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Abstract

In this work, we take a fresh look at some old and new algorithms for off-policy,
return-based reinforcement learning. Expressing these in a common form, we de-
rive a novel algorithm, Retrace(λ), with three desired properties: (1) it has low
variance; (2) it safely uses samples collected from any behaviour policy, whatever
its degree of “off-policyness”; and (3) it is efficient as it makes the best use of sam-
ples collected from near on-policy behaviour policies. We analyze the contractive
nature of the related operator under both off-policy policy evaluation and control
settings and derive online sample-based algorithms. We believe this is the first
return-based off-policy control algorithm converging a.s. to Q∗ without the GLIE
assumption (Greedy in the Limit with Infinite Exploration). As a corollary, we
prove the convergence of Watkins’ Q(λ), which was an open problem since 1989.
We illustrate the benefits of Retrace(λ) on a standard suite of Atari 2600 games.

One fundamental trade-off in reinforcement learning lies in the definition of the update target: should
one estimate Monte Carlo returns or bootstrap from an existing Q-function? Return-based meth-
ods (where return refers to the sum of discounted rewards

�
t γ

trt) offer some advantages over
value bootstrap methods: they are better behaved when combined with function approximation, and
quickly propagate the fruits of exploration (Sutton, 1996). On the other hand, value bootstrap meth-
ods are more readily applied to off-policy data, a common use case. In this paper we show that
learning from returns need not be at cross-purposes with off-policy learning.

We start from the recent work of Harutyunyan et al. (2016), who show that naive off-policy policy
evaluation, without correcting for the “off-policyness” of a trajectory, still converges to the desired
Qπ value function provided the behavior µ and target π policies are not too far apart (the maxi-
mum allowed distance depends on the λ parameter). Their Qπ(λ) algorithm learns from trajectories
generated by µ simply by summing discounted off-policy corrected rewards at each time step. Un-
fortunately, the assumption that µ and π are close is restrictive, as well as difficult to uphold in the
control case, where the target policy is greedy with respect to the current Q-function. In that sense
this algorithm is not safe: it does not handle the case of arbitrary “off-policyness”.

Alternatively, the Tree-backup (TB(λ)) algorithm (Precup et al., 2000) tolerates arbitrary tar-
get/behavior discrepancies by scaling information (here called traces) from future temporal dif-
ferences by the product of target policy probabilities. TB(λ) is not efficient in the “near on-policy”
case (similar µ and π), though, as traces may be cut prematurely, blocking learning from full returns.

In this work, we express several off-policy, return-based algorithms in a common form. From this
we derive an improved algorithm, Retrace(λ), which is both safe and efficient, enjoying convergence
guarantees for off-policy policy evaluation and – more importantly – for the control setting.
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Retrace(λ) can learn from full returns retrieved from past policy data, as in the context of experience
replay (Lin, 1993), which has returned to favour with advances in deep reinforcement learning (Mnih
et al., 2015; Schaul et al., 2016). Off-policy learning is also desirable for exploration, since it allows
the agent to deviate from the target policy currently under evaluation.

To the best of our knowledge, this is the first online return-based off-policy control algorithm which
does not require the GLIE (Greedy in the Limit with Infinite Exploration) assumption (Singh et al.,
2000). In addition, we provide as a corollary the first proof of convergence of Watkins’ Q(λ) (see,
e.g., Watkins, 1989; Sutton and Barto, 1998).

Finally, we illustrate the significance of Retrace(λ) in a deep learning setting by applying it to the
suite of Atari 2600 games provided by the Arcade Learning Environment (Bellemare et al., 2013).

