
Stochastic Online AUC Maximization

Yiming Ying†, Longyin Wen‡, Siwei Lyu‡
†Department of Mathematics and Statistics
SUNY at Albany, Albany, NY, 12222, USA

‡Department of Computer Science
SUNY at Albany, Albany, NY, 12222, USA

Abstract

Area under ROC (AUC) is a metric which is widely used for measuring the
classification performance for imbalanced data. It is of theoretical and practical
interest to develop online learning algorithms that maximizes AUC for large-scale
data. A specific challenge in developing online AUC maximization algorithm is that
the learning objective function is usually defined over a pair of training examples
of opposite classes, and existing methods achieves on-line processing with higher
space and time complexity. In this work, we propose a new stochastic online
algorithm for AUC maximization. In particular, we show that AUC optimization
can be equivalently formulated as a convex-concave saddle point problem. From
this saddle representation, a stochastic online algorithm (SOLAM) is proposed
which has time and space complexity of one datum. We establish theoretical
convergence of SOLAM with high probability and demonstrate its effectiveness
on standard benchmark datasets.

1 Introduction

Area Under the ROC Curve (AUC) [8] is a widely used metric for measuring classification perfor-
mance. Unlike misclassification error that reflects a classifier’s ability to classify a single randomly
chosen example, AUC concerns the overall performance of a functional family of classifiers and
quantifies their ability of correctly ranking any positive instance with regards to a randomly chosen
negative instance. Most algorithms optimizing AUC for classification [5, 9, 12, 17] are for batch
learning, where we assume all training data are available.

On the other hand, online learning algorithms [1, 2, 3, 16, 19, 22], have been proven to be very
efficient to deal with large-scale datasets. However, most studies of online learning focus on the
misclassification error or its surrogate loss, in which the objective function depends on a sum of
losses over individual examples. It is thus desirable to develop online learning algorithms to optimize
the AUC metric. The main challenge for an online AUC algorithm is that the objective function of
AUC maximization depends on a sum of pairwise losses between instances from different classes
which is quadratic in the number of training examples. As such, directly deploying the existing online
algorithms will require to store all training data received, making it not feasible for large-scale data
analysis.

Several recent works [6, 11, 18, 20, 21] have studied a type of online AUC maximization method that
updates the classifier upon the arrival of each new training example. However, this type of algorithms
need to access all previous examples at iteration t, and has O(td) space and per-iteration complexity
where d is the dimension of the data. The scaling of per-iteration space and time complexity is an
undesirable property for online applications that have to use fixed resources. This problem is partially
alleviated by the use of buffers of a fixed size s in [11, 21], which reduces the per-iteration space and
time complexity to O(sd). Although this change makes the per-iteration space and time complexity
independent of the number of iterations, in practice, to reduce variance in learning performance, the

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

size of the buffer needs to be set sufficiently large. The work of [6] proposes an alternative method
that requires to update and store the first-order (mean) and second-order (covariance) statistics of the
training data, and the space and per-iteration complexity becomes O(d2). Although this eliminates
the needs to access all previous training examples, the per-iteration is now quadratic in data dimension,
which makes this method inefficient for high-dimensional data. To this end, the authors of [6] further
proposed to approximate the covariance matrices with low-rank random Gaussian matrices. However,
the approximation method is not a general solution to the original problem and its convergence was
only established under the assumption that the effective numerical rank for the set of covariance
matrices is small (i.e., they can be well approximated by low-rank matrices).

In this work, we present a new stochastic online AUC maximization (SOLAM) method associated
for the `2 loss function. In contrast to existing online AUC maximization methods, e.g. [6, 21],
SOLAM does not need to store previously received training examples or the covariance matrices,
while, at the same time, enjoys a comparable convergence rate, up to a logarithmic term, as in
[6, 21]. To our best knowledge, this is the first online learning algorithm for AUC optimization with
linear space and per-iteration time complexities of O(d), which are the same as the online gradient
descent algorithm [1, 2, 16, 22] for classification. The key step of SOLAM is to reformulate the
original problem as a stochastic saddle point problem [14]. This connection is the foundation of the
SOLAM algorithm and its convergence analysis. When evaluating on several standard benchmark
datasets, SOLAM achieves performances that are on par with state-of-the-art online AUC optimization
methods with significant improvement in running time.

The main contribution of our work can be summarized as follows:

•We provide a new formulation of the AUC optimization problem as stochastic Saddle Point Prob-
lem (SPP). This formulation facilitates the development of online algorithms for AUC optimization.

• Our algorithm SOLAM achieves a per-iteration space and time complexity that is linear in data
dimensionality.

