

2

,

where the third inequality follows since (v+
t

� v�
t

) ·rf(x
t

)  0, the forth inequality follows from
Eq. (2), and the last inequality follows from convexity of f(x). Finally, plugging the value of �

t

completes the proof.

5 Experiments
In this section we illustrate the performance of our algorithm in numerical experiments. We use
the two experimental settings from [16], which include a constrained Lasso problem and a video
co-localization problem. In addition, we test our algorithm on a learning problem related to an
optical character recognition (OCR) task from [23]. In each setting we compare the performance
of our algorithm (DICG) to standard conditional gradient (CG), as well as to the fast away (ACG)
and pairwise (PCG) variants [16]. For the baselines in the first two settings we use the publicly
available code from [16], to which we add our own implementation of Algorithm 3. Similarly, for the
OCR problem we extend code from [20], kindly provided by the authors. For all algorithms we use
line-search to set the step size.
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Figure 1: Duality gap g
t

vs. iterations (top) and time (bottom) in various settings.

Lasso In the first example the goal is to solve the problem: min

x2M k ¯Ax � ¯bk2, where M is a
scaled `1 ball. Notice that the constraints M do not match the required structure of P , however, with
a simple change of variables we can obtain an equivalent optimization problem over the simplex.
We generate the random matrix ¯A and vector ¯b as in [16]. In Figure 1 (left, top) we observe that
our algorithm (DICG) converges similarly to the pairwise variant PCG and faster than the other
baselines. This is expected since the away direction v� in DICG (Algorithm 3) is equivalent to the
away direction in PCG (Algorithm 2) in the case of simplex constraints.

Video co-localization The second example is a quadratic program over the flow polytope, originally
proposed in [15]. This is an instance of P that is mentioned in Section A in the appendix. As can
be seen in Figure 1 (middle, top), in this setting our proposed algorithm significantly outperforms
the baselines, as a result of finding a better away direction v�. Figure 1 (middle, bottom) shows
convergence on a time scale, where the difference between the algorithms is even larger. One
reason for this difference is the costly search over the history of vertices maintained by the baseline
algorithms. Specifically, the number of stored vertices grows fast with the number of iterations and
reaches 1222 for away steps and 1438 for pairwise steps (out of 2000 iterations).

OCR We next conduct experiments on a structured SVM learning problem resulting from an OCR
task. The constraints in this setting are the marginal polytope corresponding to a chain graph over
the letters of a word (see [23]), and the objective function is quadratic. Notice that the marginal
polytope has a concise characterization in this case and also satisfies our assumptions (see Section A
in the appendix for more details). For this problem we actually run Algorithm 3 in a block-coordinate
fashion, where blocks correspond to training examples in the dual SVM formulation [17, 20]. In
Figure 1 (right, top) we see that our DICG algorithm is comparable to the PCG algorithm and faster
than the other baselines on the iteration scale. Figure 1 (right, bottom) demonstrates that in terms
of actual running time we get a noticeable speedup compared to all baselines. We point out that
for this OCR problem, both ACG and PCG each require about 5GB of memory to store the explicit
decomposition in the implementation of [20]. In comparison, our algorithm requires 220MB of
memory to store the current iterate, and the other variables in the code require 430MB (common to
all algorithms), so using DICG results in significant memory savings.

6 Extensions

Our results are readily extendable in two important directions. First, we can relax the strong convexity
requirement of f(x) and handle a broader class of functions, namely the class considered in [2].
Second, we extend the line-search variant of Algorithm 3 to handle arbitrary polytopes, but without
convergence guarantees, which is left as future work. Both extensions are brought in full detail in
Section C in the appendix.
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