1 Notation

We consider an agent interacting with a Markov Decision Process (X ,A, γ, P, r). X is a finite state
space, A the action space, γ ∈ [0, 1) the discount factor, P the transition function mapping state-
action pairs (x, a) ∈ X ×A to distributions over X , and r : X ×A → [−RMAX, RMAX] is the reward
function. For notational simplicity we will consider a finite action space, but the case of infinite –
possibly continuous – action space can be handled by the Retrace(λ) algorithm as well. A policy π
is a mapping from X to a distribution over A. A Q-function Q maps each state-action pair (x, a) to
a value in R; in particular, the reward r is a Q-function. For a policy π we define the operator Pπ:

(PπQ)(x, a) :=
�

x�∈X

�

a�∈A
P (x� |x, a)π(a� |x�)Q(x�, a�).

The value function for a policy π, Qπ , describes the expected discounted sum of rewards associated
with following π from a given state-action pair. Using operator notation, we write this as

Qπ :=
�

t≥0

γt(Pπ)tr. (1)

The Bellman operator T π for a policy π is defined as T πQ := r+ γPπQ and its fixed point is Qπ ,
i.e. T πQπ = Qπ = (I − γPπ)−1r. The Bellman optimality operator introduces a maximization
over the set of policies:

T Q := r + γmax
π

PπQ. (2)

Its fixed point is Q∗, the unique optimal value function (Puterman, 1994). It is this quantity that we
will seek to obtain when we talk about the “control setting”.

Return-based Operators: The λ-return extension (Sutton, 1988) of the Bellman operators con-
siders exponentially weighted sums of n-steps returns:

T π
λ Q := (1− λ)

�

n≥0

λn
�
(T π)n+1Q

�
= Q+ (I − λγPπ)−1(T πQ−Q),

where T πQ−Q is the Bellman residual of Q for policy π. Examination of the above shows that Qπ

is also the fixed point of T π
λ . At one extreme (λ = 0) we have the Bellman operator T π

λ=0Q = T πQ,
while at the other (λ = 1) we have the policy evaluation operator T π

λ=1Q = Qπ which can be
estimated using Monte Carlo methods (Sutton and Barto, 1998). Intermediate values of λ trade off
estimation bias with sample variance (Kearns and Singh, 2000).

We seek to evaluate a target policy π using trajectories drawn from a behaviour policy µ. If π = µ,
we are on-policy; otherwise, we are off-policy. We will consider trajectories of the form:

x0 = x, a0 = a, r0, x1, a1, r1, x2, a2, r2, . . .

with at ∼ µ(·|xt), rt = r(xt, at) and xt+1 ∼ P (·|xt, at). We denote by Ft this sequence up to
time t, and write Eµ the expectation with respect to both µ and the MDP transition probabilities.
Throughout, we write � · � for supremum norm.
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2 Off-Policy Algorithms

We are interested in two related off-policy learning problems. In the policy evaluation setting, we
are given a fixed policy π whose value Qπ we wish to estimate from sample trajectories drawn from
a behaviour policy µ. In the control setting, we consider a sequence of policies that depend on our
own sequence of Q-functions (such as ε-greedy policies), and seek to approximate Q∗.

The general operator that we consider for comparing several return-based off-policy algorithms is:

RQ(x, a) := Q(x, a) + Eµ

��

t≥0

γt
� t�

s=1

cs

��
rt + γEπQ(xt+1, ·)−Q(xt, at)

��
, (3)

for some non-negative coefficients (cs), where we write EπQ(x, ·) := �
a π(a|x)Q(x, a) and define

(
�t

s=1 cs) = 1 when t = 0. By extension of the idea of eligibility traces (Sutton and Barto, 1998),
we informally call the coefficients (cs) the traces of the operator.

