
Simple and Efficient Weighted Minwise Hashing

Anshumali Shrivastava
Department of Computer Science

Rice University
Houston, TX, 77005

anshumali@rice.edu

Abstract

Weighted minwise hashing (WMH) is one of the fundamental subrou-
tine, required by many celebrated approximation algorithms, commonly
adopted in industrial practice for large -scale search and learning. The
resource bottleneck with WMH is the computation of multiple (typically a
few hundreds to thousands) independent hashes of the data. We propose
a simple rejection type sampling scheme based on a carefully designed
red-green map, where we show that the number of rejected sample has
exactly the same distribution as weighted minwise sampling. The running
time of our method, for many practical datasets, is an order of magnitude
smaller than existing methods. Experimental evaluations, on real datasets,
show that for computing 500 WMH, our proposal can be 60000x faster
than the Ioffe’s method without losing any accuracy. Our method is also
around 100x faster than approximate heuristics capitalizing on the efficient
“densified" one permutation hashing schemes [26, 27]. Given the simplicity
of our approach and its significant advantages, we hope that it will replace
existing implementations in practice.

1 Introduction

(Weighted) Minwise Hashing (or Sampling), [2, 4, 17] is the most popular and successful
randomized hashing technique, commonly deployed in commercial big-data systems for
reducing the computational requirements of many large-scale applications [3, 1, 25].

Minwise sampling is a known LSH for the Jaccard similarity [22]. Given two positive vectors
x, y ∈ RD, x, y > 0, the (generalized) Jaccard similarity is defined as

J(x, y) =
∑D

i=1 min{xi, yi}∑D
i=1 max{xi, yi}

. (1)

J(x, y) is a frequently used measure for comparing web-documents [2], histograms (specially
images [13]), gene sequences [23], etc. Recently, it was shown to be a very effective kernel for
large-scale non-linear learning [15]. WMH leads to the best-known LSH for L1 distance [13],
commonly used in computer vision, improving over [7].

Weighted Minwise Hashing (WMH) (or Minwise Sampling) generates randomized hash (or
fingerprint) h(x), of the given data vector x ≥ 0, such that for any pair of vectors x and y, the
probability of hash collision (or agreement of hash values) is given by,

Pr(h(x) = h(y)) =
∑

min{xi, yi}∑
max{xi, yi}

= J(x, y). (2)

A notable special case is when x and y are binary (or sets), i.e. xi, yi ∈ {0, 1}D . For this case,
the similarity measure boils down to J(x, y) =

∑
min{xi,yi}∑
max{xi,yi}

=
|x∩y|
|x∪y| .

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

Being able to generate a randomized signature, h(x), satisfying Equation 2 is the key break-
through behind some of the best-known approximations algorithms for metric labelling [14],
metric embedding [5], mechanism design, and differential privacy [8].

A typical requirement for algorithms relying on minwise hashing is to generate, some large
enough, k independent Minwise hashes (or fingerprints) of the data vector x, i.e. compute
hi(x) i ∈ {1, 2, ..., k} repeatedly with independent randomization. These independent hashes
can then be used for a variety of data mining tasks such as cheap similarity estimation,
indexing for sublinear-search, kernel features for large scale learning, etc. The bottleneck
step in all these applications is the costly computation of the multiple hashes, which requires
multiple passes over the data. The number of required hashes typically ranges from few
hundreds to several thousand [26]. For example, the number of hashes required by the
famous LSH algorithm is O(nρ) which grows with the size of the data. [15] showed the
necessity of around 4000 hashes per data vector in large-scale learning with J(x, y) as the
kernel, making hash generation the most costly step.

Owing to the significance of WMH and its impact in practice, there is a series of work over
the last decade trying to reduce its costly computation cost [11].The first groundbreaking
work on Minwise hashing [2] computed hashes h(x) only for unweighted sets x (or binary
vectors), i.e. when the vector components xis can only take values 0 and 1. Later it was
realized that vectors with positive integer weights, which are equivalent to weighted
sets, can be reduced to unweighted set by replicating elements in proportion to their
weights [10, 11]. This scheme was very expensive due to blowup in the number of elements
caused by replications. Also, it cannot handle real weights. In [11], the authors showed few
approximate solutions to reduce these replications.

