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Abstract

This study introduces a novel feature selection approach CMICOT, which is a
further evolution of filter methods with sequential forward selection (SFS) whose
scoring functions are based on conditional mutual information (MI). We state and
study a novel saddle point (max-min) optimization problem to build a scoring
function that is able to identify joint interactions between several features. This
method fills the gap of MI-based SFS techniques with high-order dependencies.
In this high-dimensional case, the estimation of MI has prohibitively high sample
complexity. We mitigate this cost using a greedy approximation and binary repre-
sentatives what makes our technique able to be effectively used. The superiority of
our approach is demonstrated by comparison with recently proposed interaction-
aware filters and several interaction-agnostic state-of-the-art ones on ten publicly
available benchmark datasets.

1 Introduction

Methods of feature selection is an important topic of machine learning [8l, 2} [17], since they improve
performance of learning systems while reducing their computational costs. Feature selection methods
are usually grouped into three main categories: wrapper, embedded, and filter methods [8]]. Filters are
computationally cheap and are independent of a particular learning model that make them popular
and broadly applicable. In this paper, we focus on most popular filters, which are based on mutual
information (MI) and apply the sequential forward selection (SFS) strategy to obtain an optimal
subset of features [[17]. In such applications as web search, features may be highly relevant only
jointly (having a low relevance separately). A challenging task is to account for such interactions [17]].
Existing SFS-based filters [18} |3} [24]] are able to account for interactions of only up to 3 features.

In this study, we fill the gap in the absence of effective SFS-based filters accounting for feature
dependences of higher orders. A search of {-way interacting features is turned into a novel saddle
point (max-min) optimization problem for MI of the target variable and the candidate feature with
its complementary team conditioned on its opposing team of previously selected features. We show
that, on the one hand, the saddle value of this conditional MI is a low-dimensional approximation
of the CMI scoreﬂ and, on the other hand, solving that problem represents two practical challenges:
(a) prohibitively high computational complexity and (b) sample complexity, a larger number of
instances required to accurately estimate the MI. These issues are addressed by two novel techniques:
(a) a two stage greedy search for the approximate solution of the above-mentioned problem whose
computational complexity is O(¢) at each i-th SFS iteration; and (b) binary representation of features
that reduces the dimension of the space of joint distributions by a factor of (¢/2)? for g-value
features. Being reasonable and intuitive, these techniques together constitute the main contribution of
our study: a novel SFS method CMICOT that is able to identify joint interactions between multiple

!'The CMI filter is believed to be a “north star" for vast majority of the state-of-the-art filters [2].
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features. We also empirically validate our approach with 3 state-of-the-art classification models on
10 publicly available benchmark datasets and compare it with known interaction-aware SFS-based
filters and several state-of-the-art ones.

2 Preliminaries and related work

Information-theoretic measures. The mutual information (MI) of two random variables f and
g is defined as 1(f;g) = H(f) + H(g) — H(f.g), where H(f) = —E [log P(f)] is Shannon’s
entropy [4ﬂ The conditional mutual information of two random variables f and g given the variable
hisI(f;g | h) = I(f;9,h) — I(f;h). The conditional MI measures the amount of additional
information about the variable f carried by g compared to the variable h. Given sample data, entropy
(and, hence, MI and conditional MI) of discrete variables could be simply estimated using the
empirical frequencies (the point estimations) [[15] or in a more sophisticated way (e.g., by means of
the Bayesian framework [[10]). More details on different entropy estimators can be found in [[15]].

Background of the feature selection based on MI. Let F' be a set of features that could be used by
a classifier to predict a variable c representing a class label. The objective of a feature selection (FS)
procedure is to find a feature subset S° C F' of a given size k£ € N that maximizes its joint MI with
the class label ¢, i.e., 5° = argmax;g.gc p|s)<k} (¢ S). In our paper, we focus on this simple but
commonly studied FS objective in the context of MI-based filters [2], though there is a wide variety
of other definitions of optimal subset of features [17] (e.g., the all-relevant problem [13]).