•Our theoretical analysis provides guarantee of convergence, with high probability, of the proposed
algorithm.

2 Method

Let the input space X ⊆ Rd and the output space Y = {−1,+1}. We assume the training data,
z = {(xi, yi), i = 1, . . . , n} as i.i.d. sample drawn from an unknown distribution ρ on Z = X × Y .
The ROC curve is the plot of the true positive rate versus the false positive rate. The area under the
ROC curve (AUC) for any scoring function f : X → R is equivalent to the probability of a positive
sample ranks higher than a negative sample (e.g. [4, 8]). It is defined as

AUC(f) = Pr(f(x) ≥ f(x′)|y = +1, y′ = −1), (1)

where (x, y) and (x′, y′) are independent drawn from ρ. The target of AUC maximization is to find
the optimal decision function f :

arg max
f

AUC(f) = arg min
f

Pr(f(x) < f(x′)|y = 1, y′ = −1)

= arg min
f

E
[
I[f(x′)−f(x)>0]

∣∣y = 1, y′ = −1
]
, (2)

where I(·) is the indicator function that takes value 1 if the argument is true and 0 otherwise. Let
p = Pr(y = 1). For any random variable ξ(z), recall that its conditional expectation is defined
by E[ξ(z)|y = 1] = 1

p

∫∫
ξ(z)Iy=1dρ(z). Since I(·) is not continuous, it is often replaced by its

convex surrogates. Two common choices are the `2 loss (1 − (f(x) − f(x′)))2 or the hinge loss(
1− (f(x)− f(x′))

)
+

. In this work, we use the `2, as it has been shown to be statistically consistent
with AUC while the hinge loss is not [6, 7]. We also restrict our interests to the family of linear
functions, i.e., f(x) = w>x. In summary, the AUC maximization can be formulated by

argmin‖w‖≤R E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
= argmin‖w‖≤R

1
p(1−p)

∫∫
Z×Z(1−w>(x− x′))2I[y=1]I[y′=−1]dρ(z)dρ(z′).

(3)

2

When ρ is a uniform distribution over training data z, we obtain the empirical minimization (ERM)
problem for AUC optimization studied in [6, 21]1

argmin
‖w‖≤R

1

n+n−

n∑
i=1

n∑
j=1

(1−w>(xi − xj))2I[yi=1∧yj=−1], (4)

where n+ and n− denote the numbers of instances in the positive and negative classes, respectively.

2.1 Equivalent Representation as a (Stochastic) Saddle Point Problem (SPP)

The main result of this work is the equivalence of problem (3) to a stochastic Saddle Point Problem
(SPP) (e.g., [14]). A stochastic SPP is generally in the form of

min
u∈Ω1

max
α∈Ω2

{
f(u, α) := E[F (u, α, ξ)]

}
, (5)

where Ω1 ⊆ Rd and Ω2 ⊆ Rm are nonempty closed convex sets, ξ is a random vector with non-empty
measurable set Ξ ⊆ Rp, and F : Ω1 × Ω2 × Ξ → R. Here E[F (u, α, ξ)] =

∫
Ξ
F (u, α, ξ)dPr(ξ),

and function f(u, α) is convex in u ∈ Ω1 and concave in α ∈ Ω2. In general, u and α are referred to
as the primal variable and the dual variable, respectively.

The following theorem shows that (3) is equivalent to a stochastic SPP (5). First, define F :
Rd × R3 ×Z → R, for any w ∈ Rd, a, b, α ∈ R and z = (x, y) ∈ Z , by

F (w, a, b, α; z) = (1− p)(w>x− a)2I[y=1] + p(w>x− b)2I[y=−1]

+ 2(1 + α)(pw>xI[y=−1] − (1− p)w>xI[y=1])− p(1− p)α2. (6)

Theorem 1. The AUC optimization (3) is equivalent to

min
‖w‖≤R
(a,b)∈R2

max
α∈R

{
f(w, a, b, α) :=

∫
Z
F (w, a, b, α; z)dρ(z)

}
. (7)

Proof. It suffices to prove the claim that the objective function of (3) equals to 1 +
min(a,b)∈R2 maxα∈R

∫
Z F (w, a, b, α; z)dρ(z).