Importance sampling (IS): cs = π(as|xs)
µ(as|xs)

. Importance sampling is the simplest way to correct
for the discrepancy between µ and π when learning from off-policy returns (Precup et al., 2000,
2001; Geist and Scherrer, 2014). The off-policy correction uses the product of the likelihood ratios
between π and µ. Notice that RQ defined in (3) with this choice of (cs) yields Qπ for any Q. For
Q = 0 we recover the basic IS estimate

�
t≥0 γ

t
��t

s=1 cs
�
rt, thus (3) can be seen as a variance

reduction technique (with a baseline Q). It is well known that IS estimates can suffer from large
– even possibly infinite – variance (mainly due to the variance of the product π(a1|x1)

µ(a1|x1)
· · · π(at|xt)

µ(at|xt)
),

which has motivated further variance reduction techniques such as in (Mahmood and Sutton, 2015;
Mahmood et al., 2015; Hallak et al., 2015).

Off-policy Qπ(λ) and Q∗(λ): cs = λ. A recent alternative proposed by Harutyunyan et al. (2016)
introduces an off-policy correction based on a Q-baseline (instead of correcting the probability of
the sample path like in IS). This approach, called Qπ(λ) and Q∗(λ) for policy evaluation and control,
respectively, corresponds to the choice cs = λ. It offers the advantage of avoiding the blow-up of the
variance of the product of ratios encountered with IS. Interestingly, this operator contracts around Qπ

provided that µ and π are sufficiently close to each other. Defining ε := maxx �π(·|x) − µ(·|x)�1
the level of “off-policyness”, the authors prove that the operator defined by (3) with cs = λ is a
contraction mapping around Qπ for λ < 1−γ

γε , and around Q∗ for the worst case of λ < 1−γ
2γ .

Unfortunately, Qπ(λ) requires knowledge of ε, and the condition for Q∗(λ) is very conservative.
Neither Qπ(λ), nor Q∗(λ) are safe as they do not guarantee convergence for arbitrary π and µ.

Tree-backup, TB(λ): cs = λπ(as|xs). The TB(λ) algorithm of Precup et al. (2000) corrects for
the target/behaviour discrepancy by multiplying each term of the sum by the product of target policy
probabilities. The corresponding operator defines a contraction mapping for any policies π and µ,
which makes it a safe algorithm. However, this algorithm is not efficient in the near on-policy case
(where µ and π are similar) as it unnecessarily cuts the traces, preventing it to make use of full
returns: indeed we need not discount stochastic on-policy transitions (as shown by Harutyunyan
et al.’s results about Qπ).

Retrace(λ): cs = λmin
�
1, π(as|xs)

µ(as|xs)

�
. Our contribution is an algorithm – Retrace(λ) – that takes

the best of the three previous algorithms. Retrace(λ) uses an importance sampling ratio truncated
at 1. Compared to IS, it does not suffer from the variance explosion of the product of IS ratios.
Now, similarly to Qπ(λ) and unlike TB(λ), it does not cut the traces in the on-policy case, making
it possible to benefit from the full returns. In the off-policy case, the traces are safely cut, similarly
to TB(λ). In particular, min

�
1, π(as|xs)

µ(as|xs)

�
≥ π(as|xs): Retrace(λ) does not cut the traces as much

as TB(λ). In the subsequent sections, we will show the following:

• For any traces 0 ≤ cs ≤ π(as|xs)/µ(as|xs) (thus including the Retrace(λ) operator), the
return-based operator (3) is a γ-contraction around Qπ , for arbitrary policies µ and π

• In the control case (where π is replaced by a sequence of increasingly greedy policies) the
online Retrace(λ) algorithm converges a.s. to Q∗, without requiring the GLIE assumption.

• As a corollary, Watkins’s Q(λ) converges a.s. to Q∗.
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Definition Estimation Guaranteed Use full returns
of cs variance convergence† (near on-policy)

Importance sampling π(as|xs)
µ(as|xs)

High for any π, µ yes

Qπ(λ) λ Low for π close to µ yes

TB(λ) λπ(as|xs) Low for any π, µ no

Retrace(λ) λmin
�
1, π(as|xs)

µ(as|xs)

�
Low for any π, µ yes

Table 1: Properties of several algorithms defined in terms of the general operator given in (3).
†Guaranteed convergence of the expected operator R.