In order to avoid an exhaustive search of an optimal subset .S, most filters are based on sub-optimal
search strategies. The most popular one is the sequential forward selection (SFS) [20, 23} [17], which
starts with an empty set (Sp := @) and iteratively increases it by adding one currently unselected
feature on each step (S; := S;—1 U{f:},i = 1,...,k, and S° := Si). The feature f; is usually
selected by maximizing a certain scoring function (also called score) J;(f) that is calculated with
respect to currently selected features S;_1, i.e., f; 1= argmax;cp g, , Ji(f)-

A trivial feature selection approach is to select top-k features in terms of their MI with the class label
c [12]]. This technique is referred to as MIM [2] and is a particular case of the SFS strategy based
on score JMM(f) :=I(c; f). Note that the resulting set may contain a lot of redundant features,
since the scoring function JM™(.) is independent from already selected features S;_;. Among
methods that take into account the redundancy between features [2,|17], the most popular and widely
applicable ones are MIFS [}, IMI [21} [14], CMIM [6,|19], and mRMR [16]. Brown et al. [2] unified
these techniques under one framework, where they are different low-order approximations of CMI
feature selection approach. This method is based on the score equal to MI of the label with the
evaluated feature conditioned on already selected features:

JEMN ) =1(es f | Sic1)- (D

The main drawback of CMI is the sample complexity, namely, the exponential growth of the dimension
of the distribution of the tuple (¢, f, S;—1) with respect to i. The larger the dimension is, the larger
number of instances is required to accurately estimate the conditional MI in Eq. (I). Therefore, this
technique is not usable in the case of small samples and in the cases, when a large number of features
should be selected [2]. This is also observed in our experiment in Appendix.F2, where empirical
score estimated over high dimensions results in drastically low performance of CMI.

Thus, low-dimensional approximations of Eq. (I)) are more preferable in practice. For instance, the
CMIM approach approximates Eq. (I)) by

TR = min it 19) @

i.e., one replaces the redundancy of f with respect to the whole subset S;_1 by the worst redundancy
with respect to one feature from this subset. The other popular methods (mentioned above) are
particular cases of the following approximation of the I(c¢; f | S;—1):

TN =) - > (Bl(g;f)fvl(g;fIC)» )

g€Si—1

2From here on in the paper, variables separated by commas or a set of variables in MI expressions are treated as
one random vector variable, e.g., I(f; g, h) := I(f; (g, h)) and, for F = U7_ { fi}. I(f; F) == 1(f; f1, .., fn)-



e.g., MIFS (8 € [0,1],7 = 0), mRMR (8 = |S;_1|~!,y = 0), and IMI (8 = v = |S;_1|~}).

An important but usually neglected aspect in FS methods is feature complementariness [8. 3] (also
known as synergy [24]] and interaction [11]]). In general, complementary features are those that
appear to have low relevance to the target class c individually, but whose combination is highly
relevant [25,24]. In the next subsection, we provide a brief overview of existing studies on filters that
take into account feature interaction. A reader interested in a formalized concept of feature relevance,
redundancy, and interaction is referred to [11] and [24].

Related work on interaction-aware filters. To the best of our knowledge, existing interaction-aware
filters that utilize the pure SFS strategy with a MI-based scoring function are the following ones.
RelaxMRMR [18]] is a modification of the mRMR method, whose scoring function in Eq. (3) was
refined by adding the three-way feature interaction terms -, s 5, 1(f; % | g). The method

RCDFS [3] is a special case of Eq. (3)), where 3 = ~ are equal to a transformation of the standard
deviation of the set {I(f;h)}nres,_,. The approach IWFS [24] is based on the following idea: at
each step 4, for each unselected feature f € F'\ S;, one calculates the next step score J;11(f) as
the current score J;( f) multiplied by a certain measure of interaction between this feature f and the
feature f; selected at the current step. Both RCDFS and IWFS can catch dependences between no
more than 2 features, while RelaxMRMR is able to identify an interaction of up to 3 features, but
its score’s computational complexity is O(i2) what makes it unusable in real applications. All these
methods could not be straightforwardly improved to incorporate interactions of a higher order.

In our study, we propose a general methodology that fills the gap between the ideal (“oracle") but
infeasible CMI method, which takes all interactions into account, and the above-described methods
that account for up to 3 interacting features. Our method can be effectively used in practice with its
score’s computational complexity of a linear growth O(i) (as in most state-of-the-art SFS-filters).

