
A Appendix: Proof of Theorem 1

We first show that the estimate is unbiased. Indeed, for every i 6= j we can rewrite L(z) as
E⇡ `⇡(i),⇡(j)(z). Therefore,
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which proves that the multibatch estimate is unbiased.

Next, we turn to analyze the variance of the multibatch estimate. let I ⇢ [k]4 be all the indices
i, j, s, t s.t. i 6= j, s 6= t, and we partition I to I1 [ I2 [ I3, where I1 is the set where i = s and j = t,
I2 is when all indices are different, and I3 is when i = s and j 6= t or i 6= s and j = t. Then:
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For every r, denote by A(r) the matrix with A(r)
i,j = rr`i,j(z)�rrL(z). Observe that for every r,
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Therefore,
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Let us momentarily fix r and omit the superscript from A(r). We consider the value of
E⇡ A⇡(i),⇡(j)A⇡(s),⇡(t) according to the value of q.

• For q = 1: we obtain E⇡ A2
⇡(i),⇡(j) which is the variance of the random variable rr`i,j(z)�

rrL(z).

• For q = 2: When we fix i, j, s, t which are all different, and take expectation over ⇡,
then all products of off-diagonal elements of A appear the same number of times in
E⇡ A⇡(i),⇡(j)A⇡(s),⇡(t). Therefore, this quantity is proportional to

P
p 6=r vpvr, where v

is the vector of all non-diagonal entries of A. Since
P

p vp = 0, we obtain (using Lemma 1)
that

P
p 6=r vpvr  0, which means that the entire sum for this case is non-positive.

• For q = 3: Let us consider the case when i = s and j 6= t, and the derivation for the case
when i 6= s and j = t is analogous. The expression we obtain is E⇡ A⇡(i),⇡(j)A⇡(i),⇡(t).
This is like first sampling a row and then sampling, without replacement, two indices from
the row (while not allowing to take the diagonal element). So, we can rewrite the expression
as:

E
⇡
A⇡(i),⇡(j)A⇡(s),⇡(t) = E

i⇠[m]
E

j,t2[m]\{i}:j 6=t
Ai,jAi,t

 E
i⇠[m]

✓
E
j 6=i

Ai,j

◆2

= E
i⇠[m]

(

¯Ai)
2 ,

(5)

where we denote ¯Ai = Ej 6=i Ai,j and in the inequality we used again Lemma 1.

Finally, the bound on the variance follows by observing that the number of summands in I1 is k2 � k
and the number of summands in I3 is O(k3). This concludes our proof.
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Lemma 1 Let v 2 Rn be any vector. Then,
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Proof For simplicity, we use E[v] for Ei[vi] and E[v2] for Ei[v2i ]. Then:
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