3 Analysis of Retrace(λ)

We will in turn analyze both off-policy policy evaluation and control settings. We will show that R
is a contraction mapping in both settings (under a mild additional assumption for the control case).

3.1 Policy Evaluation

Consider a fixed target policy π. For ease of exposition we consider a fixed behaviour policy µ,
noting that our result extends to the setting of sequences of behaviour policies (µk : k ∈ N).
Our first result states the γ-contraction of the operator (3) defined by any set of non-negative coef-
ficients cs = cs(as,Fs) (in order to emphasize that cs can be a function of the whole history Fs)
under the assumption that 0 ≤ cs ≤ π(as|xs)

µ(as|xs)
.

Theorem 1. The operator R defined by (3) has a unique fixed point Qπ . Furthermore, if for each
as ∈ A and each history Fs we have cs = cs(as,Fs) ∈

�
0, π(as|xs)

µ(as|xs)

�
, then for any Q-function Q

�RQ−Qπ� ≤ γ�Q−Qπ�.

The following lemma will be useful in proving Theorem 1 (proof in the appendix).
Lemma 1. The difference between RQ and its fixed point Qπ is

RQ(x, a)−Qπ(x, a) = Eµ

� �

t≥1

γt
� t−1�

i=1

ci

���
Eπ[(Q−Qπ)(xt, ·)]− ct(Q−Qπ)(xt, at)

���
.

Proof (Theorem 1). The fact that Qπ is the fixed point of the operator R is obvious from (3) since
Ext+1∼P (·|xt,at)

�
rt + γEπQ

π(xx+1, ·) − Qπ(xt, at)
�
= (T πQπ − Qπ)(xt, at) = 0, since Qπ is

the fixed point of T π . Now, from Lemma 1, and defining ΔQ := Q−Qπ , we have

RQ(x, a)−Qπ(x, a) =
�

t≥1

γt E
x1:t
a1:t

�� t−1�

i=1

ci

���
EπΔQ(xt, ·)− ctΔQ(xt, at)

���

=
�

t≥1

γt E
x1:t

a1:t−1

�� t−1�

i=1

ci

���
EπΔQ(xt, ·)− Eat [ct(at,Ft)ΔQ(xt, at)|Ft]

���

=
�

t≥1

γt E
x1:t

a1:t−1

�� t−1�

i=1

ci

��

b

�
π(b|xt)− µ(b|xt)ct(b,Ft)

�
ΔQ(xt, b)

�
.

Now since π(a|xt) − µ(a|xt)ct(b,Ft) ≥ 0, we have that RQ(x, a) − Qπ(x, a) =�
y,b wy,bΔQ(y, b), i.e. a linear combination of ΔQ(y, b) weighted by non-negative coefficients:

wy,b :=
�

t≥1

γt E
x1:t

a1:t−1

�� t−1�

i=1

ci

��
π(b|xt)− µ(b|xt)ct(b,Ft)

�
I{xt = y}

�
.
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The sum of those coefficients is:
�

y,b

wy,b =
�

t≥1

γt E
x1:t

a1:t−1

�� t−1�

i=1

ci

��

b

�
π(b|xt)− µ(b|xt)ct(b,Ft)

��

=
�

t≥1

γt E
x1:t

a1:t−1

�� t−1�

i=1

ci

�
Eat [1− ct(at,Ft)|Ft]

�
=

�

t≥1

γt E
x1:t
a1:t

�� t−1�

i=1

ci

�
(1− ct)

�

= Eµ

��

t≥1

γt
� t−1�

i=1

ci

�
−

�

t≥1

γt
� t�

i=1

ci

��
= γC − (C − 1),

where C := Eµ

��
t≥0 γ

t
��t

i=1 ci
��

. Since C ≥ 1, we have that
�

y,b wy,b ≤ γ. Thus
RQ(x, a) − Qπ(x, a) is a sub-convex combination of ΔQ(y, b) weighted by non-negative coef-
ficients wy,b which sum to (at most) γ, thus R is a γ-contraction mapping around Qπ .

