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Abstract

High dimensional superposition models characterize observations using parameters
which can be written as a sum of multiple component parameters, each with its
own structure, e.g., sum of low rank and sparse matrices, sum of sparse and rotated
sparse vectors, etc. In this paper, we consider general superposition models which
allow sum of any number of component parameters, and each component structure
can be characterized by any norm. We present a simple estimator for such models,
give a geometric condition under which the components can be accurately estimated,
characterize sample complexity of the estimator, and give high probability non-
asymptotic bounds on the componentwise estimation error. We use tools from
empirical processes and generic chaining for the statistical analysis, and our results,
which substantially generalize prior work on superposition models, are in terms of
Gaussian widths of suitable sets.

1 Introduction

For high-dimensional structured estimation problems [3, 15], considerable advances have been made
in accurately estimating a sparse or structured parameter θ ∈ Rp even when the sample size n is
far smaller than the ambient dimensionality of θ, i.e., n� p. Instead of a single structure, such as
sparsity or low rank, recent years have seen interest in parameter estimation when the parameter θ is
a superposition or sum of multiple different structures, i.e., θ =

∑k
i=1 θi, where θ1 may be sparse, θ2

may be low rank, and so on [1, 6, 7, 9, 11, 12, 13, 23, 24].
In this paper, we substantially generalize the non-asymptotic estimation error analysis for such
superposition models such that (i) the parameter θ can be the superposition of any number of
component parameters θi, and (ii) the structure in each θi can be captured by any suitable norm
Ri(θi). We will analyze the following linear measurement based superposition model

y = X

k∑
i=1

θi + ω , (1)

where X ∈ Rn×p is a random sub-Gaussian design or compressive matrix, k is the number of
components, θi is one component of the unknown parameters, y ∈ Rn is the response vector, and
ω ∈ Rn is random noise independent of X . The structure in each component θi is captured by any
suitable norm Ri(·), such that Ri(θi) has a small value, e.g., sparsity captured by ‖θi‖1, low-rank
(for matrix θi) captured by the nuclear norm ‖θi‖∗, etc. Popular models such as Morphological
Component Analysis (MCA) [10] and Robust PCA [6, 9] can be viewed as a special cases of this
framework (see Section D).
The superposition estimation problem can be posed as follows: Given (y,X) generated following (1),
estimate component parameters {θ̂i} such that all the component-wise estimation errors ∆i = θ̂i−θ∗i ,
where θ∗i is the population mean, are small. Ideally, we want to obtain high-probability non-asymptotic
bounds on the total componentwise error measured as

∑k
i=1 ‖θ̂i − θ∗i ‖2, with the bound improving

(getting smaller) with increase in the number n of samples.
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We propose the following estimator for the superposition model in (1):

min
{θ1,...,θk}

∥∥∥∥∥y −X
k∑
i=1

θi

∥∥∥∥∥
2

2

s.t. Ri(θi) ≤ αi , i = 1, . . . , k , (2)

where αi are suitable constants. In this paper, we focus on the case where αi = Ri(θ
∗
i ), e.g., if θ∗i is

s-sparse with ‖θ∗i ‖2 = 1 and Ri(·) = ‖ · ‖1, then αi =
√
s so that Ri(θ∗i ) ≤

√
s, noting that recent

advances [16] can be used to extend our results to more general settings.
The superposition estimator in (2) succeeds if a certain geometric condition, which we call structural
coherence (SC), is satisfied by certain sets (cones) associated with the component norms Ri(·). Since
the estimate θ̂i = θ∗i + ∆i is in the feasible set of the optimization problem (2), the error vector
∆i satisfies the constraint Ri(θ∗i + ∆i) ≤ αi where αi = Ri(θ

∗
i ). The SC condition is a geometric

relationship between the corresponding error cones Ci = cone{∆i|Ri(θ∗i + ∆i) ≤ Ri(θ∗i )}.
If SC is satisfied, then we can show that the sum of componentwise estimation error can be bounded
with high probability, and the bound takes the form:

k∑
i=1

‖θ̂i − θ∗i ‖2 ≤ c
maxi w(Ci ∩Bp) +

√
log k√

n
, (3)

where n is the sample size, k is the number of components, and w(Ci ∩Bp) is the Gaussian width
[3, 8, 22] of the intersection of the error cone Ci with the unit Euclidean ball Bp ⊆ Rp. Interestingly,
the estimation error decreases at the rate of 1/

