The Product Cut

Xavier Bresson Thomas Laurent Arthur Szlam
Nanyang Technological University =~ Loyola Marymount University =~ Facebook AI Research
Singapore Los Angeles New York
xavier.bresson@ntu.edu.sg tlaurent@lmu.edu aszlam@fb.com

James H. von Brecht
California State University, Long Beach
Long Beach
james.vonbrecht@csulb.edu

Abstract

We introduce a theoretical and algorithmic framework for multi-way graph parti-
tioning that relies on a multiplicative cut-based objective. We refer to this objective
as the Product Cut. We provide a detailed investigation of the mathematical proper-
ties of this objective and an effective algorithm for its optimization. The proposed
model has strong mathematical underpinnings, and the corresponding algorithm
achieves state-of-the-art performance on benchmark data sets.

1 Introduction

We propose the following model for multi-way graph partitioning. Let G = (V, W) denote a weighted
graph, with V' its vertex set and W its weighted adjacency matrix. We define the Product Cut of a

partition P = (Ay, ..., Ag) of the vertex set V' as
Hf:l Z(AWA::) =

where 0, = |A,|/|V| denotes the relative size of a set. This model provides a distinctive way to
incorporate classical notions of a quality partition. The non-linear, non-local function Z(A4,., AS) of
a set measures its intra- and inter-connectivity with respect to the graph. The entropic balance H(P)
measures deviations of the partition P from a collection of sets (A, ..., Ag) with equal size. In this
way, the Product Cut optimization parallels the classical Normalized Cut optimization [[10}[15}[13] in
terms of its underlying notion of cluster, and it arises quite naturally as a multiplicative version of the
Normalized Cut.

Nevertheless, the two models strongly diverge beyond the point of this superficial similarity. We
provide a detailed analysis to show that (T)) settles the compromise between cut and balance in a
fundamentally different manner than classical objectives, such as the Normalized Cut or the Cheeger
Cut. The sharp inequalities

0<Ncut(P)<1 e HP) <Pcut(P) <1 (2)

succinctly capture this distinction; the Product Cut exhibits a non-vanishing lower bound while the
Normalized Cut does not. We show analytically and experimentally that this distinction leads to
superior stability properties and performance. From an algorithmic point-of-view, we show how
to cast the minimization of (1) as a convex maximization program. This leads to a simple, exact
continuous relaxation of the discrete problem that has a clear mathematical structure. We leverage this
formulation to develop a monotonic algorithm for optimizing (I]) via a sequence of linear programs,
and we introduce a randomized version of this strategy that leads to a simple yet highly effective

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

algorithm. We also introduce a simple version of Algebraic Multigrid (AMG) tailored to our problem
that allows us to perform each step of the algorithm at very low cost. On graphs that contain
reasonably well-balanced clusters of medium scale, the algorithm provides a strong combination
of accuracy and efficiency. We conclude with an experimental evaluation and comparison of the
algorithm on real world data sets to validate these claims.

2 The Product Cut Model

We begin by introducing our notation and by describing the rationale underlying our model. We use
G = (V, W) to denote a graph on n vertices V' = {v1, ..., v, } with weighted edges W = {w;;}}'; 4
that encode similarity between vertices. We denote partitions of the vertex set into 2 subsets as
P = (44,..., Ar), with the understanding that the A,. C V satisfy the covering A U...UAr =V
constraint, the non-overlapping A, N A; = 0, (r # s) constraint and the non-triviality A, # 0
constraint. We use f, g, h, u, v to denote vertex functions f : V' — R, which we view as functions
f(v;) and n-vectors f € R™ interchangeably. Fora A C V we use | A| for its cardinality and 1 4 for
its indicator function. Finally, for a given graph G = (V, W) we use D := diag(WW 1y) to denote the
diagonal matrix of weighted vertex degrees.