Remark 1. Notice that the coefficient C in the proof of Theorem 1 depends on (x, a). If we write

η(x, a) := 1− (1− γ)Eµ

��
t≥0 γ

t(
�t

s=1 cs)
�
, then we have shown that

|RQ(x, a)−Qπ(x, a)| ≤ η(x, a)�Q−Qπ�.
Thus η(x, a) ∈ [0, γ] is a (x, a)-specific contraction coefficient, which is γ when c1 = 0 (the trace
is cut immediately) and can be close to zero when learning from full returns (Eµ[ct] ≈ 1 for all t).

3.2 Control

In the control setting, the single target policy π is replaced by a sequence of policies (πk) which
depend on (Qk). While most prior work has focused on strictly greedy policies, here we consider
the larger class of increasingly greedy sequences. We now make this notion precise.
Definition 1. We say that a sequence of policies (πk : k ∈ N) is increasingly greedy w.r.t. a sequence
(Qk : k ∈ N) of Q-functions if the following property holds for all k: Pπk+1Qk+1 ≥ PπkQk+1.

Intuitively, this means that each πk+1 is at least as greedy as the previous policy πk for Qk+1.
Many natural sequences of policies are increasingly greedy, including εk-greedy policies (with non-
increasing εk) and softmax policies (with non-increasing temperature). See proofs in the appendix.

We will assume that cs = cs(as,Fs) = c(as, xs) is Markovian, in the sense that it depends on
xs, as (as well as the policies π and µ) only but not on the full past history. This allows us to define
the (sub)-probability transition operator

(P cµQ)(x, a) :=
�

x�

�

a�

p(x�|x, a)µ(a�|x�)c(a�, x�)Q(x�, a�).

Finally, an additional requirement to the convergence in the control case, we assume that Q0 satisfies
T π0Q0 ≥ Q0 (this can be achieved by a pessimistic initialization Q0 = −RMAX/(1− γ)).
Theorem 2. Consider an arbitrary sequence of behaviour policies (µk) (which may depend on
(Qk)) and a sequence of target policies (πk) that are increasingly greedy w.r.t. the sequence (Qk):

Qk+1 = RkQk,

where the return operator Rk is defined by (3) for πk and µk and a Markovian cs = c(as, xs) ∈
[0, πk(as|xs)

µk(as|xs)
]. Assume the target policies πk are εk-away from the greedy policies w.r.t. Qk, in the

sense that T πkQk ≥ T Qk − εk�Qk�e, where e is the vector with 1-components. Further suppose
that T π0Q0 ≥ Q0. Then for any k ≥ 0,

�Qk+1 −Q∗� ≤ γ�Qk −Q∗�+ εk�Qk�.
In consequence, if εk → 0 then Qk → Q∗.

Sketch of Proof (The full proof is in the appendix). Using P cµk , the Retrace(λ) operator rewrites

RkQ = Q+
�

t≥0

γt(P cµk)t(T πkQ−Q) = Q+ (I − γP cµk)−1(T πkQ−Q).
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We now lower- and upper-bound the term Qk+1 −Q∗.

Upper bound on Qk+1 − Q∗. We prove that Qk+1 − Q∗ ≤ Ak(Qk − Q∗) with Ak := γ(I −
γP cµk)−1

�
Pπk − P cµk

�
. Since ct ∈ [0, π(at|xt)

µ(at|xt)
] we deduce that Ak has non-negative elements,

whose sum over each row, is at most γ. Thus
Qk+1 −Q∗ ≤ γ�Qk −Q∗�e. (4)

Lower bound on Qk+1 −Q∗. Using the fact that T πkQk ≥ T π∗
Qk − εk�Qk�e we have

Qk+1 −Q∗ ≥ Qk+1 − T πkQk + γPπ∗
(Qk −Q∗)− γεk�Qk�e

= γP cµk(I − γP cµk)−1(T πkQk −Qk) + γPπ∗
(Qk −Q∗)− εk�Qk�e. (5)