√
n, similar to the case of single parameter estimators

[15, 3], and depends only logarithmically on the number of components k. Further, while dependency
of the error on Gaussian width of the error cone has been established in recent results involving
a single parameter [3, 22], the bound in (3) depends on the maximum of the Gaussian width of
individual error cones, not their sum. The analysis thus gives a general way to construct estimators
for superposition problems along with high-probability non-asymptotic upper bounds on the sum of
componentwise errors. To show the generality of our work, we review and compare related work in
Appendix B.
Notation: In this paper, we use ‖.‖ to denote vector norm, and |||.||| to denote operator norm. For
example, ‖.‖2 is the Euclidean norm for a vector or matrix, and |||.|||∗ is the nuclear norm of a matrix.
We denote cone{E} as the smallest closed cone that contains a given set E . We denote 〈., .〉 as the
inner product.
The rest of this paper is organized as follows: We start with a deterministic estimation error bound
in Section 2, while laying down the key geometric and statistical quantities involved in the analysis.
In Section 3, we discuss the geometry of the structural coherence (SC) condition, and in Section
4 show that the geometric SC condition implies statistical restricted eigenvalue (RE) condition. In
Section 5, we develop the main error bound on the sum of componentwise errors which hold with high
probability for sub-Gaussian designs and noise. We apply our error bound to practical problems in
Section 6, and present experimental results in Section 7. We conclude in Section 8. In the Appendix,
we compare an estimator using “infimal convolution”[18] of norms with our estimator (2) for the
noiseless case, and provide some addition examples and experiments. The proofs of all technical
results are also in the Appendix.

2 Error Structure and Recovery Guarantees

In this section, we start with some basic results and, under suitable assumptions, provide a deter-
ministic bound for the componentwise estimation error in superposition models. Subsequently, we
will show that the assumptions made here hold with high probability as long as a purely geometric
non-probabilistic condition characterized by structural coherence (SC) is satisfied.

Let {θ̂i} be a solution to the superposition estimation problem in (2), {θ∗i } be the optimal (population)
parameters involved in the true data generation process. Let ∆i = θ̂i − θ∗i be the error vector for
component i of the superposition. Our goal is to provide a preliminary understanding of the structure
of error sets where ∆i live, identify conditions under which a bound on the total componentwise
error

∑k
i=1 ‖θ̂i − θ∗i ‖2 will hold, and provide a preliminary version of such a bound, which will be

subsequently refined to the form in (3) in Section 5. Since θ̂i = θ∗i + ∆i lies in the feasible set of (2),
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as discussed in Section 1, the error vectors ∆i will lie in the error sets Ei = {∆i ∈ Rp|Ri(θ∗i +∆i) ≤
Ri(θ

∗
i )} respectively. For the analysis, we will be focusing on the cone of such error sets, given by

Ci = cone{∆i ∈ Rp|Ri(θ∗i + ∆i) ≤ Ri(θ∗i )} . (4)

Let θ∗ =
∑k
i=1 θ

∗
i , θ̂ =

∑k
i=1 θ̂i, and ∆ =

∑k
i=1 ∆i, so that ∆ = θ̂ − θ∗. From the optimality of θ̂

as a solution to (2), we have

‖y −Xθ̂‖2 ≤ ‖y −Xθ∗‖2 ⇒ ‖X∆‖2 ≤ 2ωTX∆ , (5)

using θ̂ = θ∗ + ∆ and y = Xθ∗ + ω. In order to establish recovery guarantees, under suitable
assumptions we construct a lower bound to ‖X∆‖2, the left hand side of (5). The lower bound is a
generalized form of the restricted eigenvalue (RE) condition studied in the literature [4, 5, 17]. We
also construct an upper bound to ωTX∆, the right hand side of (5), which needs to carefully analyze
the noise-design (ND) interaction, i.e., between the noise ω and the design X .
We start by assuming that a generalized form of RE condition is satisfied by the superposition of
errors: there exists a constant κ > 0 such that for all ∆i ∈ Ci, i = 1, 2, . . . , k:

(RE)
1√
n

∥∥∥∥∥X
k∑
i=1

∆i

∥∥∥∥∥
2

≥ κ
k∑
i=1

‖∆i‖2 . (6)

The above RE condition considers the following set:

H =
{∑k

i=1 ∆i : ∆i ∈ Ci,
∑k
i=1 ‖∆i‖2 = 1

}
. (7)

which involves all the k error cones, and the lower bound is over the sum of norms of the component
wise errors. If k = 1, the RE condition in (6) above simplifies to the widely studied RE condition
in the current literature on Lasso-type and Dantzig-type estimators [4, 17, 3] where only one error
cone is involved. If we set all components but ∆i to zero, then (6) becomes the RE condition only for
component i. We also note that the general RE condition as explicitly stated in (6) has been implicitly
used in [1] and [24]. For subsequent analysis, we introduce the set H̄ defined as

H̄ =
{∑k

i=1 ∆i : ∆i ∈ Ci,
∑k
i=1 ‖∆i‖2 ≤ 1

}
. (8)

noting thatH ⊂ H̄.
The general RE condition in (6) depends on the random design matrix X , and is hence an inequality
which will hold with certain probability depending on X and the setH. For superposition problems,
the probabilistic RE condition as in (6) is intimately related to the following deterministic structural
coherence (SC) condition on the interaction of the different component cones Ci, without any
explicit reference to the random design matrix X: there is a constant ρ > 0 such that for all
∆i ∈ Ci, i = 1, . . . , k,

(SC)

∥∥∥∥∥
k∑
i=1

∆i

∥∥∥∥∥
2

≥ ρ
k∑
i=1

‖∆i‖2 . (9)

If k = 1, the SC condition is trivially satisfied with ρ = 1. Since most existing literature on high-
dimensional structured models focus on the k = 1 setting [4, 17, 3], there was no reason to study the
SC condition carefully. For k > 1, the SC condition (9) implies a non-trivial relationship among the
component cones. In particular, if the SC condition is true, then the sum

∑k
i=1 ∆i being zero implies

that each component ∆i must also be zero. As presented in (9), the SC condition comes across as
an algebraic condition. In Section 3, we present a geometric characterization of the SC condition
[13], and illustrate that the condition is both necessary and sufficient for accurate recovery of each
component. In Section 4, we show that for sub-Gaussian design matrices X , the SC condition in
(9) in fact implies that the RE condition in (6) will hold with high probability, after the number of
samples crosses a certain sample complexity, which depends on the Gaussian width of the component
cones. For now, we assume the RE condition in (6) to hold, and proceed with the error bound analysis.
To establish recovery guarantee, following (5), we need an upper bound on the interaction between
noise ω and design X [3, 14]. In particular, we consider the noise-design (ND) interaction

(ND) sn(γ) = inf
s>0

{
s : sup

u∈sH

1√
n
ωTXu ≤ γs2

√
n

}
, (10)
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Figure 1: Geometry of SC condition
when k = 2. The error sets E1 and
E2 are respectively shown as blue an
green squares, and the corresponding er-
ror cones are C1 and C2 respectively. −C1
is the reflection of error cone C1. If −C1
and C2 do not share a ray, i.e., the angle
α between the cones is larger than 0, then
δ0 < 1, and the SC condition will hold.

where γ > 0 is a constant, and sH is the scaled version ofH where the scaling factor is s > 0. Here,
sn(γ) denotes the minimal scaling needed onH such that one obtains a uniform bound over ∆ ∈ sH
of the form: 1

nω
TX∆ ≤ γs2

n(γ). Then, from the basic inequality in (5), with the bounds implied by
the RE condition and the ND interaction, we have

1√
n
‖X∆‖2 ≤

1√
n

√
ωTX∆ ⇒ κ

k∑
i=1

‖∆i‖2 ≤
√
γsn(γ) , (11)

which implies a bound on the component-wise error. The main deterministic bound below states the
result formally:

Theorem 1 (Deterministic bound) Assume that the RE condition in (6) is satisfied in H with pa-
rameter κ. Then, if κ2 > γ, we have

∑k
i=1 ‖∆i‖2 ≤ 2sn(γ).

The above bound is deterministic and holds only when the RE condition in (6) is satisfied with
constant κ such that κ2 > γ. In the sequel, we first give a geometric characterization of the SC
condition in Section 3, and show that the SC condition implies the RE condition with high probability
in Section 4. Further, we give a high probability characterization of sn(γ) based on the noise ω and
design X in terms of the Gaussian widths of the component cones, and also illustrate how one can
choose γ in Section 5. With these characterizations, we will obtain the desired component-wise error
bound of the form (3).