The starting point for our model arises from a well-known and widely used property of the random
walk on a graph. Namely, a random walker initially located in a cluster A is unlikely to leave
that cluster quickly [8]. Different approaches of quantifying this intuition then lead to a variety of
multi-way partitioning strategies for graphs [[11,[12,[1]. The personalized page-rank methodology
provides an example of this approach. Following [1], given a scalar 0 < a < 1 and a non-empty
vertex subset A we define

pr, = M;'14/|A| M, = (Id—aWD™") /(1 -a) 3)

as its personalized page-rank vector. As 1 4 /| A| is the uniform distribution on the set A and W D1 is
the transition matrix of the random walk on the graph, pr 4 corresponds to the stationary distribution
of a random walker that, at each step, moves with probability « to a neighboring vertex by a usual
random walk, and has a probability (1 — «) to teleport to the set A. If A has a reasonable cluster
structure, then pr 4 will concentrate on A and assign low probabilities to its complement. Given a
high-quality partition P = (Ay,..., Ar) of V, we therefore expect that o; , := pr4 _(v;) should
achieve its maximal value over 1 < r < R when r = (1) is the class of the ith vertex.

Viewed from this perspective, we can formulate an R-way graph partitioning problem as the task of
selecting P = (A, ..., Ar) to maximize some combination of the collection {o; ;) : i € V'} of
page-rank probabilities generated by the partition. Two intuitive options immediately come to mind,
the arithmetic and geometric means of the collection:

Maximize =3 3 4 pra (vi) over all partitions (41, ..., Ar) of V into R sets. (4)
Maximize ([T, [T, ca. prAr(Ui))l/n over all partitions (Ay, ..., Ag) of V into R sets. (5)

The first option corresponds to a straightforward variant of the classical Normalized Cut. The second
option leads to a different type of cut-based objective that we term the Product Cut. The underlying
reason for considering (3) is quite natural. If we view each pr 4 as a probability distribution, then (5)
corresponds to a formal likelihood of the partition. This proves quite analogous to re-formulating the
classical k-means objective for partitioning n data points (X, ..., Xy) into R clusters (A41,..., Ar)
in terms of maximizing a likelihood

R i—m,|?
L5 I en, exp(— 55l

of Gaussian densities. While the Normalized Cut variant (@) is certainly popular, we show that it
suffers from several defects that the Product Cut resolves. As the Product Cut can be effectively
optimized and generally leads to higher quality partitions, it therefore provides a natural alternative.

To make these ideas precise, let us define the a-smoothed similarity matrix as €2, := M * and use
{wij}7j=1 to denote its entries. Thus w;; = (M '1,,); = pry,,;(vi), and so w;; gives a non-local
measure of similarity between the vertices v; and v; by means of the personalized page-rank diffusion
process. The matrix €2, is column stochastic, non-symmetric, non-sparse, and has diagonal entries

greater than (1 — «). Given a partition P = (A1, ..., Agr), we define

15, 2(4,, Ac)V/n 2 Cut(A,, A°)

Pcut(P) := JHP) and Ncut(P) := II%T_l TVol(4) (6)
as its Product Cut and Normalized Cut, respectively. The non-linear, non-local function
24,49 =] 14+ 2t)
V€A, ZJ eAWij

of a set measures its intra- and inter-connectivity with respect to the graph while H (P) denotes the
entropic balance (I). The definitions of

Cut(A7 Ac) = ZieAﬁ ZjGAT Wij and VO](A) = ZiEV ZjGAT Wij

are standard. A simple computation then shows that maximizing the geometric average () is
equivalent to minimizing the Product Cut, while maximizing the arithmetic average (4)) is equivalent
to minimizing the Normalized Cut. At a superficial level, both models wish to achieve the same
goal. The numerator of the Product Cut aims at a partition in which each vertex is weakly connected
to vertices from other clusters and strongly connected with vertices from its own cluster. The
denominator H(P) is maximal when |A4;| = |A3] = ... = , and so aims at a well-balanced
partition of the vertices. The objective (3) therefore promotes partitions with strongly intra-connected
clusters and weakly inter-connected clusters that have comparable size. The Normalized Cut, defined
here on €2, but usually posed over the original similarity matrix W, is exceedingly well-known
[LO, [15] and also aims at finding a good balance between low cut value and clusters of comparable
sizes.