Lower bound on T πkQk−Qk. Since the sequence (πk) is increasingly greedy w.r.t. (Qk), we have
T πk+1Qk+1 −Qk+1 ≥ T πkQk+1 −Qk+1 = r + (γPπk − I)RkQk

= Bk(T πkQk −Qk), (6)
where Bk := γ[Pπk−P cµk ](I−γP cµk)−1. Since Pπk−P cµk and (I−γP cµk)−1 are non-negative
matrices, so is Bk. Thus T πkQk −Qk ≥ Bk−1Bk−2 . . . B0(T π0Q0 −Q0) ≥ 0, since we assumed
Tπ0Q0 −Q0 ≥ 0. Thus, (5) implies that

Qk+1 −Q∗ ≥ γPπ∗
(Qk −Q∗)− εk�Qk�e.

Combining the above with (4) we deduce �Qk+1 −Q∗� ≤ γ�Qk −Q∗�+ εk�Qk�. When εk → 0,
we further deduce that Qk are bounded, thus Qk → Q∗.

3.3 Online algorithms

So far we have analyzed the contraction properties of the expected R operators. We now de-
scribe online algorithms which can learn from sample trajectories. We analyze the algorithms in
the every visit form (Sutton and Barto, 1998), which is the more practical generalization of the
first-visit form. In this section, we will only consider the Retrace(λ) algorithm defined with the
coefficient c = λmin(1,π/µ). For that c, let us rewrite the operator P cµ as λPπ∧µ, where
Pπ∧µQ(x, a) :=

�
y

�
b min(π(b|y), µ(b|y))Q(y, b), and write the Retrace operator RQ =

Q+(I −λγPπ∧µ)−1(T πQ−Q). We focus on the control case, noting that a similar (and simpler)
result can be derived for policy evaluation.
Theorem 3. Consider a sequence of sample trajectories, with the kth trajectory
x0, a0, r0, x1, a1, r1, . . . generated by following µk: at ∼ µk(·|xt). For each (x, a) along
this trajectory, with s being the time of first occurrence of (x, a), update

Qk+1(x, a) ← Qk(x, a) + αk

�

t≥s

δπk
t

t�

j=s

γt−j
� t�

i=j+1

ci

�
I{xj , aj = x, a}, (7)

where δπk
t := rt + γEπk

Qk(xt+1, ·) − Qk(xt, at), αk = αk(xs, as). We consider the Retrace(λ)
algorithm where ci = λmin

�
1, π(ai|xi)

µ(ai|xi)

�
. Assume that (πk) are increasingly greedy w.r.t. (Qk) and

are each εk-away from the greedy policies (πQk
), i.e. maxx �πk(·|x)−πQk

(·|x)�1 ≤ εk, with εk →
0. Assume that Pπk and Pπk∧µk asymptotically commute: limk �PπkPπk∧µk −Pπk∧µkPπk� = 0.
Assume further that (1) all states and actions are visited infinitely often:

�
t≥0 P{xt, at = x, a} ≥

D > 0, (2) the sample trajectories are finite in terms of the second moment of their lengths Tk:
Eµk

T 2
k < ∞, (3) the stepsizes obey the usual Robbins-Munro conditions. Then Qk → Q∗ a.s.