3 Proposed feature selection

In this section, we introduce a novel feature selection approach based on the SFS strategy whose
score is built by solving from a novel optimization problem and comprises two novel techniques that
makes the approach efficient and effective in practice.

3.1 Score with t-way interacted complementary and opposing teams

Our FS method has a parameter ¢ € N that is responsible for the desirable number of features whose
mutual interaction (referred to as a t-way feature interaction) should be taken into account by the
scoring function J;(+). We build the scoring function according to the following intuitions.

First, the amount of relevant information carried by a ¢-way interaction of a candidate feature f has the
form I(c; f, H) for some set of features H of size | H| < t — 1. Second, we remove the redundant part
of this information w.r.t. the already selected features S; 1 and obtain the non-redundant information
part I(¢; f, H | S;—1). Following the heuristic of the CMIM method, this could be approximated
by use of a small subset G C S;_1, |G| < s € N, i.e., by the low-dimensional approximation
minggcs, . |c|<sy I(c; f, H | G) (assuming s < 4). Third, since in the SFS strategy one has to
select only one feature at an iteration %, this approximated additional information of the candidate f
with H w.r.t. S;_; will be gained by with the feature f at this SFS iteration only if all complementary
features H have been already selected (i.e., H C S;_1). In this way, the score of the candidate f
should be equal to the maximal additional information estimated using above reasoning, i.e., we
come to the score which is a solution of the following saddle point (max-min) optimization problem

JE(f) = n (e |
(f) = ymax  min I(c;f,H | G) )
|H|<t—1 |G|<s

We refer to the set { f} U H?, where H % is an optimal set / in Eq. as an optimal complementary
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team of the feature f € F'\ S;_1, while an optimal set G in Eq. (4) is referred to as an optimal
opposing team to this feature f (and, thus, to its complementary team as well) and is denoted by G?.

The described approach is inspired by methods of greedy learning of ensembles of decision trees [[7]],
where an ensemble of trees is built by sequentially adding a decision tree that maximizes the gain in
learning quality. In this way, our complementary team corresponds to the features used in a candidate



decision tree, while our opposing team corresponds to the features used to build previous trees in the
ensemble. Since they are already selected by SFS, they are expectedly stronger than f and we can
assume that, at the early iterations, a greedy machine learning algorithm would more likely use these
features rather than the new feature f once we add it into the feature set. So, Eq. tries to mimic
the maximal amount of information that feature f can provide additionally to the worst-case baseline
built on S;_1.

Statement 1. Fort,s + 1 > 1, the score jl-(t’s)from Eq. (@) is equal to the score JiCMIfrom Eq. .

The proof’s sketch is: (a) justify the identity Joi(t"s)(f) = maxpgcs, , mingcg, \gl(c f| H G)
fort,s + 1 > i; (b) get a contradiction to the assumption that there are no optimal subsets H and G
such that S;_; = H U G. Detailed proof of Statement[I]is given in Appendix A. Thus, we argue that

the score Joi(t’s) from Eq. @) is a low-dimensional approximation of the CMI score JZCMI
The score from Eq. (E]) is of a general nature and reasonable, but, to the best of our knowledge, was

never considered in existing studies. However, this score is not suitable for effective application,
since it suffers from two practical issues:

(PLa) computational complexity: efficient search of optimal sets H? and G;’c in Eq. (EP;

(PLb) sample complexity: accurate estimation of the MI over features with a large dimension of its
joint distribution.

We address these research problems and propose the following solutions to them: in Sec. [3.2] the
issue (PLa) is overcome in a greedy fashion, while, in Sec. [3.3]the issue (PLb) is mitigated by means
of binary representatives.

3.2 Greedy approximation of the score

Note that an exhaustive search of a saddle point in Eq. @) requires (i_l) (’:1) MI calculations

t—1
that can make calculation of the scoring function JZ.(t’S) infeasible at a large iteration ¢ even for low
team sizes ¢, s > 1. In order to overcome this issue, we propose the following greedy search for
sub-optimal complementary and opposing teams.

At the first stage, we start from a greedy search of a sub-optimal set H that cannot be done straight-
forwardly, since Eq. (@) comprises both max and min operators. The latter one requires a search of
an optimal G that we want do at the second stage (after H). Hence, the double optimization problem
needs to be replaced by a simpler one which does not utilize a search of G.