Despite this apparent parallel between the Product and Normalized Cuts, the two objectives behave
quite differently both in theory and in practice. To illustrate this discrepancy at a high level, note first
that the following sharp bounds

0 < Ncut(P) <1 (3)

hold for the Normalized Cut. The lower bound is attained for partitions P in which the clusters are
mutually disconnected. For the Product Cut, we have

Theorem 1 The following inequality holds for any partition P:
e 1P < Peut(P) < 1.)

Moreover the lower bound is attained for partitions P in which the clusters are mutually disconnected.

The lower bound in (@) can be directly read from (6) and (7)), while the upper bound is non-trivial and
proved in the supplementary material. This theorem goes at the heart of the difference between the
Product and Normalized Cuts. To illustrate this, let P(*) denote a sequence of partitions. Then)
shows that
lim H(P®)=0= lim Pcut(P®)=1. (10)
k—o0 k—o0

In other words, an arbitrarily ill-balanced partition leads to arbitrarily poor values of its Product Cut.
The Normalized Cut does not possess this property. As an extreme but easy-to-analyze example,
consider the case where G = (V, W) is a collection of isolated vertices. All possible partitions P
consist of mutually disconnected clusters and the lower bound is reached for both (§)) and (9). Thus
Ncut(P) = 0 for all P and so all partitions are equivalent for the Normalized Cut. On the other
hand Pcut(P) = e~ H(P) which shows that, in the absence of “cut information,” the Product Cut
will choose the partition that maximizes the entropic balance. So in this case, any partition P for
which |A;| = ... = | Ag| will be a minimizer. In essence, this tighter lower bound for the Product
Cut reflects its stronger balancing effect vis-a-vis the Normalized Cut.

2.1 (In-)Stability Properies of the Product Cut and Normalized Cut

In practice, the stronger balancing effect of the Product Cut manifests as a stronger tolerance to
perturbations. We now delve deeper and contrast the two objectives by analyzing their stability
properties using experimental data as well as a simplified model problem that isolates the source of

(a) A, inblue, B, in green, C in red. (b) P2&d = (A, B, UC) (c) P22 = (A, UB,,C)

Figure 1: The graphs GO used for analyzing stability.

the inherent difficulties. Invoking ideas from dynamical systems theory, we say an objective is stable
if an infinitesimal perturbation of a graph G = (V, W) leads to an infinitesimal perturbation of the
optimal partition. If an infinitesimal perturbation leads to a dramatic change in the optimal partition,
then the objective is unstable.

We use a simplified model to study stability of the Product Cut and Normalized Cut objectives.
Consider a graph G,, = (V,,, W,,) made of two clusters A,, and B,, containing n vertices each. Each
vertex in G,, has degree k and is connected to pk vertices in the opposite cluster, where 0 < p < 1.
The graph G0 is a perturbation of G,, constructed by adding a small cluster C' of size ny < n to
the original graph. Each vertex of C' has degree k and is connected to pgkq vertices in B,, and
(1 — pg)ko vertices in C for some 0 < pp < 1. In the perturbed graph G, a total of ng vertices in
B,, are linked to C' and have degree k + poko. See figure 1(a). The main properties of G,,, GU are

e Unperturbed graph G,, : |A,| = |Bn| =n, Condg, (A,) =, Condg, (Bn)=p

e Perturbed graph G0: |An| = |Bp| =n, Condgo(Ayn) =p, Condgo(B,)~ pu
|IC] =no < m, Condgo (C') = po.

where Condg(A) = Cut(A4, A°)/ min(|A[, |A°|) denotes the conductance of a set. If we consider
the parameters y, (o, k, ko, no as fixed and look at the perturbed graph G in the limit n — oo of a
large number of vertices, then as n becomes larger the degree of the bulk vertices will remain constant
while the size |C| of the perturbation becomes infinitesimal.