To this end, note that z = (x, y) and z = (x′, y′) are samples independently drawn from ρ. Therefore,
the objective function of (3) can be rewritten as

E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
= 1 + E[(w>x)2|y = 1] + E[(w>x′)2|y′ = −1]

− 2E[w>x|y = 1] + 2E[w>x′|y′ = −1]− 2
(
E[w>x|y = 1]

)(
E[w>x′|y′ = −1]

)
= 1 +

{
E[(w>x)2|y = 1]−

(
E[w>x|y = 1]

)2}
+
{
E[(w>x′)2|y′ = −1]−

(
E[w>x′|y′ = −1]

)2}
− 2E[w>x|y = 1] + 2E[w>x′|y′ = −1] +

(
E[w>x|y = 1]− E[w>x′|y′ = −1]

)2
. (8)

Note that E[(w>x)2|y = 1] −
(
E[w>x|y = 1]

)2
= 1

p

∫
Z(w>x)2I[y=1]dρ(z) −(

1
p

∫
Z w>xI[y=1]dρ(z)

)2
= mina∈R

1
p

∫
Z(w>x−a)2I[y=1]dρ(z) = mina∈R E[(w>x−a)2|y = 1],

where the minimization is achieved by

a = E[w>x|y = 1]. (9)

Likewise, min
b

E[(w>x′ − b)2|y′ = −1] = E[(w>x′)2|y′ = −1]−
(
E[w>x′|y′ = −1]

)2
where the

minimization is obtained by letting

b = E[w>x′|y′ = −1]. (10)

Moreover, observe that
(
E[w>x|y = 1]− E[w>x′|y′ = −1]

)2
= maxα

{
2α(E[w>x′|y′ = −1]−

E[w>x|y = 1])− α2
}
, where the maximization is achieved with

α = E[w>x′|y′ = −1]− E[w>x|y = 1]. (11)
1The work [6, 21] studied the regularized ERM problem, i.e. minw∈Rd

1
n+n−

∑n
i=1

∑n
j=1(1−w>(xi −

xj))
2I[yi=1]I[yj=−1] + λ

2
‖w‖2, which is equivalent to (3) with Ω being a bounded ball in Rd.

3

Putting all these equalities into (8) implies that

E
[
(1−w>(x− x′))2|y = 1, y′ = −1

]
= 1 + min

(a,b)∈R2
max
α∈R

∫
Z F (w, a, b; z)dρ(z)

p(1− p)
.

This proves the claim and hence the theorem.

In addition, we can prove the following result.

Proposition 1. Function f(w, a, b, α) is convex in (w, a, b) ∈ Rd+2 and concave in α ∈ R.

The proof of this proposition can be found in the Supplementary Materials.

2.2 Stochastic Online Algorithm for AUC Maximization

The optimal solution to an SPP problem is called a saddle point. Stochastic first-order methods are
widely used to get such an optimal saddle point. The main idea of such algorithms (e.g. [13, 14] is
to use an unbiased stochastic estimator of the true gradient to perform, at each iteration, gradient
descent in the primal variable and gradient ascent in the dual variable.

Using the stochastic SPP formulation (7) for AUC optimization, we can develop stochastic on-
line learning algorithms which only need to pass the data once. For notational simplicity, let
vector v = (w>, a, b)> ∈ Rd+2, and for any w ∈ Rd, a, b, α ∈ R and z = (x, y) ∈ Z ,
we denote f(w, a, b, α) as f(v, α), and F (w, a, b, α, z) as F (v, α, z). The gradient of the ob-
jective function in the stochastic SPP problem (7) is given by a (d+ 3)-dimensional column vector
g(v, α) = (∂vf(v, α),−∂αf(v, α)) and its unbiased stochastic estimator is given, for any z ∈ Z ,
by G(v, α, z) = (∂uF (v, α, z),−∂αF (v, α, z)). One could directly deploy the stochastic first-order
method in [14] to the stochastic SPP formulation (7) for AUC optimization. However, from the
definition of F in (6), this would require the knowledge of the unknown probability p = Pr(y = 1) a
priori. To overcome this problem, for any v> = (w>, a, b) ∈ Rd+2, α ∈ R and z ∈ Z , let

F̂t(v, α, z) = (1− p̂t)(w>x− a)2I[y=1] + p̂t(w
>x− b)2I[y=−1]

+ 2(1 + α)(p̂tw
>xI[y=−1] − (1− p̂t)w>xI[y=1])− p̂t(1− p̂t)α2. (12)

where p̂t =
∑t
i=1 I[yi=1]

t at iteration t. We propose, at iteration t, to use the stochastic estimator

Ĝt(v, α, z) = (∂vF̂t(v, α, z),−∂αF̂t(v, α, z)) (13)

to replace the unbiased, but practically inaccessible, stochastic estimator G(v, α, z). Assume κ =
supx∈X ‖x‖ <∞, and recall that ‖w‖ ≤ R. For any optimal solution (w∗, a∗, b∗) of the stochastic
SPP (7) for AUC optimization, by (9), (10) and (11) we know that |a∗| = 1

p |
∫
Z〈w

∗, x〉I[y=1]dρ(z)| ≤
Rκ, |b∗| = 1

1−p |
∫
Z〈w

∗, x′〉I[y′=−1]dρ(z′)| ≤ Rκ, and |α∗| =
∣∣ 1

1−p
∫
Z〈w

∗, x′〉I[y′=−1]dρ(z′) −
1
p

∫
Z〈w

∗, x〉I[y=1]dρ(z)
∣∣ ≤ 2Rκ. Therefore, we can restrict (w, a, b) and α to the following bounded

domains:

Ω1 =
{

(w, a, b) ∈ Rd+2 : ‖w‖ ≤ R, |a| ≤ Rκ, |b| ≤ Rκ
}
, Ω2 =

{
α ∈ R : |α| ≤ 2Rκ

}
. (14)

In this case, the projection steps (e.g. steps 4 and 5) in Table 1 can be easily computed. The pseudo-
code of the online AUC optimization algorithm is described in Table 1, to which we refer as SOLAM.

3 Analysis

We now present the convergence results of the proposed algorithm for AUC optimization. Let
u = (v, α) = (w, a, b, α). The quality of an approximation solution (v̄t, ᾱt) to the SPP problem (5)
at iteration t is measured by the duality gap:

εf (v̄t, ᾱt) = max
α∈Ω2

f(v̄t, α)− min
v∈Ω1

f(v, ᾱt). (15)

4

Stochastic Online AUC Maximization (SOLAM)
1. Choose step sizes {γt > 0 : t ∈ N}
2. Initialize t = 1, v1 ∈ Ω1, α1 ∈ Ω2 and let p̂0 = 0, v̄0 = 0, ᾱ0 = 0 and γ̄0 = 0.
3. Receive a sample zt = (xt, yt) and compute p̂t =

(t−1)p̂t−1+I[yt=1]

t

4. Update vt+1 = PΩ1
(vt − γt∂vF̂t(vt, αt, zt))

5. Update αt+1 = PΩ2
(αt + γt∂αF̂t(vt, αt, zt))

6. Update γ̄t = γ̄t−1 + γt
7. Update v̄t = 1

γ̄t
(γ̄t−1v̄t−1 + γtvt), and ᾱt = 1

γ̄t
(γ̄t−1ᾱt−1 + γtαt)

8. Set t← t+ 1
Table 1: Pseudo code of the proposed algorithm. In steps 4 and 5, PΩ1

(·) and PΩ2
(·) denote the

projection to the convex sets Ω1 and Ω2, respectively.

Theorem 2. Assume that samples {(x1, y1), (x2, y2), . . . , (xT , yT)} are i.i.d. drawn from a distri-
bution ρ over X × Y , let Ω1 and Ω2 be given by (14) and the step sizes given by {γt > 0 : t ∈ N}.
For sequence {(v̄t, ᾱt) : t ∈ [1, T]} generated by SOLAM (Table (1)), and any 0 < δ < 1, with
probability 1− δ, the following holds

εf (v̄T , ᾱT) ≤ Cκ max(R2, 1)

√
ln

4T

δ

(T∑
j=1

γj
)−1
[
1 +

T∑
j=1

γ2
j +

(T∑
j=1

γ2
j

) 1
2 +

T∑
j=1

γj√
j

]
,

where Cκ is an absolute constant independent of R and T (see its explicit expression in the proof).

Denote f∗ as the optimum of (7) which, by Theorem 1, is identical to the optimal value of AUC
optimization (3). From Theorem 2, the following convergence rate is straightforward.

Corollary 1. Under the same assumptions as in Theorem 2, and
{
γj = ζj−

1
2 : j ∈ N

}
with constant

ζ > 0, with probability 1− δ, it holds |f(v̄T , ᾱT)− f∗| ≤ εf (ūT) = O
(lnT

√
ln
(

4T
δ

)
√
T

)
.

While the above convergence rate is obtained by choosing decaying step sizes, one can establish a
similar result when a constant step size is appropriately chosen.

The proof of Theorem 2 requires several lemmas. The first is a standard result from convex online
learning [16, 22]. We include its proof in the Supplementary Materials for completeness.

Lemma 1. For any T ∈ N, let {ξj : j ∈ [1, T]} be a sequence of vectors in Rm, and ũ1 ∈ Ω where
Ω is a convex set. For any t ∈ [1, T] define ũt+1 = PΩ(ũt − ξt). Then, for any u ∈ Ω, there holds∑T
t=1(ũt − u)>ξt ≤ ‖ũ1−u‖2

2 + 1
2

∑T
t=1 ‖ξt‖2.