3 Geometry of Structural Coherence

In this section, we give a geometric characterize the structural coherence (SC) condition in (9). We
start with the simplest case of two vectors x, y. If they are not reflections of each other, i.e., x 6= −y,
then the following relationship holds:

Proposition 2 If there exists a δ < 1 such that −〈x, y〉 ≤ δ‖x‖2‖y‖2, then

‖x+ y‖2 ≥
√

1−δ
2 (‖x‖2 + ‖y‖2) . (12)

Next, we generalize the condition of Proposition 2 to vectors in two different cones C1 and C2. Given
the cones, define

δ0 = sup
x∈C1∩Sp−1,y∈C2∩Sp−1

− 〈x, y〉 . (13)

By construction, −〈x, y〉 ≤ δ0‖x‖2‖y‖2 for all x ∈ C1 and y ∈ C2. If δ0 < 1, then (12) continues to
hold for all x ∈ C1 and y ∈ C2 with constant

√
(1− δ0)/2 > 0. Note that this corresponds to the SC

condition with k = 2 and ρ =
√

(1− δ0)/2. We can interpret this geometrically as follows: first
reflect cone C1 to get −C1, then δ is the cosine of the minimum angle between −C1 and C2. If δ0 = 1,
then −C1 and C2 share a ray, and structural coherence does not hold. Otherwise, δ0 < 1, implying
−C1 ∩ C2 = {0}, i.e., the two cones intersect only at the origin, and structural coherence holds.
For the general case involving k cones, denote

δi = sup
u∈−Ci∩Sp−1,v∈

∑
j 6=i Cj∩Sp−1

〈u, v〉 . (14)

In recent work, [13] concluded that if δi < 1 for each i = 1, . . . , k then −Ci and
∑
j 6=i Cj does not

share a ray, and the original signal can be recovered in noiseless case. We show that the condition
above in fact implies ρ > 0 for the SC condition in (9), which is sufficient for accurate recovery even
in the noisy case. In particular, with δ := maxi δi, we have the following result:
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Theorem 3 (Structural Coherence (SC) Condition) Let δ := maxi δi with δi as defined in (14).
If δ < 1, then there exists a ρ > 0 such that for any ∆i ∈ Ci, i = 1, . . . , k, the SC condition in (9)
holds, i.e., ∥∥∥∑k

i=1 ∆i

∥∥∥
2
≥ ρ

∑k
i=1 ‖∆i‖2 . (15)

Thus, the SC condition is satisfied in the general case as long as the reflection −Ci of any cone Ci
does not intersect, i.e., share a ray, with the Minkowski sum

∑
j 6=i Cj of the other cones.

4 Restricted Eigenvalue Condition for Superposition Models

Assuming that the SC condition is satisfied by the error cones {Ci}, i = 1, . . . , k, in this section we
show that the general RE condition in (6) will be satisfied with high probability when the number of
samples n in the sub-Gaussian design matrix X ∈ Rn×p crosses the sample complexity n0. We give
a precise characterization of the sample complexity n0 in terms of the Gaussian width of the setH.
Our analysis is based on the results and techniques in [20, 14], and we note that [3] has related results
using mildly different techniques. We start with a restricted eigenvalue condition on C. For a random
vector Z ∈ Rp, we define marginal tail function for an arbitrary set E as

Qξ(E;Z) = infu∈E P (|〈Z, u〉| ≥ ξ) , (16)

noting that it is deterministic given the set E ⊆ Rp. Let εi, i = 1, . . . , n, be independent Rademacher
random variables, i.e., random variable with probability 1

2 of being either +1 or −1, and let Xi, i =
1, . . . , n, be independent copies of Z. We define empirical width of E as

Wn(E;Z) = supu∈E〈h, u〉, where h = 1√
n

∑n
i=1 εiXi . (17)

With this notation, we recall the following result from [20]:

Lemma 1 Let X ∈ Rn×p be a random design matrix with each row the independent copy of
sub-Gaussian random vector Z. Then for any ξ, ρ, t > 0, we have

inf
u∈H
‖Xu‖2 ≥ ρξ

√
nQ2ρξ(H;Z)− 2Wn(H;Z)− ρξt (18)

with probability at least 1− e− t
2

2 .