To examine the influence of this infinitesimal perturbation for each model, let P,, = (A,, B,)

denote the desired partition of the unperturbed graph G,, and let peocd (A, B, UC) and
POt — (A, U B,,C) denote the partitions of the perturbed graph G° depicted in figure 1(b)
and 1(c), respectively. As P2 ~ P,, a stable objective will prefer Py to PO-bd while any
objective preferring the converse is unstable. A detailed study of stability proves possible for this
specific graph family. We summarize the conclusions of this analysis in the theorem below, which
shows that the Normalized Cut is unstable in certain parameter regimes while the Product Cut is
always stable. The supplementary material contains the proof.

Theorem 2 Suppose that i, o, k, ko, no are fixed. Then
po <2pu = Neutgo (PLrsoody > Ncutgo (PObady for n large enough. (11)
Pcutgo (PLrsoody < Pcutgo (PObady for n large enough. (12)

Statement (TI) simply says that the large cluster A,, must have a conductance y at least twice
better than the conductance o of the small perturbation cluster C' in order to prevent instability.
Thus adding an infinitesimally small cluster with mediocre conductance (up to two times worse
the conductance of the main structure) has the potential of radically changing the partition selected
by the Normalized Cut. Moreover, this result holds for the classical Normalized Cut, its smoothed
variant (@) as well as for similar objectives such as the Cheeger Cut and Ratio Cut. Conversely,
(T2) shows that adding an infinitesimally small cluster will not affect the partition selected by the

Partition P of Partition P of Partition P of Partition P of
WEBKB4 found by WEBKB4 found by || CITESEER found by CITESEER found by
the Pcut algo. the Ncut algo. the Pcut algo. the Ncut algo.
e 1P 2506 7946 1722 7494
Pcut(P) 5335 .8697 4312 .8309
Ncut(P) 5257 5004 .5972 5217
//f“”lr ™ /Y‘ i
/ N\ | BN
c"/ “ \\\ ‘/ “ \
\\\ //,' \\ //

Figure 2: The Product and Normalized Cuts on WEBKB4 (R = 4 clusters) and CITESEER (R = 6
clusters). The pie charts visually depict the sizes of the clusters in each partition. In both cases, NCut
returns a super-cluster while PCut returns a well-balanced partition. The NCut objective prefers the
ill-balanced partitions while the PCut objective dramatically prefers the balanced partitions.

Product Cut. The proof, while lengthy, is essentially just theorem [I]in disguise. To see this, note
that the sequence of partitions P2-*% becomes arbitrarily ill-balanced, which from (T0) implies
limy, -, Pcutgo (P)*) = 1. However, the unperturbed graph G,, grows in a self-similar fashion
as n — oo and so the Product Cut of P,, remains approximately a constant, say -y, for all n. Thus
Pcutg, (P,) ~ v < 1 for n large enough, and Pcutgo (PrE°Y) &~ Pcutg, (P,) since |C] is

infinitesimal. Therefore Pcutgo (0:800d) ~ ~ < 1. Comparing this upper-bound with the fact

limy, o Pcutgo (PY-Pad) = 1, we see that the Product Cut of 2% becomes eventually larger than

the Product Cut of P2, While we execute this program in full only for the example above, this
line of argument is fairly general and similar stability estimates are possible for more general families
of graphs.