The second lemma is the Pinelis-Bernstein inequality for martingale difference sequence in a Hilbert
space, which is from [15, Theorem 3.4]

Lemma 2. Let {Sk : k ∈ N} be a martingale difference sequence in a Hilbert space. Suppose that
almost surely ‖Sk‖ ≤ B and

∑T
k=1 E[‖Sk‖2|S1, . . . , Sk−1] ≤ σ2

T . Then, for any 0 < δ < 1, there

holds, with probability at least 1− δ, sup1≤j≤T

∥∥∥∑j
k=1 Sk

∥∥∥ ≤ 2
(
B
3 + σT

)
log 2

δ .

The third lemma indicates that the approximate stochastic estimator Ĝj(u, z) defined by (13), is not
far away from the unbiased one G(u, z). Its proof is given in the Supplementary materials.

Lemma 3. Let Ω1 and Ω2 be given by (14) and denote by Ω = Ω1 × Ω2. For any t ∈ N, with

probability 1− δ, there holds sup
u∈Ω,z∈Z

‖Ĝt(u, z)−G(u, z)‖ ≤ 2κ(4κR+ 11R+ 1)
(
ln (

2

δ
)/t
) 1

2 .

Proof of Theorem 2. By the convexity of f(·, α) and concavity of of f(v, ·), for any u = (v, α) ∈
Ω1 × Ω2, we get f(vt, α) − f(v, αt) = (f(vt, αt) − f(v, αt)) + (f(vt, α) − f(vt, αt)) ≤ (vt −
v)>∂vf(vt, αt)− (αt − α)∂αf(vt, αt) = (ut − u)>g(ut). Hence, there holds

max
α∈Ω2

f(v̄T , α)− min
v∈Ω1

f(v, ᾱT) ≤ (

T∑
t=1

γt)
−1

(
max
α∈Ω2

T∑
t=1

γtf(vt, α)− min
v∈Ω1

T∑
t=1

γtf(v, αt)

)

5

≤ (

T∑
t=1

γt)
−1 max

u∈Ω1×Ω2

T∑
t=1

γt(ut − u)>g(ut) (16)

Recall that Ω = Ω1 × Ω2. The steps 4 and 5 in Algorithm SOLAM can be rewritten as ut+1 =

(vt+1, αt+1) = PΩ(ut − γtĜt(ut, zt)). By applying Lemma 1 with ξt = γtĜt(ut, zt), we have, for
any u ∈ Ω, that

∑T
t=1 γt(ut − u)>Ĝt(ut, zt) ≤ ‖u1−u‖2

2 + 1
2

∑T
t=1 γ

2
t ‖Ĝt(ut, zt)‖2, which yields

that

sup
u∈Ω

T∑
t=1

γt(ut − u)>g(ut) ≤ sup
u∈Ω

‖u1 − u‖2

2
+

1

2

T∑
t=1

γ2
t ‖Ĝt(ut, zt)‖2

+ sup
u∈Ω

T∑
t=1

γt(ut − u)>(g(ut)− Ĝt(ut, zt)) ≤ sup
u∈Ω

‖u1 − u‖2

2
+

1

2

T∑
t=1

γ2
t ‖Ĝt(ut, zt)‖2

+ sup
u∈Ω

T∑
t=1

γt(ut − u)>(g(ut)−G(ut, zt)) + sup
u∈Ω

T∑
t=1

γt(ut − u)>(G(ut, zt)− Ĝt(ut, zt)) (17)

Now we estimate the terms on the right hand side of (17) as follows.

For the first term, we have
1

2
sup
u∈Ω
‖u1 − u‖2 ≤ 2 sup

v∈Ω1,α∈Ω2

(‖v‖2 + |α|2) ≤ 2 sup
u∈Ω
‖u‖2 ≤ 2R2(1 + 6κ2). (18)

For the second term on the right hand side of (17), observe that supx∈X ‖x‖ ≤ κ and ut =
(wt, at, bt, αt) ∈ Ω =

{
(w, a, b, α) : ‖w‖ ≤ R, |a| ≤ κR, |b| ≤ κR, |α| ≤ 2κR

}
. Combining this

with the definition of Ĝt(ut, zt) given by (13), one can easily get ‖Ĝt(ut, zt)‖ ≤ ‖∂wF̂t(ut, zt)‖+

|∂aF̂t(ut, zt)|+ |∂bF̂t(ut, zt)|+ |∂αF̂t(ut, zt)| ≤ 2κ(2R+ 1 + 2Rκ). Hence, there holds