In order to obtain lower bound of κ in RE condition (6), we need to lower bound Q2ρξ(H;Z) and
upper bound Wn(H;Z). To lower bound Q2ρξ(H;Z), we consider the spherical cap

A = (
∑k
i=1 Ci) ∩ Sp−1 . (19)

From [20, 14], one can obtain a lower bound to Qξ(A;Z) based on the Paley-Zygmund inequality.
The Paley-Zygmund inequality lower bound the tail distribution of a random variable by its second
momentum. Let u be an arbitrary vector, we use the following version of the inequality.

P (|〈Z, u〉| ≥ 2ξ) ≥ [E|〈Z,u〉|−2ξ]2+
E|〈Z,u〉|2 (20)

In the current context, the following result is a direct consequence of SC condition, which shows that
Q2ρξ(H;Z) is lower bounded by Qξ(A;Z), which in turn is strictly bounded away from 0 . The
proof of Lemma 2 is given in Appendix H.1.

Lemma 2 Let sets H and A be as defined in (7) and (19) respectively. If the SC condition in (9)
holds, then the marginal tail functions of the two sets have the following relationship:

Qρξ(H;Z) ≥ Qξ(A;Z). (21)

Next we discuss how to upper bound the empirical width Wn(H;Z). Let set E be arbitrary, and
random vector g ∼ N (0, Ip) be a standard Gaussian random vector in Rp. The Gaussian width [3] of
E is defined as

w(E) = E sup
u∈E
〈g, u〉. (22)

Empirical width Wn(H;Z) can be seen as the supremum of a stochastic process. One way to upper
bound the supremum of a stochastic process is by generic chaining [19, 3, 20], and by using generic
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chaining we can upper bound the stochastic process by a Gaussian process, which is the Gaussian
width.
As we can bound Q2ρξ(H;Z) and Wn(H;Z), we come to the conclusion on RE condition. Let X ∈
Rn×p be a random matrix where each row is an independent copy of the sub-Gaussian random vector
Z ∈ Rp, and where Z has sub-Gaussian norm |||Z|||ψ2

≤ σx [21]. Let α = infu∈Sp−1 E[|〈Z, u〉|] so
that α > 0 [14, 20]. We have the following lower bound of the RE condition. The proof of Theorem
4 is based on the proof of [20, Theorem 6.3], and we give it in appendix H.2.

Theorem 4 (Restricted Eigenvalue Condition) Let X be the sub-Gaussian design matrix that sat-
isfies the assumptions above. If the SC condition (9) holds with a ρ > 0, then with probability at least
1− exp(−t2/2), we have

inf
u∈H
‖Xu‖2 ≥ c1ρ

√
n− c2w(H)− c3ρt (23)

where c1, c2 and c3 are positive constants determined by σx, σω and α.

To get a κ > 0 in (6), one can simply choose t = (c1ρ
√
n − c2w(H))/2c3ρ. Then as long as

n > c4w
2(H)/ρ2 for c4 = c22/c

2
1, we have

κ = infu∈H
1√
n
‖Xu‖2 ≥ 1

2

(
c1ρ− c2w(H)√

n

)
> 0,

with high probability.
From the discussion above, if SC condition holds and the sample size n is large enough, then we can
find a matrix X such that RE condition holds. On the other hand, once there is a matrix X such that
RE condition holds, then we can show that SC must also be true. Its proof is give in Appendix H.3.

Proposition 5 If X is a matrix such that the RE condition (6) holds for ∆i ∈ Ci, then the SC
condition (9) holds.

Proposition 5 demonstrates that SC condition is a necessary condition for the possibility of RE.
If SC condition does not hold, then there is {∆i} such that ∆i 6= 0 for some i = 1, . . . , k, but
‖
∑k
i=1 ∆i‖2 = 0 which implies

∑k
i=1 ∆i = 0. Then for every matrix X , we have X

∑k
i=1 ∆i = 0,

and RE condition is not possible.

5 General Error Bound

Recall that the error bound in Theorem 1 is given in terms of the noise-design (ND) interaction

sn(γ) = infs>0

{
s : supu∈sC

1√
n
ωTXu ≤ γs2

√
n
}
. (24)

In this section, we give a characterization of the ND interaction, which yields the final bound on the
componentwise error as long as n ≥ n0, i.e., the sample complexity is satisfied.
Let ω be a centered sub-Gaussian random vector, and its sub-Gaussian norm |||ω|||ψ2

≤ σω . Let X be
a row-wise i.i.d. sub-Gaussian random matrix, for each row Z, its sub-Gaussian norm |||Z|||ψ2

≤ σx.
The ND interaction can be bounded by the following conclusion, and the proof of lemma 3 is given
in appendix I.1.