Later [17], introduced the concept of consistent weighted sampling (CWS), which focuses
on sampling directly from some well-tailored distribution to avoid any replication. This
method, unlike previous ones, could handle real weights exactly. Going a step further,
Ioffe [13] was able to compute the exact distribution of minwise sampling leading to a
scheme with worst case O(d), where d is the number of non-zeros. This is the fastest known
exact weighted minwise sampling scheme, which will also be our main baseline.

O(dk) for computing k independent hashes is very expensive for modern massive datasets,
especially when k with ranges up to thousands. Recently, there was a big success for the
binary case, where using the novel idea of “Densification" [26, 27, 25] the computation time
for unweighted minwise was brought down to O(d + k). This resulted in over 100-1000 fold
improvement. However, this speedup was limited only to binary vectors. Moreover, the
samples were not completely independent.

Capitalizing on recent advances for fast unweighted minwise hashing, [11] exploited the old
idea of replication to convert weighted sets into unweighted sets. To deal with non-integer
weights, the method samples the coordinates with probabilities proportional to leftover
weights. The overall process converts the weighted minwise sampling to an unweighted
problem, however, at a cost of incurring some bias (see Algorithm 2). This scheme is faster
than Ioffe’s scheme but, unlike other prior works on CWS, it is not exact and leads to biased
and correlated samples. Moreover, it requires strong and expensive independence [12].

All these lines of work lead to a natural question: does there exist an unbiased and inde-
pendent WMH scheme with same property as Ioffe’s hashes but significantly faster than all
existing methodologies? We answer this question positively.
1.1 Our Contributions:
1. We provide an unbiased weighted minwise hashing scheme, where each hash computa-
tion takes time inversely proportional to effective sparsity (define later) which can be an
order of magnitude (even more) smaller than O(d). This improves upon the best-known
scheme in the literature by Ioffe [13] for a wide range of datasets. Experimental evaluations
on real datasets show more than 60000x speedup over the best known exact scheme and
around 100x times faster than biased approximate schemes based on the recent idea of fast
minwise hashing.
2. In practice, our hashing scheme requires much fewer bits usually (5-9) bits instead of
64 bits (or higher) required by existing schemes, leading to around 8x savings in space, as
shown on real datasets.

2

3. We derive our scheme from elementary first principles. Our scheme is simple and it
only requires access to uniform random number generator, instead of costly sampling and
transformations needed by other methods. The hashing procedure is different from tradi-
tional schemes and could be of independent interest in itself. Our scheme naturally provide
the quantification of when and how much savings we can obtain compared to existing
methodologies.
4. Weighted Minwise sampling is a fundamental subroutine in many celebrated approxima-
tion algorithms. Some of the immediate consequences of our proposal are as follows:

• We obtain an algorithmic improvement, over the query time of LSH based algorithm,
for L1 distance and Jaccard Similarity search.

• We reduce the kernel feature [21] computation time with min-max kernels [15].
• We reduce the sketching time for fast estimation of a variety of measures, including

L1 and earth mover distance [14, 5].

2 Review: Ioffe’s Algorithm and Fast Unweighted Minwise Hashing

Algorithm 1 Ioffe’s CWS [13]
input Vector x, random seed[][]

for i = 1 to k do
for Iterate over x j s.t x j > 0 do

randomseed = seed[i][j];
Sample ri, j, ci, j ∼ Gamma(2, 1).
Sample βi, j ∼ Uni f orm(0, 1)

t j =

⌊
log x j

ri, j
+ βi, j

⌋
y j = exp(ri, j(t j − βi, j))
z j = y j ∗ exp(ri, j)
a j = ci, j/z j

end for
k∗ = arg min j a j
HashPairs[i] = (k∗, tk∗)

end for
RETURN HashPairs[]

We briefly review the state-of-the-art method-
ologies for Weighted Minwise Hashing (WMH).
Since WMH is only defined for weighted sets,
our vectors under consideration will always be
positive, i.e. every xi ≥ 0. D will denote the di-
mensionality of the data, and we will use d to
denote the number (or the average) of non-zeros
of the vector(s) under consideration.