1

2

T∑
t=1

γ2
t ‖Ĝt(ut, zt)‖2 ≤ 2κ2(2R+ 1 + 2Rκ)2

(T∑
t=1

γ2
t

)
. (19)

The third term on the right hand side of (17) can be bounded by supu∈Ω

∑T
t=1 γt(ut − u)>(g(ut)−

G(ut, zt)) ≤ supu∈Ω[
∑T
t=1 γt(ũt − u)>(g(ut) − G(ut, zt))] +

∑T
t=1 γt(ut − ũt)

>(g(ut) −
G(ut, zt)), where ũ1 = 0 ∈ Ω and ũt+1 = PΩ(ũt − γt(g(ut) − G(ut, zt))) for any t ∈ [1, T].
Applying Lemma 1 with ξt = γt(g(ut)−G(ut, zt)) yields that

sup
u∈Ω

T∑
t=1

γt(ũt − u)>(g(ut)−G(ut, zt)) ≤ sup
u∈Ω

‖u‖2

2
+

1

2

T∑
t=1

γ2
t ‖g(ut)−G(ut, zt)‖2

≤ 1

2
R2(1 + 6κ2) + 4κ2(2R+ 1 + 2Rκ)2

T∑
t=1

γ2
t , (20)

where we used ‖G(ut, zt)‖ and ‖g(ut)‖ is uniformly bounded by 2κ(2R + 1 + 2Rκ). Notice that
ut and ũt are only dependent on {z1, z2, . . . , zt−1}, {St = γt(ut − ũt)

>(g(ut) − G(ut, zt)) :
t = 1, . . . , t} is a martingale difference sequence. Observe that E[‖St‖2|z1, . . . , zt−1] =
γ2
t

∫∫
Z((ut− ũt)>(g(ut)−G(ut, z)))

2dρ(z) ≤ γ2
t supu∈Ω,z∈Z [‖ut− ũt‖2‖g(ut)−G(ut, zt)‖2] ≤

γ2
t [2κR

√
1 + 6κ2(2R + 1 + 2Rκ)]2. Applying Lemma 2 with σ2

T = [2κR
√

1 + 6κ2(2R + 1 +

2Rκ)]2
∑T
t=1 γ

2
t , B = supTt=1 γt|(ut − ũt)>(g(ut)−G(ut, zt))| ≤ σT implies that, with probabili-

ty 1− δ
2 , there holds

T∑
t=1

γt(ut − ũt)>(g(ut)−G(ut, zt)) ≤
16κR

√
1 + 6κ2(2R+ 1 + 2Rκ)

3

√√√√ T∑
t=1

γ2
t . (21)

Combining (20) with (21) implies, with probability 1− δ
2 ,

sup
u∈Ω

T∑
t=1

γt(ut − u)>(g(ut)−G(ut, zt)) ≤
R2(1 + 6κ2)

2
+ 4κ2(2R+ 1 + 2Rκ)2

T∑
t=1

γ2
t

6

datasets]inst]feat datasets]inst]feat datasets]inst]feat datasets]inst]feat
diabetes 768 8 fourclass 862 2 german 1,000 24 splice 3,175 60

usps 9,298 256 a9a 32,561 123 mnist 60,000 780 acoustic 78,823 50
ijcnn1 141,691 22 covtype 581,012 54 sector 9,619 55,197 news20 15,935 62,061

Table 2: Basic information about the benchmark datasets used in the experiments.

+
16κR

√
1 + 6κ2(2R+ 1 + 2Rκ)

3

(T∑
t=1

γ2
t

)1/2
. (22)

By Lemma 3, for any t ∈ [1, T] there holds, with probability 1− δ
2T , sup

u∈Ω,z∈Z
‖Ĝt(u, z)−G(u, z)‖ ≤

2κ(2R(κ+ 1) + 1)

√
ln (

4T

δ
)/t. Hence, the fourth term on the righthand side of (17) can estimated

as follows: with probability 1− δ
2 , there holds

sup
u∈Ω

T∑
t=1

γt(ut − u)>(G(ut, zt)− Ĝt(ut, zt)) ≤ 2 sup
uΩ
‖u‖
(T∑
t=1

γt sup
u∈Ω,z∈Z

‖Ĝt(u, z)−G(u, z)‖
)

≤ 8Rκ(4Rκ+ 11R+ 1)
√

6κ2 + 1

T∑
t=1

γt√
t
. (23)

Putting the estimations (18), (19), (22), (23) and (17) back into (16) implies that

εf (ūT) ≤ Cκ max(R2, 1)