Lemma 3 Let design X ∈ Rn×p be a row-wise i.i.d. sub-Gaussian random matrix, and noise
ω ∈ Rn be a centered sub-Gaussian random vector. Then sn(γ) ≤ cw(H̄)

γ
√
n
. for some constant c > 0

with probability at least 1− c1 exp(−c2w2(H̄))− c3 exp(−c4n). Constant c depends on σx and σω .

In lemma 3 and theorem 6, we need the Gaussian width of H̄ andH respectively. From definition,
both H̄ and H is related to the union of different cones; therefore bounding the width of H̄ and
H may be difficult. We have the following bound of w(H) and w(H̄) in terms of the width of the
component spherical caps. The proof of Lemma 4 is given in Appendix I.2.

Lemma 4 (Gaussian width bound) LetH and H̄ be as defined in (7) and (8) respectively. Then, we
have w(H) = O

(
maxi w(Ci ∩ Sp−1) +

√
log k

)
and w(H̄) = O

(
maxi w(Ci ∩Bp) +

√
log k

)
.

By applying lemma 4, we can derive the error bound using the Gaussian width of individual error
cone. From our conclusion on deterministic bound in theorem 1, we can choose an appropriate γ
such that κ2 > γ. Then, by combining the result of theorem 1, theorem 4, lemma 3 and lemma 4, we
have the final form of the bound, as originally discussed in (3):
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Theorem 6 For estimator (2), let Ci = cone{∆ : Ri(θ
∗
i + ∆) ≤ Ri(θ

∗
i )}, design X be a ran-

dom matrix with each row an independent copy of sub-Gaussian random vector Z, noise ω be
a centered sub-Gaussian random vector, and Bp ⊆ Rp be the centered unit euclidean ball. If
sample size n > c(maxi w

2(Ci ∩ Sp−1) + log k)/ρ2, then we have with probability at least
1− η1

k exp(−η2 maxi w
2(Ci ∩ Sp−1))− η3 exp(−η4n),∑k

i=1 ‖θ̂i − θ∗i ‖2 ≤ C
maxi w(Ci∩Bp)+

√
log k

ρ2
√
n

, (25)

for constants c, C > 0 that depend on sub-Gaussian norms |||Z|||φ2
and |||ω|||φ2

.

Thus, assuming the SC condition in (9) is satisfied, the sample complexity and error bound of the
estimator depends on the largest Gaussian width, rather than the sum of Gaussian widths. The result
can be viewed as a direct generalization of existing results for k = 1, when the SC condition is always
satisfied, and the sample complexity and error is given by w2(C1 ∩ Sp−1) and w(C1 ∩Bp) [3, 8].

6 Application of General Bound

In this section, we instantiate the general error bounds on Morphological Component Analysis
(MCA), and low-rank and sparse matrix decomposition. The comprehensive results are provided in
Appendix D.

6.1 Morphological Component Analysis
In Morphological Component Analysis [10], we consider the following linear model

y = X(θ∗1 + θ∗2) + ω (26)

where vector θ∗1 is sparse and θ∗2 is sparse under a rotation Q. Consider the following estimator

min
θ1,θ2
‖y −X(θ1 + θ2)‖22 s.t. ‖θ1‖1 ≤ ‖θ∗1‖1, ‖Qθ2‖1 ≤ ‖Qθ∗2‖1, (27)

where vector y ∈ Rn is the observation, vectors θ1, θ2 ∈ Rp are the parameters we want to estimate,
matrix X ∈ Rn×p is a sub-Gaussian random design, matrix Q ∈ Rp×p is orthogonal. We assume θ∗1
and Qθ∗2 are s1-sparse and s2-sparse vectors respectively. Function ‖Q.‖1 is still a norm. In general,
we can derive the following error bound from Theorem 6:

‖θ1 − θ∗1‖2 + ‖θ2 − θ∗2‖2 = O

(
max

{√
s1 log p
n ,

√
s2 log p
n

})
.