The fastest known scheme for exact weighted
minwise hashing is based on an elegant deriva-
tion of the exact sampling process for “Consis-
tent Weighted Sampling" (CWS) due to Ioffe [13],
which is summarized in Algorithm 1. This
scheme requires O(d) computations.

O(d) for a single hash computation is quite ex-
pensive. Even the unweighted case of minwise
hashing had complexity O(d) per hashes, until
recently. [26, 27] showed a new one permutation
based scheme for generating k near-independent unweighted minwise hashes in O(d + k)
breaking the old O(dk) barrier. However, this improvement does not directly extend to the
weighted case. Nevertheless, it leads to a very powerful heuristic in practice.

Algorithm 2 Reduce to Unweighted [11]
input Vector x,

S = φ
for Iterate over x j s.t x j > 0 do

f loorx j = bx jc

for i = 1 to f loorx j do
S = S ∪ (i, j)

end for
r = Uni f orm(0, 1)
if r ≤ x j − f loorx j then

S = S ∪ (f loorx j + 1, j)
end if

end for
RETURN S (unweighted set)

It was known that with some bias, weighted
minwise sampling can be reduced to an un-
weighted minwise sampling using the idea of
sampling weights in proportion to their prob-
abilities [10, 14]. Algorithm 2 describes such a
procedure. A reasonable idea is then to use the
fast unweighted hashing scheme, on the top of
this biased approximation [11, 24]. The inside
for-loop in Algorithm 2 blows up the number of
non-zeros in the returned unweighted set. This
makes the process slower and dependent on the
magnitude of weights. Moreover, unweighted
sampling requires very costly random permuta-
tions for good accuracy [20].

Both the Ioffe’s scheme and the biased un-
weighted approximation scheme generate big hash values requiring 32-bits or higher storage
per hash value. For reducing this to a manageable size of say 4-8 bits, a commonly adopted
practical methodology is to randomly rehash it to smaller space at the cost of loss in accu-
racy [16]. It turns out that our hashing scheme generates 5-9 bits values, h(x), satisfying
Equation 2, without losing any accuracy, for many real datasets.

3

3 Our Proposal: New Hashing Scheme
We first describe our procedure in details. We will later talk about the correctness of the
scheme. We will then discuss its runtime complexity and other practical issues.

3.1 Procedure

𝑴𝟎 = 𝟎

𝑴𝟏

𝒚𝟐

𝑴𝟐

𝑴𝟑

𝑴𝟒 = 𝑴

𝒚𝟑 = 𝟎 𝒚𝟒

𝑴𝟎 = 𝟎

𝒙𝟏

𝑴𝟏

𝒙𝟐

𝑴𝟐

𝑴𝟑

𝑴𝟒 = 𝑴

𝒙𝟑

𝒙𝟒

𝒚𝟏
y

x

Figure 1: Illustration of Red-Green Map
of 4 dimensional vectors x and y.

We will denote the ith component of vector x ∈
RD by xi. Let mi be the upper bound on the value
of component xi in the given dataset. We can al-
ways assume the mi to be an integer, otherwise
we take the ceiling dmie as our upper bound. De-
fine

i∑
k=1

mi = Mi. and
D∑

k=1

mi = MD = M (3)

If the data is normalized, then mi = 1 and M = D.

Given a vector x, we first create a red-green map associated with it, as shown in Figure 1.
For this, we first take an interval [0,M] and divide it into D disjoint intervals, with ith

interval being [Mi−1,Mi] which is of the size mi. Note that
∑D

i=1 mi = M, so we can always
do that. We then create two regions, red and green. For the ith interval [Mi−1,Mi], we mark
the subinterval [Mi−1,Mi−1 + xi] as green and the rest [Mi−1 + xi,Mi] with red, as shown in
Figure 1. If xi = 0 for some i, then the whole ith interval [Mi−1,Mi] is marked as red.

Formally, for a given vector x, define the green xgreen and the red xred regions as follows

xgreen = ∪
D
i=1[Mi,Mi + xi]; xred = ∪

D
i=1[Mi + xi,Mi+1]; (4)

Algorithm 3 Weighted MinHash
input Vector x, Mi’s, k, random seed[].