√
ln

4T

δ

(T∑
t=1

γt
)−1
[
1 +

T∑
t=1

γ2
t +

(T∑
t=1

γ2
t

) 1
2 +

T∑
t=1

γt√
t

]
,

where Cκ = 5
2 (1 + 6κ2) + 6κ2(κ+ 3)2 + 112

3 κ
√

6κ2 + 1(2κ+ 3). �

4 Experiments

In this section, we report experimental evaluations of the SOLAM algorithm and comparing its
performance with existing state-of-the-art learning algorithms for AUC optimization. SOLAM was
implemented in MATLAB, and MATLAB code of the compared methods were obtained from the
authors of corresponding papers. In the training phase, we use five-fold cross validation to determine
the initial learning rate ζ ∈ [1 : 9 : 100] and the bound on w, R ∈ 10[−1:1:5] by a grid search.
Following the evaluation protocol of [6], the performance of SOLAM was evaluated by averaging
results from five runs of five-fold cross validations.

Our experiments were performed based on 12 datasets that had been used in previous studies. For
multi-class datasets, e.g., news20 and sector, we transform them into binary classification problems
by randomly partitioning the data into two groups, where each group includes the same number of
classes. Information about these datasets is summarized in Table 2.

On these datasets, we evaluate and compare SOLAM with four online and two offline learning
algorithms for AUC maximization, i.e. one-pass AUC maximization (OPAUC) [6], which uses the `2
loss surrogate of the AUC objective function; online AUC maximization [21] that uses the hinge loss
surrogate of the AUC objective function with two variants, one with sequential update (OAMseq) and
the other using gradient update (OAMgra); online Uni-Exp [12] which uses the weighted univariate
exponential loss; B-SVM-OR [10], which is a batch learning algorithm using the hinge loss surrogate
of the AUC objective function; and B-LS-SVM, which is a batch learning algorithm using the `2 loss
surrogate of the AUC objective function.

Classification performances on the testing dataset of all methods are given in Table 3. These results
show that SOLAM achieves similar performances as other state-of-the-art online and offline methods
based on AUC maximization. The performance of SOLAM is better than the offline methods on
acoustic and covtype which could be due to the normalization of features used in our experiments for
SOLAM. On the other hand, the main advantage of SOLAM is the running efficiency, as we pointed
out in the Introduction, its per-iteration running time and space complexity is linear in data dimension
and do not depend on the iteration number. In Figure 1, we show AUC vs. run time (seconds) for

7

Datasets SOLAM OPAUC OAMseq OAMgra online Uni-Exp B-SVM-OR B-LS-SVM
diabetes .8253±.0314 .8309±.0350 .8264±.0367 .8262±.0338 .8215±.0309 .8326±.0328 .8325±.0329
fourclass .8226±.0240 .8310±.0251 .8306±.0247 .8295±.0251 .8281±.0305 .8305±.0311 .8309±.0309
german .7882±.0243 .7978±.0347 .7747±.0411 .7723±.0358 .7908±.0367 .7935±.0348 .7994±.0343
splice .9253±.0097 .9232±.0099 .8594±.0194 .8864±.0166 .8931±.0213 .9239±.0089 .9245±.0092
usps .9766±.0032 .9620±.0040 .9310±.0159 .9348±.0122 .9538±.0045 .9630±.0047 .9634±.0045
a9a .9001±.0042 .9002±.0047 .8420±.0174 .8571±.0173 .9005±.0024 .9009±.0036 .8982±.0028

mnist .9324±.0020 .9242±.0021 .8615±.0087 .8643±.0112 .7932±.0245 .9340±.0020 .9336±.0025
acoustic .8898±.0026 .8192±.0032 .7113±.0590 .7711±.0217 .8171±.0034 .8262±.0032 .8210±.0033
ijcnn1 .9215±.0045 .9269±.0021 .9209±.0079 .9100±.0092 .9264±.0035 .9337±.0024 .9320±.0037

covtype .9744±.0004 .8244±.0014 .7361±.0317 .7403±.0289 .8236±.0017 .8248±.0013 .8222±.0014
sector .9834±.0023 .9292±.0081 .9163±.0087 .9043±.0100 .9215±.0034 - -

news20 .9467±.0039 .8871±.0083 .8543±.0099 .8346±.0094 .8880±.0047 - -
Table 3: Comparison of the testing AUC values (mean±std.) on the evaluated datasets. To accelerate the
experiments, the performances of OPAUC, OAMseq, OAMgra, online Uni-Exp, B-SVM-OR and B-LS-SVM were
taken from [6]

(a) a9a (b) ups (c) sector
Figure 1: AUC vs. time curves of SOLAM algorithm and three state-of-the-art AUC learning algorithms, i.e.,
OPAUC [6], OAMseq [21], and OAMgra [21]. The values in parentheses indicate the average running time
(seconds) per pass for each algorithm.