6.2 Low-rank and Sparse Matrix Decomposition
To recover a sparse matrix and low-rank matrix from their sum [6, 9], one can use L1 norm to induce
sparsity and nuclear norm to induce low-rank. These two kinds of norm ensure that the sparsity and
the rank of the estimated matrices are small. Suppose we have a rank-r matrix L∗ and a sparse matrix
S∗ with s nonzero entries, S∗, L∗ ∈ Rd1×d2 . Our observation Y comes from the following problem

Yi = 〈Xi, L
∗ + S∗〉+ Ei, i = 1, . . . , n,

where each Xi ∈ Rd1×d2 is a sub-Gaussian random design matrix. Ei is the noise matrix. The
estimator takes the form:

min
L,S

n∑
i=1

(Yi − 〈Xi, L+ S〉)2 s.t. |||L|||∗ ≤ |||L
∗|||∗, ‖S‖1 ≤ ‖S

∗‖1. (28)

By using Theorem 6, and existing results on Gaussian widths, the error bound is given by

‖L− L∗‖2 + ‖S − S∗‖2 = O

(
max

{√
s log(d1d2)

n ,
√

r(d1+d2−r)
n

})
.

7 Experimental Results

In this section, we confirm the theoretical results in this paper with some simple experiments. We
show our experimental results under different settings. In our experiments we focus on MCA when
k = 2. The design matrix X are generated from Gaussian distribution such that every entry of X
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Figure 2: (a) Effect of parameter ρ on estimation error when noise ω 6= 0. We choose the parameter
ρ to be 0, 1/

√
2, and a random sample. (b) Effect of dimension p on fraction of successful recovery

in noiseless case. Dimension p varies in {20, 40, 50, 150}
subjects to N (0, 1). The noise ω is generated from Gaussian distribution such that every entry of ω
subjects to N (0, 1). We implement our algorithm 1 in MATLAB. We use synthetic data in all our
experiments, and let the true signal

θ1 = (1, . . . , 1︸ ︷︷ ︸
s1

, 0 . . . , 0), Qθ2 = (1, . . . , 1︸ ︷︷ ︸
s2

, 0 . . . , 0)

We generate our data in different ways for our three experiments.

7.1 Recovery From Noisy Observation
In our first experiment, we test the impact of ρ on the estimation error. We choose three different
matricesQ, and ρ is determined the choice ofQ. The firstQ is given by random sampling: we sample
a random orthogonal matrix Q such that Qij > 0, and ρ is lower bounded by (42). The second and
third Q is given by identity matrix I and its negative −I; therefore ρ = 1/

√
2 and ρ = 0 respectively.

We choose dimension p = 1000, and let s1 = s2 = 1. The number of samples n varied between 1
and 1000. Observation y is given by y = X(θ∗1 + θ∗2) + ω. In this experiment, given Q, for each
n, we generate 100 pairs of X and w. For each (X,w) pair, we get a solution θ̂1 and θ̂2. We take
the average over all ‖θ̂1 − θ∗1‖2 + ‖θ̂2 − θ∗2‖2. Figure 2(a) shows the plot of number of samples vs
the average error. From figure 2(a), we can see that the error curve given by random Q lies between
curves given by two extreme cases, and larger ρ gives lower curve. In Appendix E, we provide an
additional experiment using k-support norm [2].

7.2 Recovery From Noiseless Observation
In our second experiment, we test how the dimension p affects the successful recovery of true value.
In this experiment, we choose different dimension p with p = 20, p = 40, p = 80, and p = 160. We
let s1 = s2 = 1. To avoid the impact of ρ, for each sample size n, we sample 100 random orthogonal
matrices Q. Observation y is given by y = X(θ∗1 + θ∗2). For each solution θ̂1 and θ̂2 of (41), we
calculate the proportion of Q such that ‖θ̂1 − θ∗1‖2 + ‖θ̂2 − θ∗2‖2 ≤ 10−4. We increase n from 1
to 40, and the plot we get is figure 2(b). From figure 2(b) we can find that the sample complexity
required to recover θ∗1 and θ∗2 increases with dimension p.

8 Conclusions

We present a simple estimator for general superposition models and give a purely geometric charac-
terization, based on structural coherence, of when accurate estimation of each component is possible.
Further, we establish sample complexity of the estimator and upper bounds on componentwise
estimation error and show that both, interestingly, depend on the largest Gaussian width among the
spherical caps induced by the error cones corresponding to the component norms. Going forward, it
will be interesting to investigate specific component structures which satisfy structural coherence,
and also extend our results to allow more general measurement models.
Acknowledgements: The research was also supported by NSF grants IIS-1563950, IIS-1447566,
IIS-1447574, IIS-1422557, CCF-1451986, CNS- 1314560, IIS-0953274, IIS-1029711, NASA grant
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