Initialise Hashes[] to all 0s.
for i = 1 to k do

randomseed = seed[i];
while true do

r = M × Uni f orm(0, 1);
if ISGREEN(r), (check if r ∈ xred
then

break;
end if
randomseed = dr ∗ 1000000e ;
Hashes[i] + +;

end while
end for
RETURN Hashes

Our sampling procedure simply draws an inde-
pendent random real number between [0,M], if
the random number lies in the red region we
repeat and re-sample. We stop the process as
soon as the generated random number lies in
the green region. Our hash value for a given
data vector, h(x), is simply the number of steps
taken before we stop. We summarize the proce-
dure in Algorithm 3. More formally,

Definition 1 Define {ri : i = 1, 2, 3....} as a se-
quence of i.i.d uniformly generated random number
between [0,M]. Then we define the hash of x, h(x) as

h(x) = arg min
i

ri, s.t. ri ∈ xgreen (5)

Our procedure can be viewed as a form of rejec-
tion sampling [30]. To the best of our knowledge,
there has been no prior evidence in the literature, where that the number of samples rejected
has locality sensitive property.

We want our hashing scheme to be consistent [13] across different data points to guarantee
Equation 2. This requires ensuring the consistency of the random numbers in hashes [13].
We can achieve the required consistency by pre-generating the sequence of random numbers
and storing them analogous to other hashing schemes. However, there is an easy way to
generate a fixed sequence of random numbers on the fly by ensuring the consistency of the
random seed. This does not require any storage, except the starting seed. Our Algorithm 3
uses this criterion, to ensure the consistency of random numbers. We start with a fixed
random seed for generating random numbers. If the generated random number lies in the
red region, then before re-sampling, we reset the seed of our random number generator as a
function of discarded random number. In the algorithm, we used d100000 ∗ re, where de is
the ceiling operation, as a convenient way to ensure the consistency of sequence, without
any memory overhead. This seems to works nicely in practice. Since we are sampling real
numbers, the probability of any repetition (or cycle) is zero. For generating k independent
hashes we just use different random seeds which are kept fixed for the entire dataset.

4

3.2 Correctness
We show that the simple, but very unusual, scheme given in Algorithms 3 actually does
possess the required property, i.e. for any pair of points x and y Equation 2 holds. Unlike
the previous works on this line [17, 13] which requires computing the exact distribution of
associated quantities, the proof of our proposed scheme is elementary and can be derived
from first principles. This is not surprising given the simplicity of our procedure.

Theorem 1 For any two vectors x and y, we have

Pr
(
h(x) = h(y)

)
= J(x, y) =

∑D
i=1 min{xi, yi}∑D
i=1 max{xi, yi}

(6)

Theorem 1 implies that the sampling process is exact and we automatically have an unbiased
estimator of J(x, y), using k independently generated WMH, hi(x)s from Algorithm 3.

Ĵ =
1
k

k∑
i=1

[
1{hi(x) = hi(y)}

]
; E(Ĵ) = J(x, y); Var(Ĵ) =

J(x, y)(1 − J(x, y))
k

, (7)

where 1 is the indicator function.

3.3 Running Time Analysis and Fast Implementation
Define

sx =
Size of green region

Size of red region + Size of green region
=

∑D
i=1 xi

M
=
||x||1
M

, (8)

as the effective sparsity of the vector x. Note that this is also the probability of Pr(r ∈ xgreen).
Algorithm 3 has a while loop.

We show that the expected times the while loops runs, which is also the expected value of
h(x), is the inverse of effective sparsity . Formally,

Theorem 2

E(h(x)) =
1
sx

; Var(h(x)) =
1 − sx

s2
x

; Pr
(
h(x) ≥

log δ
log (1 − sx)

)
≤ δ. (9)

3.4 When is this advantageous over Ioffe’s scheme?
The time to compute each hash value, in expectation, is the inverse of effective sparsity
1
s . This is a very different quantity compared to existing solutions which needs O(d). For
datasets with 1

s << d, we can expect our method to be much faster. For real datasets, such as
image histograms, where minwise sampling is popular[13], the value of this sparsity is of
the order of 0.02-0.08 (see Section 4.2) leading to 1

sx
≈ 13−50. On the other hand, the number

of non-zeros is around half million. Therefore, we can expect significant speed-ups.