Proposition 1. (1) For any H C S;_1 such that |H| < s, the following holds

s . < . .
Ggsfflfﬂc\gsl(c’ H|G)<I(cf]|H) (5)

(2)If s > t — 1, then the score given by the following optimization problem

I(c; H ;
Hes, ISt (e £ | H), (6)

is an upper bound for the score Joi(t’s) from Eq. (@)

The optimization problem Eq. (6) seems reasonable due to the following properties: (a) in fact, the
search of H in Eq. (6) is maximization of the additional information carried out by the candidate f
w.r.t. no more than ¢ — 1 already selected features from S;_1; (b) if a candidate f is a combination of
features from H, then the right hand side in Eq. (3) is 0 and the inequality becomes an equality.

So, we greedily search the maximum in Eq. (6), obtaining the (greedy) complementary team { f } UH ¢,
where Hy := {h1,...,hy_1} is defined by

hj = argmaxI(c; f | h,...,hj_1,h), j=1,...,t—1. @)
€Si—1

*Moreover, the CMIM score from Eq. (2) is a special case of Eq. (4) with s = ¢ = 1 and restriction G # @.
*If several elements provide an optimum (the case of ties), then we randomly select one of them.



At the second stage, given the complementary team {f} U Hy, we greedily search the (greedy)
opposing team Gy := {g1,...,gs} in the following way:

g;j = arg;ninl(c; fihay oo hingn—1 1 91,5 95-1,9), j=1,...,s. (8)
gESi—1

Finally, given the teams {f} U H; and G, we get the following greedy approximation of ji(t’s) (f):

JEf) =1l £, Hy | Gy), -

This score requires (¢t + s — 1)i MI calculations (see Eq. —(@)), which is a linear dependence
on an iteration ¢ as in the most state-of-the-art SFS-based filters [2]. Thus, we built an efficient

5(ts)

approximation of the score and resolve the issue (PL.a).

Note that we have two options on the minimization stage: either to search among all members of the
set H at each step (as in Eq. (A.7) in Appendix A.3), or (what we actually do in Eq. @])) to use only
a few first members of H y. The latter option demonstrates noticeably better MAUC performance and
also results in 0 score for a feature that is a copy of an already selected one (Proposition [2), while the
former does not (Remark A.2 in Appendix A.3). That is why we chose this option.

Proposition 2. Let s > t and a candidate feature f € F \ S;_1 be such that its copy f = fis
already selected f € S;_1, then, in the absence of ties in Eq. (@forj < t, the score Ji(t"s)(f) =0.

Propositionshows that the FS approach based on the greedy score Ji(t’s) (f) remains conservative,
i.e., a copy of an already selected feature will not be selected, despite that it exploits sub-optimal

teams in contrast to the FS approach based on the optimal score Joi(t’s) ().

3.3 Binary representatives of features

As it is mentioned in Sec. |2} a FS method that is based on calculation of MI over more than three
features is usually not popular in practice, since a large number of features implies a large dimension
of their joint distribution that leads to a large number of instances required to accurately estimate the

MI [2]. Both our optimal score ji(t’s) and our greedy one Ji(t’s) suffer from the same issue (PLb) as
well, since they exploit high-dimensional MI in Eq.(@) and Eq. (7)—(9). For instance, if we deal with
binary classification and each feature in F' has ¢ unique values (e.g., continuous features are usually
preprocessed into discrete variables with ¢ > 5 [18]]), then the dimension of the joint distribution of
features in Eq. (9) is equal to 2 - ¢'** (e.g., ~ 4.9 - 108 for t = s = 6,¢ = 5). In our method, we
cannot reduce the number of features used in MIs (since ¢-way interaction constitutes the key basis
of our approach), but we can mitigate the effect of the sample complexity by the following novel

technique, which we demonstrate on our greedy score Ji(t’s). Let I consists of discrete feature
Definition 1. For each discrete feature f € F', we denote by B[ f] the binary transformation of f,
i.e., the set of binary variables (referred to as the binary representatives (BR) of f) that constitute all

together a vector containing the same information as jﬂ For any subset F’ C F, the set of binary
representatives of all features from I is denoted by B[F'] = ;. BIf].