This general contrast between the Product Cut and the Normalized Cut extends beyond the realm of
model problems, as the user familiar with off-the-shelf NCut codes likely knows. When provided
with “dirty” graphs, for example an e-mail network or a text data set, NCut has the aggravating
tendency to return a super-cluster. That is, NCut often returns a partition P = (Ay, ..., Ag) where
a single set | A,.| contains the vast majority of the vertices. Figure 2 illustrates this phenomenon. It
compares the partitions obtained for NCut (computed on €2, using a modification of the standard
spectral approximation from [[15]) and for PCut (computed using the algorithm presented in the
next section) on two graphs constructed from text data sets. The NCut algorithm returns highly
ill-balanced partitions containing a super-cluser, while PCut returns an accurate and well-balanced
partition. Other strategies for optimizing NCut obtain similarly unbalanced partitions. As an example,
using the algorithm from [9] with the original sparse weight matrix W leads to relative cluster sizes
of 99.2%, 0.5%, 0.2% and 0.1% for WEBKB4 and 98.5%, 0.4%, 0.3%, 0.3%, 0.3% and 0.2% for
CITESEER. As our theoretical results indicate, these unbalanced partitions result from the normalized
cut criterion itself and not the algorithm used to minimize it.

3 The Algorithm

Our strategy for optimizing the Product Cut relies on a popular paradigm for discrete optimization,
i.e. exact relaxation. We begin by showing that the discrete, graph-based formulation (3) can be
relaxed to a continuous optimization problem, specifically a convex maximization program. We then
prove that this relaxation is exact, in the sense that optimal solutions of the discrete and continuous
problems coincide. With an exact relaxation in hand, we may then appeal to continuous optimization
strategies (rather than discrete or greedy ones) for optimizing the Product Cut. This general idea of
exact relaxation is intimately coupled with convex maximization.

Assume that the graph G = (V, W) is connected. Then by taking the logarithm of (5)) we see that ()
is equivalent to the problem

Maximize Zf’:l > ica, log 7(9“‘1&1‘?{)" ®)
over all partitions P = (Ay,..., Ag) of V into R non-empty subsets.

The relaxation of (P) then follows from the usual approach. We first encode sets A,. C V' as binary
vertex functions 14, then relax the binary constraint to arrive at a continuous program. Given a
vertex function f € R’ with non-negative entries, we define the continuous energy e(f) as

e(f) = (f.log (f/ (f,1v))) iff#0, and e(0) =0,

where (-, -) denotes the usual dot product in R™ and the logarithm applies entriwise. As (4 f); > 0
whenever f # 0, the continuous energy is well-defined. After noting that)~ _e(14,) is simply the
objective value in problem (P), we arrive to the following continuous relaxation

Maximize Zle e(fr) (P11x)
-rlx
P R)
overall (fi,...,fr) € R} x ... x RY satisfying " ", f,. = 1y
where the non-negative cone R’} consists of all vectors in R™ with non-negative entries.

The following theorem provides the theoretical underpinning for our algorithmic approach. It
establishes convexity of the relaxed objective for connected graphs.

Theorem 3 Assume that G = (V, W) is connected. Then the energy e(f) is continuous, positive
1-homogeneous and convex on R'y. Moreover, the strict convexity property

e(0f + (1 —0)g) < be(f)+ (1 —0)e(g) forall 6€(0,1)

holds whenever f, g € R} are linearly independent.

The continuity of e(f) away from the origin as well as the positive one-homogeneity are obvious,
while the continuity of e(f) at the origin is easy to prove. The proof of convexity of e(f), provided
in the supplementary material, is non-trivial and heavily relies on the particular structure of €2, itself.
With convexity of e(f) in hand, we may prove the main theorem of this section.

Theorem 4 (Equivalence of (P) and (P-rlx)) Assume that G = (V,W) is connected and that V
contains at least R vertices. If P = (Ax, ..., AR) is a global optimum of (P) then (14,,...,14,)
is a global optimum of (P-rlx) . Conversely, if (f1,..., fr) is a global optimum of (P-rlx) then
(fi,--- fr)=Qa4,,...,1a,) where (A1, ..., AR) is a global optimum of (P).