Corollary 1 The expected amount of bits required to represent h(x) is small, in particular,

E(bits) ≤ − log sx; E(bits) ≈ log
1
sx
−

(1 − sx)
2

; (10)

Existing hashing scheme require 64 bits, which is quite expensive. A popular approach for
reducing space uses least significant bits of hashes [16, 13]. This tradeoff in space comes at
the cost of accuracy [16]. Our hashing scheme naturally requires only few bits, typically 5-9
(see Section 4.2), eliminating the need for trading accuracy for manageable space.

We know from Theorem 2 that each hash function computation requires 1
s number of

function calls to ISGREEN(r). If we can implement ISGREEN(r) in constant time, i.e O(1),
then we can generate generate k independent hashes in total O(d + k

s) time instead of O(dk)
required by [13]. Note that O(d) is the time to read the input vector which cannot be avoided.
Once the data is loaded into the memory, our procedure is actually O(k

s) for computing k
hashes, for all k ≥ 1. This can be a huge improvement as in many real scenarios 1

s � d

5

Before we jump into a constant time implementation of ISGREEN(r), we would like readers
to note that there is a straightforward binary search algorithm for ISGREEN(r) in log d time.
We consider d intervals [Mi,Mi + xi] for all i, such that xi , 0. Because of the nature of the
problem, Mi−1 + xi−1 ≤ Mi ∀i. Therefore, these intervals are disjoint and sorted. Therefore,
given a random number r, determining if r ∈ ∪D

i=1[Mi,Mi + xi] only needs binary search over
d ranges. Thus, in expectation, we already have a scheme that generates k independent
hashes in total O(d + k

s log d) time improving over best known O(dk) required by [13] for
exact unbiased sampling, whenever d � 1

s .
Algorithm 4 ComputeHashMaps (Once per
dataset)
input Mi’s,

index =0, CompToM[0] =0
for i = 0 to D − 1 do

if i < D − 1 then
CompToM[i + 1] = Mi +CompToM[i]

end if
for j = 0 to Mi − 1 do

IntToComp[index] = i
index++

end for
end for
RETURN CompToM[] and IntToComp[]

We show that with some algorithmic tricks
and few more data structures, we can imple-
ment ISGREEN(r) in constant time O(1). We
need two global pre-computed hashmaps,
IntToComp (Integer to Vector Component)
and CompToM (Vector Component to M
value). IntToComp is a hashmap that maps
every integer between [0,M] to the asso-
ciated components, i.e., all integers be-
tween [Mi,Mi+1] are mapped to i, because
it is associated with ith component. Comp-
ToM maps every component of vectors i ∈
{1, 2, 3, ..., D} to its associated value Mi. The
procedure for computing these hashmaps
is straightforward and is summarized in Al-
gorithm 4. It should be noted that these hash-maps computation is a one time pre-processing
operation over the entire dataset having a negligible cost. Mi’s can be computed (estimated)
while reading the data.

Algorithm 5 ISGREEN(r)
input r, x, Hashmaps IntToComp[] and

CompToM[] from Algorithm 4.

index = dre
i = IntToComp[index]
Mi = CompToM[i]
if r ≤ Mi + xi then

RETURN TRUE
end if
RETURN FALSE

Using these two pre-computed hashmaps, the
ISGREEN(r) methodology works as follows: We
first compute the ceiling of r, i.e. dre, then
we find the component i associated with r, i.e.,
r ∈ [Mi,Mi+1], and the corresponding associated
Mi using hashmaps IntToComp and CompToM. Fi-
nally, we return true if r ≤ xi + Mi otherwise we
return false. The main observation is that since
we ensure that all Mi’s are Integers, for any real
number r, if r ∈ [Mi,Mi+1] then the same holds
for dre, i.e., dre ∈ [Mi,Mi+1]. Hence we can work
with hashmaps using dre as the key. The overall procedure is summarized in Algorithm 5.

Note that our overall procedure is much simpler compared to Algorithm 1. We only need to
generate random numbers followed by a simple condition check using two hash lookups.
Our analysis shows that we have to repeat this only for small number of times. Compare
this with the scheme of Ioffe where for every non-zero component of a vector we need to
sample two Gamma variables followed by computing several expensive transformations
including exponentials. We next demonstrate the benefits of our approach in practice.