Then, we replace all features by their binary representatives at each stage of our score calculation.
Namely, in Eq. (7) and Eq. , (a) the searches are performed for each binary representative b € B|f]
instead of f; (b) the set Hp*™ of the complementary team is found among B[S;_1] U B[ f]; while
(c) the opposing team Gp™ is found among B[S;_1] (exact formulas could be found in Algorithm
lines[T2) and [T5). Finally, the score of a feature f in this FS approach based on binary representatives
is defined as the best score among the binary representatives B]f] of the candidate f:

t,s),bin in in
,]Z.( )b (f):= breng[);]I(c;b,Hl? | Gp™m). (10

Note that, in the previous example with a binary target variable c and g-value features, the dimension
of the joint distribution of binary representatives used to calculate MI in JZ-(t’s)’bm is equal to 21F¢Fs,

SIf there is a non-discrete feature, then we apply a discretization (e.g., by equal-width, equal-frequency
binnings [5], MDL [22, 3], etc.), which is the state-of-the-art preprocessing of continuous features in filters.

®For instance, for f with values in {z; }{_,, one could take B[f] = {I{;_,,} }{=,', where Ix is Xs indicator,
or take bits of a binary encoding of {x;}_, that is a smallest set (i.e., |'B[f]| = [log, ¢]) among possible B f].



Algorithm 1 Pseudo-code of the CMICOT feature selection method (an implementation of this
algorithm is available at https://github.com/yandex/CMICOT).

1: Input: F' — the set of all features; B[f], f € F, — set of binary representatives built on f;
¢ — the target variable; k¥ € N — the number of features to be selected;

t € N, s € Z — the team sizes (parameters of the algorithm);

Output: S — the set of selected features;

Initialize:

frest 1= argmax ;. p maxpem(y) 1(c; 0); // Select the first feature

S = {fbest}; Sbin = %[fbest];

while [S| < kand |F'\ S| > 0do

9: for feF\Sdo
10: for b € B[f] do
11: forj:=1tot—1do
12: h; := argmaxy,¢ gomym[ ] I(c;b | ha,..,hj_1,h);  //Search for complementary feat.
13: end for
14: for j :=1to sdo
15: gj = argmin ¢ gom 1(¢; 0, ha,y o Prningjey—1 | 91, -+, 9j—1,9); // Search for opp. feat.
16: end for
17: Jilb] :==1(e; b, hay oy hi1 | 91, -, 9s)s  // Calculate the score of the binary rep. b
18: end for
19: Ji[f] := maxyems) Ji[b];  // Calculate the score of the feature f
20:  end for
21: Sfoest := argmax fEF\S J; [ f], // Select the best candidate feature at the current step

22: S = SU{frest}; 5P := S U B frest];
23: end while

which is (¢/2)'"* times smaller (the dimension_reduction rate) than for the MI in Ji(t’s). For
instance, for t = s = 6, ¢ = 5, the MI from Eq. deals with~ 8.2 - 103 dimensions, which is
~ 6 - 10* times lower than~4.9 - 10® ones for the MI from Eq. @) The described technique has been
inspired by the intuition that probably two binary representatives of two different features interact on
average better than two binary representatives of one feature (see App. A.5.1). Therefore, we believe
that the BR modification retains the score’s awareness to the most interactions between features.

Surely, on the one hand, the BR technique can also be applied to any state-of-the-art SFS-filter [2] or
any existing interaction-aware one (RelaxMRMR [18]], RCDSFS [3]], and IWFS [24])), but the effect
on them will not be striking breakthrough, since these filters exploit no more than 3 features in one
MI, and the dimension reduction rate will thus be not more than (¢/2)3 (e.g., ~ 15.6 for ¢ = 5). On
the other hand, this technique is of a general nature and represents a self-contained contribution to
ML community, since it may be applied with noticeable profit to SFS-based filters with MIs of higher
orders (possibly not yet invented).