The proof extends similar convergence proofs of TD(λ) by Bertsekas and Tsitsiklis (1996) and of
optimistic policy iteration by Tsitsiklis (2003), and is provided in the appendix. Notice that com-
pared to Theorem 2 we do not assume that T π0Q0−Q0 ≥ 0 here. However, we make the additional
(rather technical) assumption that Pπk and Pπk∧µk commute at the limit. This is satisfied for ex-
ample when the probability assigned by the behavior policy µk(·|x) to the greedy action πQk

(x)
is independent of x. Examples include ε-greedy policies, or more generally mixtures between the
greedy policy πQk

and an arbitrary distribution µ (see Lemma 5 in the appendix for the proof):

µk(a|x) = ε
µ(a|x)

1− µ(πQk
(x)|x) I{a �= πQk

(x)}+ (1− ε)I{a = πQk
(x)}. (8)

Notice that the mixture coefficient ε needs not go to 0.
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4 Discussion of the results

4.1 Choice of the trace coefficients cs

Theorems 1 and 2 ensure convergence to Qπ and Q∗ for any trace coefficient cs ∈ [0, π(as|xs)
µ(as|xs)

].
However, to make the best choice of cs, we need to consider the speed of convergence, which
depends on both (1) the variance of the online estimate, which indicates how many online updates
are required in a single iteration of R, and (2) the contraction coefficient of R.

Variance: The variance of the estimate strongly depends on the variance of the product trace
(c1 . . . ct), which is not an easy quantity to control in general, as the (cs) are usually not inde-
pendent. However, assuming independence and stationarity of (cs), we have that V

��
t γ

tc1 . . . ct
�

is at least
�

t γ
2tV(c)t, which is finite only if V(c) < 1/γ2. Thus, an important requirement for a

numerically stable algorithm is for V(c) to be as small as possible, and certainly no more than 1/γ2.
This rules out importance sampling (for which c = π(a|x)

µ(a|x) , and V(c|x) = �
a µ(a|x)

�π(a|x)
µ(a|x) − 1

�2
,

which may be larger than 1/γ2 for some π and µ), and is the reason we choose c ≤ 1.

Contraction speed: The contraction coefficient η ∈ [0, γ] of R (see Remark 1) depends on how
much the traces have been cut, and should be as small as possible (since it takes log(1/ε)/ log(1/η)
iterations of R to obtain an ε-approximation). It is smallest when the traces are not cut at all (i.e. if
cs = 1 for all s, R is the policy evaluation operator which produces Qπ in a single iteration). Indeed,
when the traces are cut, we do not benefit from learning from full returns (in the extreme, c1 = 0
and R reduces to the (one step) Bellman operator with η = γ).

A reasonable trade-off between low variance (when cs are small) and high contraction speed (when
cs are large) is given by Retrace(λ), for which we provide the convergence of the online algorithm.

If we relax the assumption that the trace is Markovian (in which case only the result for policy
evaluation has been proven so far) we could trade off a low trace at some time for a possibly larger-
than-1 trace at another time, as long as their product is less than 1. A possible choice could be

cs = λmin
� 1

c1 . . . cs−1
,
π(as|xs)

µ(as|xs)

�
. (9)

4.2 Other topics of discussion

No GLIE assumption. The crucial point of Theorem 2 is that convergence to Q∗ occurs for arbi-
trary behaviour policies. Thus the online result in Theorem 3 does not require the behaviour policies
to become greedy in the limit with infinite exploration (i.e. GLIE assumption, Singh et al., 2000). We
believe Theorem 3 provides the first convergence result to Q∗ for a λ-return (with λ > 0) algorithm
that does not require this (hard to satisfy) assumption.

Proof of Watkins’ Q(λ). As a corollary of Theorem 3 when selecting our target policies πk to be
greedy w.r.t. Qk (i.e. εk = 0), we deduce that Watkins’ Q(λ) (e.g., Watkins, 1989; Sutton and Barto,
1998) converges a.s. to Q∗ (under the assumption that µk commutes asymptotically with the greedy
policies, which is satisfied for e.g. µk defined by (8)). We believe this is the first such proof.