4 Experiments

In this section, we demonstrate that in real high-dimensional settings, our proposal provides
significant speedup and requires less memory over existing methods. We also need to
validate our theory that our scheme is unbiased and should be indistinguishable in accuracy
with Ioffe’s method.

Baselines: Ioffe’s method is the fastest known exact method in the literature, so it serves
as our natural baseline. We also compare our method with biased unweighted approxi-
mations (see Algorithm 2) which capitalizes on recent success in fast unweighted minwise
hashing [26, 27], we call it Fast-WDOPH (for Fast Weighted Densified One Permutation
Hashing). Fast-WDOPH needs very long permutation, which is expensive. For efficiency,

6

Number of Hashes
10 20 30 40 50

A
ve

ra
ge

 E
rr

or

0

0.05

0.1

0.15

0.2

Sim=0.8

Proposed
Fast-WDOPH
Ioffe

Number of Hashes
10 20 30 40 50

A
ve

ra
ge

 E
rr

or

0

0.05

0.1

0.15

0.2

0.25

Sim=0.72

Proposed
Fast-WDOPH
Ioffe

Number of Hashes
10 20 30 40 50

A
ve

ra
ge

 E
rr

or

0

0.1

0.2

0.3

Sim=0.61

Proposed
Fast-WDOPH
Ioffe

Number of Hashes
10 20 30 40 50

A
ve

ra
ge

 E
rr

or

0

0.1

0.2

0.3

Sim=0.56
Proposed
Fast-WDOPH
Ioffe

Number of Hashes
10 20 30 40 50

A
ve

ra
ge

 E
rr

or
0

0.1

0.2

0.3

Sim=0.44

Proposed
Fast-WDOPH
Ioffe

Number of Hashes
10 20 30 40 50

A
ve

ra
ge

 E
rr

or

0

0.1

0.2

0.3

0.4

Sim=0.27

Proposed
Fast-WDOPH
Ioffe

Figure 2: Average Errors in Jaccard Similarity Estimation with the Number of Hash Val-
ues. Estimates are averaged over 200 repetitions.

we implemented the permutation using fast 2-universal hashing which is always recom-
mended [18].

Data non-zeros (d) Dim (D) Sparsity
(s)

Hist 737 768 0.081
Caltech101 95029 485640 0.024
Oxford 401879 580644 0.086

Table 1: Basic Statistics of the Datasets

Datasets: Weighted Minwise sam-
pling is commonly used for sketch-
ing image histograms [13]. We
chose two popular publicly avail-
able vision dataset Caltech101 [9]
and Oxford [19]. We used the stan-
dard publicly available Histogram
of Oriented Gradient (HOG) codes [6], popular in vision task, to convert images into fea-
ture vectors. In addition, we also used random web images [29] and computed simple
histograms of RGB values. We call this dataset as Hist. The statistics of these datasets
is summarized in Table 1. These datasets cover a wide range of variations in terms of
dimensionality, non-zeros and sparsity.

4.1 Comparing Estimation Accuracy

Method Prop Ioffe Fast-
WDOPH

Hist 10ms 986ms 57ms
Caltech101 57ms 87105ms 268ms

Oxford 11ms 746120ms 959ms

Table 2: Time taken in milliseconds (ms) to com-
pute 500 hashes by different schemes. Our pro-
posed scheme is significantly faster.

In this section, we perform a sanity
check experiment and compare the es-
timation accuracy with WMH. For this
task we take 9 pairs of vectors from
our datasets with varying level of sim-
ilarities. For each of the pair (x, y), we
generate k weighted minwise hashes
hi(x) and hi(y) for i ∈ {1, 2, .., k}, us-
ing the three competing schemes. We
then compute the estimate of the Jac-
card similarity J(x, y) using the formula 1

k
∑k

i=1
[
1{hi(x) = hi(y)}

]
(See Equation 7). We compute

the errors in the estimate as a function of k. To minimize the effect of randomization, we
average the errors from 200 random repetitions with different seeds. We plot this average
error with k = {1, 2, ..., 50} in Figure 2 for different similarity levels.