3.4 CMICOT feature selection method

We summarize Sec. [3.1}-Sec. [3.3]in our novel feature selection method that is based on sequential
forward selection strategy with the scoring function from Eq. (I0). We refer to this FS method as
CMICOT (Conditional Mutual Information with Complementary and Opposing Teams) and present
its pseudo-code in Algorithm [I] which has a form of a SFS strategy with a specific algorithm to
calculate the score (lines [TOHI9). In order to benefit from Prop.[T]and 2] one has to select s > ¢, and,
for simplicity, from here on in this paper we consider only equally limited teams, i.e., t = s.

Proposition 3. Let |B[f]| < v, Vf € F, |F| < M, and entropies in Mls are calculated over

N instances, then O(iv*t>N) simple operations are needed to calculate the score J, (B:Bim g
O(k?v*t2 M N) simple operations are needed to select top-k features by CMICOTfrom Alg. l

Let us remind how each of our techniques contributes to the presented above computational complexity
of the score. First, the factor ¢2 is an expected payment for the ability to be aware of t-way interactions
(Sec. . Second, the two stage greedy technique from Sec. [3.2] makes the score’ computational
complex1ty linearly depend on a SFS iteration 7. Third, utilization of the BR techmque from Sec.[3.3]
on the one hand, seems to increase the computational complexity by the factor 2, but, on the other


https://github.com/yandex/CMICOT

hand, we know that it drastically reduces the sample complexity (i.e., the number of instances required
to accurately estimate the used MIs). For simplicity, let us assume that each feature has 2 values and
is transformed to v binary ones. If we do not use the BR technique, the complexity will be lower by
the factor /2 for the same number of instances IV, but estimation of the MIs will require (2¥/2)%!
times more instances to achieve the same level of accuracy as with the BRs. Hence, the BR technique
actually reduces the computational complexity by the factor 22(*~1) /12, Note that the team size
t can be used to trade off between the number of instances available in the sample dataset and the
maximal number of features whose joint interaction could be taken into account in a SFS manner.

Finally, for a given dataset and a given team size ¢, the score’s computational complexity linearly
depends on the ¢-th SES iteration, on the one hand, as in most state-of-the-art SFS-filters [2] like
CMIM, MIFS, mRMR, JM], etc. (see Eq. Z)—(3))). On the other hand, scores of existing interaction-
aware ones have either the same (O(¢) for RCDFS [3]), or higher (O(M — 4) for IWFS [24] and
O(iz) for RelaxMRMR [18]]) order of complexity w.r.t. . Thus, we conclude that our FS method is
not inferior in efficiency to all baseline filters, but is able to identify feature dependences of higher
orders than these baselines.

4 Experimental evaluation

We compare our CMICOT approach with (a) all known interaction-aware SFS-based filters (RelaxM-
RMR [18], IWFS [24]], and RCDFS [3])); (b) the state-of-the-art filters [2] (MIFS, mRMR, CMIM,
JMI, DISR, and FCBF (CBFS)); (c) and the idealistic but practically infeasible CMI method (see
Sec. E]and [2]). In our experiments, we consider ¢t = 1, ..., 10 to validate that CMICOT is able to
detect interactions of a considerably higher order than its competitors.

Evaluation on synthetic data. First, we study the ability to detect high-order feature dependencies
using synthetic datasets where relevant and interacting features are a priory known. A synthetic
dataset has feature set F', which contains a group of jointly interacting relevant features Fj,,;, and a its
target ¢ is a deterministic function of F},,; for half of examples (| F'\ F},,;| = 15 and |Fppe| = 2, ..., 11
in our experiments). The smaller kg = min{k | F;,; C Sk}, the more effective the considered FS
method, since it builds the smaller set of features needed to construct the best possible classifier.
We conduct an experiment where, first, we randomly sample 100 datasets from the predefined joint
distribution (more details in Appendix C). Second, we calculate kg for each of studied FS methods
on these datasets. Finally, we average kg over the datasets and present the results in Figure|l|(a). We
see, first, that CMICOT with ¢ > | F},,;| significantly outperforms all baselines, except the idealistic
CMI method whose results are similar to CMICOT. This is expected, since CMI is infeasible only for
large k, and, in App. F.2, we show that CMICOT is the closest approximation of true CMI among
all baselines. Second, the team size ¢ definitely responds to the number of interacted features, that
provides an experimental evidence for ability of CMICOT to identify high-order feature interactions.