Increasingly greedy policies The assumption that the sequence of target policies (πk) is in-
creasingly greedy w.r.t. the sequence of (Qk) is more general that just considering greedy policies
w.r.t. (Qk) (which is Watkins’s Q(λ)), and leads to more efficient algorithms. Indeed, using non-
greedy target policies πk may speed up convergence as the traces are not cut as frequently. Of
course, in order to converge to Q∗, we eventually need the target policies (and not the behaviour
policies, as mentioned above) to become greedy in the limit (i.e. εk → 0 as defined in Theorem 2).

Comparison to Qπ(λ). Unlike Retrace(λ), Qπ(λ) does not need to know the behaviour policy
µ. However, it fails to converge when µ is far from π. Retrace(λ) uses its knowledge of µ (for the
chosen actions) to cut the traces and safely handle arbitrary policies π and µ.

Comparison to TB(λ). Similarly to Qπ(λ), TB(λ) does not need the knowledge of the behaviour
policy µ. But as a consequence, TB(λ) is not able to benefit from possible near on-policy situations,
cutting traces unnecessarily when π and µ are close.
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Figure 1: Inter-algorithm score distribution for λ-return (λ = 1) variants and Q-Learning (λ = 0).

Estimating the behavior policy. In the case µ is unknown, it is reasonable to build an estimate �µ
from observed samples and use �µ instead of µ in the definition of the trace coefficients cs. This may
actually even lead to a better estimate, as analyzed by Li et al. (2015).
Continuous action space. Let us mention that Theorems 1 and 2 extend to the case of (mea-
surable) continuous or infinite action spaces. The trace coefficients will make use of the densities
min(1, dπ/dµ) instead of the probabilities min(1,π/µ). This is not possible with TB(λ).
Open questions include: (1) Removing the technical assumption that Pπk and Pπk∧µk asymp-
totically commute, (2) Relaxing the Markov assumption in the control case in order to allow trace
coefficients cs of the form (9).

5 Experimental Results

To validate our theoretical results, we employ Retrace(λ) in an experience replay (Lin, 1993) setting,
where sample transitions are stored within a large but bounded replay memory and subsequently
replayed as if they were new experience. Naturally, older data in the memory is usually drawn from
a policy which differs from the current policy, offering an excellent point of comparison for the
algorithms presented in Section 2.

Our agent adapts the DQN architecture of Mnih et al. (2015) to replay short sequences from the
memory (details in the appendix) instead of single transitions. The Q-function target update for a
sample sequence xt, at, rt, · · · , xt+k is

ΔQ(xt, at) =

t+k−1�

s=t

γs−t
� s�

i=t+1

ci

��
r(xs, as) + γEπQ(xs+1, ·)−Q(xs, as)

�
.

We compare our algorithms’ performance on 60 different Atari 2600 games in the Arcade Learning
Environment (Bellemare et al., 2013) using Bellemare et al.’s inter-algorithm score distribution.
Inter-algorithm scores are normalized so that 0 and 1 respectively correspond to the worst and best
score for a particular game, within the set of algorithms under comparison. If g ∈ {1, . . . , 60} is a
game and zg,a the inter-algorithm score on g for algorithm a, then the score distribution function is
f(x) := |{g : zg,a ≥ x}|/60. Roughly, a strictly higher curve corresponds to a better algorithm.

Across values of λ, λ = 1 performs best, save for Q∗(λ) where λ = 0.5 obtains slightly superior
performance. However, is highly sensitive to the choice of λ (see Figure 1, left, and Table 2 in the
appendix). Both Retrace(λ) and TB(λ) achieve dramatically higher performance than Q-Learning
early on and maintain their advantage throughout. Compared to TB(λ), Retrace(λ) offers a narrower
but still marked advantage, being the best performer on 30 games; TB(λ) claims 15 of the remainder.
Per-game details are given in the appendix.

Conclusion. Retrace(λ) can be seen as an algorithm that automatically adjusts – efficiently and
safely – the length of the return to the degree of ”off-policyness” of any available data.

Acknowledgments. The authors thank Daan Wierstra, Nicolas Heess, Hado van Hasselt, Ziyu
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