SOLAM and three other state-of-the-art online learning algorithms,i.e., OPAUC [6], OAMseq [21],
and OAMgra [21] over three datasets (a9a, ups, and sector), along with the per-iteration running time
in the legend2. These results show that SOLAM in general reaches convergence faster in comparison
of, while achieving competitive performance.

5 Conclusion

In this paper we showed that AUC maximization is equivalent to a stochastic saddle point problem,
from which we proposed a novel online learning algorithm for AUC optimization. In contrast to
the existing algorithms [6, 21], the main advantage of our algorithm is that it does not need to store
all previous examples nor its second-order covariance matrix. Hence, it is a truly online learning
algorithm with one-datum space and per-iteration complexities, which are the same as online gradient
descent algorithms [22] for classification.

There are several research directions for future work. Firstly, the convergence rate O(1/
√
T) for

SOLAM only matches that of the black-box sub-gradient method. It would be interesting to derive
fast convergence rate O(1/T) by exploring the special structure of the objective function F defined
by (6). Secondly, the convergence was established using the duality gap associated with the stochastic
SPP formulation 7. It would be interesting to establish the strong convergence of the output w̄T of
algorithm SOLAM to its optimal solution of the actual AUC optimization problem (3). Thirdly, the
SPP formulation (1) holds for the least square loss. We do not know if the same formulation holds
true for other loss functions such as the logistic regression or the hinge loss.

2Experiments were performed with running time reported based on a workstation with 12 nodes, each with
an Intel Xeon E5-2620 2.0GHz CPU and 64GB RAM.

8

References
[1] F. R. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms

for machine learning. In NIPS, 2011.

[2] L. Bottou and Y. LeCun. Large scale online learning. In NIPS, 2003.

[3] N. Cesa-Bianchi, A. Conconi, and C. Gentile. On the generalization ability of on-line learning
algorithms. IEEE Trans. Information Theory, 50(9):2050–2057, 2004.

[4] S. Clemencon, G. Lugosi, and N. Vayatis. Ranking and empirical minimization of u-statistics.
The Annals of Statistics, 36(2):844–874, 2008.

[5] C. Cortes and M. Mohri. AUC optimization vs. error rate minimization. In NIPS, 2003.

[6] W. Gao, R. Jin, S. Zhu, and Z. H. Zhou. One-pass AUC optimization. In ICML, 2013.

[7] W. Gao and Z.H. Zhou. On the consistency of AUC pairwise optimization. In International
Joint Conference on Artificial Intelligence, 2015.

[8] J. A. Hanley and B. J. McNeil. The meaning and use of the area under of receiver operating
characteristic (roc) curve. Radiology, 143(1):29–36, 1982.

[9] T. Joachims. A support vector method for multivariate performance measures. In ICML, 2005.

[10] Thorsten Joachims. Training linear svms in linear time. In Proceedings of the Twelfth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 217–226,
2006.

[11] P. Kar, B. K. Sriperumbudur, P. Jain, and H. Karnick. On the generalization ability of online
learning algorithms for pairwise loss functions. In ICML, 2013.

[12] W. Kotlowski, K. Dembczynski, and E. Hüllermeier. Bipartite ranking through minimization of
univariate loss. In ICML, 2011.

[13] G. Lan. An optimal method for stochastic composite optimization. Math Programming,
133(1-2):365–397, 2012.

[14] A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach
to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[15] I. Pinelis. Optimum bounds for the distributions of martingales in banach spaces. The Annals of
Probability, 22(4):1679–1706, 1994.

[16] A. Rakhlin, O. Shamir, and K. Sridharan. Making gradient descent optimal for strongly convex
stochastic optimization. In ICML, 2012.

[17] A. Rakotomamonjy. Optimizing area under roc curve with svms. In 1st International Workshop
on ROC Analysis in Artificial Intelligence, 2004.

[18] Y. Wang, R. Khardon, D. Pechyony, and R. Jones. Generalization bounds for online learning
algorithms with pairwise loss functions. In COLT, 2012.

[19] Y. Ying and M. Pontil. Online gradient descent learning algorithms. Foundations of Computa-
tional Mathematics, 8(5):561–596, 2008.

[20] Y. Ying and D. X. Zhou. Online pairwise learning algorithms. Neural Computation, 28:743–777,
2016.

[21] P. Zhao, S. C. H. Hoi, R. Jin, and T. Yang. Online AUC maximization. In ICML, 2011.

[22] M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
ICML, 2003.

9