Evaluation on benchmark real data. Following the state-of-the-art practice [6, 22} |2, 18], [24] [3]],
we conduct an extensive empirical evaluation of the effectiveness of our CMICOT approach on
10 large public datasets from the UCI ML Repo (that include the NIPS 2003 FS competition) and
one private dataset from one of the most popular search engineﬂ We employ three state-of-the-
art classifiers: Naive Bayes Classifier (NBC), k-Nearest Neighbor (kNN), and AdaBoost [6] (see
App. B). Their performance on a set of features is measured by means of AUC [2] (MAUC [9])
for a binary (multi-class) target variable. First, we apply each of the FS methods to select top-k
features Sy, for each dataset and for k = 1, .., 50 [2, 24, 3]. Given k € {1, ..,50}, a dataset, and a
certain classifier, we measure the performance of a FS method (1) in terms of the (M)AUC of the
classifier built on the selected features S (2) and in terms of the rank of the FS method among
the other FS methods w.r.t. (M)AUC. The resulting (M)AUC and rank averaged over all datasets
are shown in Fig. [T[(b,c) for KNN and AdaBoost. From these figures we see that our CMICOT for
t = 67| method noticeably outperforms all baselines for the classification models kNN and AdaBoos{|
starting from approximately £ = 10. We reason this frontier by the size of the teams in CMICOT

"The number of features, instances, and target classes varies from 85 to 5000, from 452 to 10%, and from 2
to 26 respectively. More datasets’ characteristics and preprocessing can be found in Appendix D.

80ur experimentation on CMICOT with different ¢ = 1, . .., 10 on our datasets showed that ¢ = 5 and 6 are
the most reasonable in terms of classifier performance (see Appendix E.1.1).

The results of CMICOT on NBC classifier are similar to the ones of other baselines. This is expected
since NBC does not exploit high-order feature dependences, which is the key advantage of CMICOT. Note that
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Figure 1: (a) Comparison of the performance of SFS-based filters in terms of average ko on synthetic
datasets. (b) Average values of (M)AUC for compared FS methods and (c) their ranks w.r.t. (M)AUC
k =1,..,50 and for the kNN and AdaBoost classification models over all datasets (see also App. C,E).

method, which should select different teams more likely when |S;_1| > 2¢ (= 12 for ¢t = 6). The
curves on Fig. |I| (b,c) are obtained over a test set, while a 10-fold cross-validation is also
applied for several key points (e.g. £ = 10, 20, 50) to estimate the significance of differences in
classification quality. The detailed results of this CV for £ = 50 on representative datasets are given
in Appendix E.2. A more comprehensive details on these and other experiments are in App. E and F.

We find that our approach either significantly outperforms baselines (most one for KNN and AdaBoost),
or have non-significantly different difference with the other (most one for NBC). Note that the
interaction awareness of RelaxMRMR, RCDEFS and IWFS is apparently not enough to outperform
CMIM, our strongest competitor. In fact, there is no comparison of RelaxMRMR and IWFES with
CMIM in [3} 24], while RCDFS is outperformed by CMIM on some datasets including the only one
utilized in both [18] and our work. One compares CMICOT with and without BR technique: on
the one hand, we observed that CMICOT without BRs loses in performance to the one with BRs
on the datasets with non-binary features, that emphasizes importance of the problem (PL.b); on the
other hand, results on binary datasets (poker, ranking, and semeion; see App. E), where the CMICOT
variants are the same, the effectiveness of our approach separately to the BR technique is established.

5 Conclusions

We proposed a novel feature selection method CMICQOT that is based on sequential forward selection
and is able to identify high-order feature interactions. The technique based on a two stage greedy
search and binary representatives of features makes our approach able to be effectively used on
datasets of different sizes for restricted team sized ¢t. We also empirically validated our approach
for ¢ up to 10 by means of 3 state-of-the-art classification models (NBC, kNN, and AdaBoost) on
10 publicly available benchmark datasets and compared it with known interaction-aware SFS-based
filters (RelaxMRMR, IWFS, and RCDFS) and several state-of-the-art ones (CMIM, JMI, CBFS,
and others). We conclude that our FS algorithm, unlike all competitor methods, is capable to detect
interactions between up to ¢ features. The overall performance of our algorithm is the best among the
state-of-the-art competitors.
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consider NBC at all.
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