We can clearly see from the plots that the accuracy of the proposed scheme is indistinguish-
able from Ioffe’s scheme. This is not surprising because both the schemes are unbiased and
have the same theoretical distribution. This validates Theorem 1

The accuracy of Fast-WDOPH is inferior to that of the other two unbiased schemes and
sometimes its performance is poor. This is because the weighted to unweighted reduction
is biased and approximate. The bias of this reduction depends on the vector pairs under
consideration, which can be unpredictable.

7

4.2 Speed Comparisons
We compute the average time (in milliseconds) taken by the competing algorithms to
compute 500 hashes of a given data vector for all the three datasets. Our experiments were
coded in C# on Intel Xenon CPU with 256 GB RAM. Table 2 summarises the comparison.
We do not include the data loading cost in these numbers and assume that the data is in the
memory for all the three methodologies.

Hist Caltech101 Oxford
Mean Values 11.94 52.88 9.13
Hash Range [1,107] [1,487] [1,69]
Bits Needed 7 9 7

Table 3: The range of the observed hash values, using
the proposed scheme, along with the maximum bits
needed per hash value. The mean hash values agrees
with Theorem 2

We can clearly see tremendous
speedup over Ioffe’s scheme. For
Hist dataset with mere 768 non-
zeros, our scheme is 100 times
faster than Ioffe’s scheme and
around 5 times faster than Fast-
WDOPH approximation. While
on caltech101 and Oxford datasets,
which are high dimensional and
dense datasets, our scheme can be 1500x to 60000x faster than Ioffe’s scheme, while it is
around 5 to 100x times faster than Fast-WDOPH scheme. Dense datasets like Caltech101 and
Oxford represent more realistic scenarios. These features are taken from real applications [6]
and such level of sparsity and dimensionality are more common in practice.

The results are not surprising because Ioffe’s scheme is very slow O(dk). Moreover, the
constant are inside bigO is also large, because of complex transformations. Therefore, for
datasets with high values of d (non-zeros) this scheme is very slow. Similar phenomena
were observed in [13], that decreasing the non-zeros by ignoring non-frequent dimensions
can be around 150 times faster. However, ignoring dimension looses accuracy.

4.3 Memory Comparisons
Table 3 summarizes the range of the hash values and the maximum number of bits needed
to encode these hash values without any bias. We can clearly see that the hash values, even
for such high-dimensional datasets, only require 7-9 bits. This is a huge saving compared
to existing hashing schemes which requires (32-64) bits [16]. Thus, our method leads to
around 5-6 times savings in space. The mean values observed (Table 3) validate the formula
in Theorem 2.

5 Discussions
Theorem 2 shows that the quantity sx =

∑D
i=1 xi∑D
i=1 mi

determines the runtime. If sx is very very
small then, although the running time is constant (independent of d or D), it can still make
the algorithm unnecessarily slow. Note that for the algorithm to work we choose Mi to be
the largest integer greater than the maximum possible value of co-ordinate i in the given
dataset. If this integer gap is big then we unnecessarily increase the running time. Ideally,
the best running time is obtained when the maximum value, is itself an integer, or is very
close to its ceiling value. If all the values are integers, scaling up does not matter, as it does
not change sx, but scaling down can make sx worse. Ideally we should scale, such that,

α = arg maxα =
∑D

i=1 αxi∑D
i=1dαmie

is maximized, where mi is the maximum value of co-ordinate i.

5.1 Very Sparse Datasets
For very sparse datasets, the information is more or less in the sparsity pattern rather than in
the magnitude [28]. Binarization of very sparse dataset is a common practice and densified
one permutation hashing [26, 27] provably solves the problem in O(d + k). Nevertheless, for
applications when the data is extremely sparse, and the magnitude of component seems
crucial, binary approximations followed by densified one permutation hashing (Fast-DOPH)
should be the preferred method. Ioeffe’s scheme is preferable, dues to its exactness nature,
when number the number of non-zeros is of the order of k.

6 Acknowledgements
This work is supported by Rice Faculty Initiative Award 2016-17. We would like to thank
anonymous reviewers, Don Macmillen, and Ryan Moulton for feedbacks on the presentation
of the paper.