Proof. By strict convexity, the solution of the maximization (P-rlx) occurs at the extreme points of
the constraint set ¥ = {(f1,..., fr) : fr € RY and Zle fr = 1}. Any such extreme point takes
the form (14,,...,14,,), where necessarily A1 U...UAr =V and A, N A; =0 (r # s) hold. It
therefore suffices to rule out extreme points that have an empty set of vertices. But if A # B are
non-empty then 1 4, 1 are linearly independent, and so the inequality e(14 +15) < e(14)+e(1lp)
holds by strict convexity and one-homogeneity. Thus given a partition of the vertices into R — 1
non-empty subsets and one empty subset, we can obtain a better energy by splitting one of the
non-empty vertex subsets into two non-empty subsets. Thus any globally maximal partition cannot
contain empty subsets. [

With theorems (3| and [4]in hand, we may now proceed to optimize (P) by searching for optima of
its exact relaxation. We tackle the latter problem by leveraging sequential linear programming or
gradient thresholding strategies for convex maximization. We may write (P-rlx) as

Maximize £(F) subjectto F € C and ¢;(F)=0fori=1,...,n (13)
where F' = (f1, ..., fr) is the optimization variable, £(F’) is the convex energy to be maximized, C'
is the bounded convex set [0, 1]™ x ... x [0, 1]™ and the n affine constraints 1;(F') = 0 correspond

to the row-stochastic constraints Zle fi.r = 1. Given a current feasible estimate F'* of the solution,
we obtain the next estimate F**1 by solving the linear program

Maximize Ly (F) subjectto F'€ C' and ¢;(F)=0fori=1,...,n (14)

where Ly, (F) = E(FF) + (VE(F®), F — FF) is the linearization of the energy £(F') around the
current iterate. By convexity of £(F), this strategy monotonically increases £ (F*) since £(F*+1) >
Ly (F*1) > L. (F*) = E(F*). The iterates F'* therefore encode a sequence of partitions of V' that
monotonically increase the energy at each step. Either the current iterate maximizes the linear form,
in which case first-order optimality holds, or else the subsequent iterate produces a partition with a

Algorithm 1 Randomized SLP for PCut

Initialization: (f?,...,f%) = (14,,...,14,) for (Ai,..., Ag) a random partition of V'
for k£ = 0 to maxiter do
forr=1to Rdo A
Set f = fﬁ/(z:;l z’lfr) then solve Myu, = f
Set gi» = fir/uirfori=1,...n thensolve M v, = g,
Set h, = logu, +v, — 1
end for
Choose at random s, vertices and let Z C V be these vertices.
for alli € V do
Ifi € Zthen fFH =

i,r

1 ifhi’r >0

1 if r = argmax; h;s
0 otherwise.

if i ¢ 7 then fFI! =
0 otherwise, if i ¢ 7 then

,T

end for
end for

strictly larger objective value. The latter case can occur only a finite number of times, as only a finite
number of partitions exist. Thus the sequence F'¥ converges after a finite number of iterations.

While simple and easy to implement, this algorithm suffers from a severe case of early termination.
When initialized from a random partition, the iterates F'* almost immediately converge to a poor-
quality solution. We may rescue this poor quality algorithm and convert it to a highly effective one,
while maintaining its simplicity, by randomizing the LP at each step in the following way. At
step k we solve the LP

maximize Ly (F) subjectto F € C and ;(F)=0fori € I, (15)

where the set Zj, is a random subset of {1, 2, ..., n} obtained by drawing s, constraints uniformly at
random without replacement. The LP (T3) is therefore version of LP (I4) in which we have dropped
a random set of constraints. If we start by enforcing a small number s; of constraints and slowly
increment this number si11 = s + Asy, as the algorithm progresses, we allow the algorithm time
to explore the energy landscape. Enforcing more constraints as the iterates progress ensures that
(T5) eventually coincides with (T4)), so convergence of the iterates F'* of the randomized algorithm
is still guaranteed. The attraction is that LP (I3)) has a simple, closed-form solution given by a
variant of gradient thresholding. We derive the closed form solution of LP in section 1 of the
supplementary material, and this leads to Algorithm 1 above.

The overall effectiveness of this strategy relies on two key ingredients. The first is a proper choice
of the number of constraints s to enforce at each step. Selecting the rate at which s, increases is
similar, in principle, to selecting a learning rate schedule for a stochastic gradient descent algorithm.
If si; increases too quickly then the algorithm will converge to poor-quality partitions. If s; increases
too slowly, the algorithm will find a quality solution but waste computational effort. A good rule of
thumb is to linearly increase sj at some constant rate As; = A until all constraints are enforced, at
which point we switch to the deterministic algorithm and terminate the process at convergence. The
second key ingredient involves approximating solutions to the linear system M,x = b quickly. We
use a simple Algebraic Multigrid (AMG) technique, i.e. a stripped-down version of [7]] or [6]], to
accomplish this. The main insight here is that exact solutions of M,x = b are not needed, but not all
approximate solutions are effective. We need an approximate solution x that has non-zero entries on
all of |V| for thresholding to succeed, and this can be accomplished by AMG at very little cost.

4 Experiments

We conclude our study of the Product Cut model by presenting extensive experimental evaluation
of the algorithnﬂ We intend these experiments to highlight the fact that, in addition to a strong
theoretical model, the algorithm itself leads to state-of-the-art performance in terms of cluster purity
on a variety of real world data sets. We provide experimental results on four text data sets (20NEWS,
RCV1, WEBKB4, CITESEER) and four data sets containing images of handwritten digits (MNIST,
PENDIGITS, USPS, OPTDIGITS). We provide the source for these data sets and details on their

'The code is available at lttps://github.com/xbresson/pcut

https://github.com/xbresson/pcut

Table 1: Algorithmic Comparison via Cluster Purity.

20NE | RCV1 | WEBK | CITE | MNIS | PEND | USPS | OPTI

size 20K 9.6K 4.2K 33K 70K 11K 93K | 5.6K
R 20 4 4 6 10 10 10 10
RND 6 30 39 22 11 12 17 12
NCUT 27 38 40 23 71 80 72 91
LSD 34 38 46 53 76 86 70 91
MTV 36 43 45 43 96 87 85 95
GRACLUS 42 42 49 54 97 85 87 94
NMFR 61 43 58 63 97 87 86 98
PCut (.9,A1) 61 53 58 63 97 87 89 98
PCut (.9,)\2) 60 50 57 64 96 84 89 95

construction in the supplementary material. We compare our method against partitioning algorithms
that, like the Product Cut, rely on graph-cut objective principles and that partition the graph in a direct,
non-recursive manner. The NCut algorithm [15] is a widely used spectral algorithm that relies on a
post-processing of the eigenvectors of the graph Laplacian to optimize the Normalized Cut energy.
The NMEFR algorithm [14] uses a graph-based random walk variant of the Normalized Cut. The LSD
algorithm [2]] provides a non-negative matrix factorization algorithm that relies upon a trace-based
relaxation of the Normalized Cut objective. The MTV algorithm from [3]] and the balanced k-cut
algorithm from [9] provide total-variation based algorithms that attempt to find an optimal multi-way
Cheeger cut of the graph by using ¢! optimization techniques. Both algorithms optimize the same
objective and achieve similar purity values. We report results for [3] only. The GRACLUS algorithm
[4} 5] uses a multi-level coarsening approach to optimize the NCut objective as formulated in terms
of kernel k-means. Table [I]reports the accuracy obtained by these algorithms for each data set. We
use cluster purity to quantify the quality of the calculated partition, defined according to the relation:
Purity = % Zfil maxi«;<g My ;. Here m, ; denotes the number of data points in the rth cluster
that belong to the i*" ground-truth class. The third row of the table (RND) provides a base-line purity
for reference, i.e. the purity obtained by assigning each data point to a class from 1 to R uniformly at
random. The PCut, MTV and GRACLUS algorithms rely on randomization, so for these algorithms
we report the average purity achieved over 500 different runs. For the PCut algorithm, we use oo = .9
when defining €2, . Also, in order to illustrate the tradeoff when selecting the rate at which the number
of enforced constraints sy increases, we report accuracy results for the linear rates