8

References
[1] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all pairs similarity search. In WWW, pages 131–140, 2007.

[2] A. Z. Broder. On the resemblance and containment of documents. In the Compression and Complexity of Sequences, pages 21–29,
Positano, Italy, 1997.

[3] A. Z. Broder. Filtering near-duplicate documents. In FUN, Isola d’Elba, Italy, 1998.

[4] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syntactic clustering of the web. In WWW, pages 1157 – 1166,
Santa Clara, CA, 1997.

[5] M. S. Charikar. Similarity estimation techniques from rounding algorithms. In STOC, pages 380–388, Montreal, Quebec,
Canada, 2002.

[6] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Computer Vision and Pattern Recognition,
volume 1, pages 886–893. IEEE, 2005.

[7] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokn. Locality-sensitive hashing scheme based on p-stable distributions. In
SCG, pages 253 – 262, Brooklyn, NY, 2004.

[8] C. Dwork and A. Roth. The algorithmic foundations of differential privacy.

[9] L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training examples: An incremental bayesian
approach tested on 101 object categories. Computer Vision and Image Understanding, 106(1):59–70, 2007.

[10] S. Gollapudi and R. Panigrahy. Exploiting asymmetry in hierarchical topic extraction. In Proceedings of the 15th ACM interna-
tional conference on Information and knowledge management, pages 475–482. ACM, 2006.

[11] B. Haeupler, M. Manasse, and K. Talwar. Consistent weighted sampling made fast, small, and easy. Technical report,
arXiv:1410.4266, 2014.

[12] P. Indyk. A small approximately min-wise independent family of hash functions. Journal of Algorithms, 38(1):84–90, 2001.

[13] S. Ioffe. Improved consistent sampling, weighted minhash and L1 sketching. In ICDM, pages 246–255, Sydney, AU, 2010.

[14] J. Kleinberg and E. Tardos. Approximation algorithms for classification problems with pairwise relationships: Metric label-
ing and Markov random fields. In FOCS, pages 14–23, New York, 1999.

[15] P. Li. 0-bit consistent weighted sampling. In KDD, 2015.

[16] P. Li and A. C. König. Theory and applications b-bit minwise hashing. Commun. ACM, 2011.

[17] M. Manasse, F. McSherry, and K. Talwar. Consistent weighted sampling. Technical Report MSR-TR-2010-73, Microsoft
Research, 2010.

[18] M. Mitzenmacher and S. Vadhan. Why simple hash functions work: exploiting the entropy in a data stream. In Proceed-
ings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 746–755. Society for Industrial and Applied
Mathematics, 2008.

[19] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabularies and fast spatial matching.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2007.

[20] M. Pătraşcu and M. Thorup. On the k-independence required by linear probing and minwise independence. In ICALP,
pages 715–726, 2010.

[21] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in neural information processing systems,
pages 1177–1184, 2007.

[22] A. Rajaraman and J. Ullman. Mining of Massive Datasets.

[23] Z. Rasheed and H. Rangwala. Mc-minh: Metagenome clustering using minwise based hashing. SIAM.

[24] P. Sadosky, A. Shrivastava, M. Price, and R. C. Steorts. Blocking methods applied to casualty records from the syrian conflict.
arXiv preprint arXiv:1510.07714, 2015.

[25] A. Shrivastava. Probabilistic Hashing Techniques For Big Data. PhD thesis, Cornell University, 2015.

[26] A. Shrivastava and P. Li. Densifying one permutation hashing via rotation for fast near neighbor search. In ICML, Beijing,
China, 2014.

[27] A. Shrivastava and P. Li. Improved densification of one permutation hashing. In UAI, Quebec, CA, 2014.

[28] A. Shrivastava and P. Li. In defense of minhash over simhash. In Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics, pages 886–894, 2014.

[29] J. Wang, J. Li, D. Chan, and G. Wiederhold. Semantics-sensitive retrieval for digital picture libraries. D-Lib Magazine, 5(11),
1999.

[30] Wikipedia. https://en.wikipedia.org/wiki/Rejection_sampling.

9

https://en.wikipedia.org/wiki/Rejection_sampling