Asy =10"* xn:=\ Asp =5x107% x n:= Ay

where n denotes the total number of vertices in the data set. By and large both PCut and NMFR
consistently outperform the other algorithms in terms of accuracy.

and

Table 2: Computational Time

MNIST 20NEWS
NMEFR | PCut (9,\1) | PCut (9,)\2) || NMFR | PCut (.9,\1) | PCut (.9,)\2)
4.6mn 11s 10s 3.7mn 1.3mn 16s
(92%) (92%) (91%) (58%) (58%) (57%)

In addition to the accuracy comparisons, table [2records the time required for PCut and NMFR to
reach 95% of their limiting purity value on the two largest data sets, 20NEWS and MNIST. Each
algorithm is implemented in a fair and consistent way, and the experiments were all performed
on the same architecture. Timing results on the smaller data sets from table [T]are consistent with
those obtained for 20NEWS and MNIST. In general we observe that PCut runs significantly faster.
Additionally, as we expect for PCut, the slower rate A generally leads to more accurate results while
the larger rate A, typically converges more quickly.

When taken together, our theoretical and experimental results clearly reveal that the model provides
a promising method for graph partitioning. The algorithm consistently achieves state-of-the-art
results, and typically runs significantly faster than other algorithms that achieve a comparable level
of accuracy. Additionally, both the model and algorithmic approach rely upon solid mathematical
foundations that are frequently missing in the multi-way clustering literature.

Acknowledgements: TL was supported by NSF DMS-1414396.

References

[1] Reid Andersen, Fan Chung, and Kevin Lang. Local graph partitioning using pagerank vectors.
In Proceedings of the 47th Annual Symposium on Foundations of Computer Science (FOCS
"06), pages 475-486, 2006.

[2] Raman Arora, M Gupta, Amol Kapila, and Maryam Fazel. Clustering by left-stochastic matrix
factorization. In International Conference on Machine Learning (ICML), pages 761-768, 2011.

[3] Xavier Bresson, Thomas Laurent, David Uminsky, and James von Brecht. Multiclass total
variation clustering. In Advances in Neural Information Processing Systems (NIPS), 2013.

[4] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Weighted graph cuts without eigenvectors:
A multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence,
29(11):1944-1957, 2007.

[5] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM J. Sci. Comput., 20(1):359-392, 1998.

[6] Dilip Krishnan, Raanan Fattal, and Richard Szeliski. Efficient preconditioning of laplacian
matrices for computer graphics. ACM Transactions on Graphics (TOG), 32(4):142, 2013.

[7] Oren E Livne and Achi Brandt. Lean algebraic multigrid (lamg): Fast graph laplacian linear
solver. SIAM Journal on Scientific Computing, 34(4):B499-B522, 2012.

[8] Laszlé Lovasz and Miklés Simonovits. Random walks in a convex body and an improved
volume algorithm. Random structures & algorithms, 4(4):359-412, 1993.

[9] Syama Sundar Rangapuram, Pramod Kaushik Mudrakarta, and Matthias Hein. Tight continuous
relaxation of the balanced k-cut problem. In Advances in Neural Information Processing
Systems, pages 3131-3139, 2014.

[10] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 22(8):888-905, 2000.

[11] Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the thirty-sixth annual ACM
symposium on Theory of computing, pages 81-90, 2004.

[12] Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs and
its application to nearly linear time graph partitioning. SIAM Journal on Computing, 42(1):1-26,
2013.

[13] U. von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395-416,
2007.

[14] Zhirong Yang, Tele Hao, Onur Dikmen, Xi Chen, and Erkki Oja. Clustering by nonnegative
matrix factorization using graph random walk. In Advances in Neural Information Processing
Systems (NIPS), pages 1088-1096, 2012.

[15] Stella X. Yu and Jianbo Shi. Multiclass spectral clustering. in international conference on
computer vision. In International Conference on Computer Vision, 2003.

