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Abstract

Nyström method has been successfully used to improve the computational effi-
ciency of kernel ridge regression (KRR). Recently, theoretical analysis of Nyström
KRR, including generalization bound and convergence rate, has been established
based on reproducing kernel Hilbert space (RKHS) associated with the symmetric
positive semi-definite kernel. However, in real world applications, RKHS is not
always optimal and kernel function is not necessary to be symmetric or positive
semi-definite. In this paper, we consider the generalized Nyström kernel regression
(GNKR) with `2 coefficient regularization, where the kernel just requires the conti-
nuity and boundedness. Error analysis is provided to characterize its generalization
performance and the column norm sampling strategy is introduced to construct the
refined hypothesis space. In particular, the fast learning rate with polynomial decay
is reached for the GNKR. Experimental analysis demonstrates the satisfactory
performance of GNKR with the column norm sampling.

1 Introduction

The high computational complexity makes kernel methods unfeasible to deal with large-scale data.
Recently, the Nyström method and its alternatives (e.g., the random Fourier feature technique [15],
the sketching method [25]) have been used to scale up kernel ridge regression (KRR) [4, 23, 27]. The
key step of Nyström method is to construct a subsampled matrix, which only contains part columns
of the original empirical kernel matrix. Therefore, the sampling criterion on the matrix column
affects heavily on the learning performance. The subsampling strategies of Nyström method can be
categorized into two types: uniform sampling and non-uniform sampling. The uniform sampling is
the simplest strategy, which has shown satisfactory performance on some applications [16, 23, 24].
From different theoretical aspects, several non-uniform sampling approaches have been proposed
such as the square `2 column-norm sampling [3, 4], the leverage score sampling [5, 8, 12], and the
adaptive sampling [11]. Besides the sampling strategies, there exist learning bounds for Nyström
kernel regression from three measurements: the matrix approximation [4, 5, 11], the coefficient
approximation [9, 10], and the excess generalization error [2, 16, 24].

Despite rapid progress on theory and applications, the following critical issues should be further
addressed for Nyström kernel regression.
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• Nyström regression with general kernel. The previous algorithms are mainly limited to
KRR with symmetric and positive semi-definite kernels. For real-world applications, this
restriction may be not necessary. Several general kernels have shown the competitive
performance in machine learning, e.g., the indefinite kernels for regularized algorithms
[14, 20, 26] and PCA [13]. Therefore, it is important to formulate the learning algorithm for
Generalized Nyström Kernel Regression (GNKR).
• Generalization analysis and sampling criterion. Previous theoretical results rely on the

symmetric positive semi-definite (SPSD) matrix associated with a Mercer kernel [17].
However, this condition is not satisfied for GNKR, which induces the additional difficulty on
error analysis. Can we get the generalization error analysis for GNKR? It is also interesting
to explore the sampling strategy for GNKR, e.g., the column-norm sampling in [3, 4].

To address the above issues, we propose the GNKR algorithm and investigate its theoretical properties
on generalization bound and learning rate. Inspired from the recent studies for data dependent
hypothesis spaces [7, 19], we establish the error analysis for GNKR, which implies that the learning
rate with polynomial decay can be reached under proper parameter selection. Meanwhile, we extend
the `2 column norm subsampling in the linear regression [16, 22] to the GNKR setting.

The main contributions of this paper can be summarized as below:

• GNKR with `2 regularization. Due to the lack of Mercer condition associated with general
kernel, coefficient regularization becomes a natural choice to replace the kernel norm
regularization in KRR. Note that Nyström approximation has the similar role with the `1
regularization in [7, 18, 20], which addresses the sample sparsity on hypothesis function.
Hence, we formulate GNKR by combining the Nyström method and the least squares
regression with `2 regularization in [19, 21].

• Theoretical and empirical evaluations. From the view of learning with data dependent
hypothesis spaces, theoretical analysis of GNKR is established to illustrate its generalization
bound and learning rate. In particular, the fast learning rate arbitrarily close to O(m−1) is
obtained under mild conditions, where m is the size of subsampled set. The effectiveness of
GNKR is also supported by experiments on synthetic and real-world data sets.

2 Related Works

Due to the flexibility and adaptivity, least squares regression algorithms with general kernel have been
proposed involving various types of regularization, e.g., the `1-regularizer [18, 21], the `2-regularizer
[19, 20], and the elastic net regularization [7]. For the Mercer kernel, these algorithms are related
closely with the KRR, which has been well understand in learning theory. For the general kernel
setting, theoretical foundations of regression with coefficient regularization have been studied recently
via the analysis techniques with the operator approximation [20] and the empirical covering numbers
[7, 18, 19]. Although rich results on theoretical analysis, the previous works mainly focus on the
prediction accuracy without considering the computation complexity for large scale data.

Nyström approximation has been studied extensively for kernel methods recently. Almost all existing
studies are relied on the fast approximation of SPSD matrix associated with a Mercer kernel. For the
fixed design setting, the expectation of the excess generalization error is bounded for least square
regression with the regularizer in RKHS [1, 2]. Recently, the probabilistic error bounds have been
estimated for Nyström KRR in [16, 24]. In [24], the fast learning rate with O(m−1) is derived for the
fixed design regression under the conditions on kernel matrix eigenvalues. In [16], the convergence
rate is obtained under the capacity assumption and the regularity assumption. It is worthy notice
that the learning bound in [16] is based on the estimates of the sample error, the computation error,
and the approximation error. Indeed, the computation error is related with the sampling subset and
can be considered as the hypothesis error in [18], which is induced by the variance of hypothesis
spaces. Differently from previous works, our theoretical analysis of GNKR is dependent on general
continuous kernel and `2 coefficient regularization.

3 Generalized Nyström Kernel Regression

Let ρ be a probability distribution on Z := X × Y , where X ⊂ Rd and Y ⊂ R are viewed as the
input space and the output space, respectively. Let ρ(·|x) be the conditional distribution of ρ for
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given x ∈ X and let F be a measurable function space on X . In statistical learning, the samples
z := {zi}ni=1 = {(xi, yi)}ni=1 are drawn independently and identically from an unknown distribution
ρ. The task of least squares regression is to find a prediction function f : X → R such that the
expected risk

E(f) =

∫
Z

(y − f(x))2dρ(x, y)

as small as possible. From the viewpoint of approximation theory, this means to search a good
approximation of the regression function

fρ(x) =

∫
Y
ydρ(y|x)

based on the empirical risk

Ez(f) =
1

n

n∑
i=1

(yi − f(xi))
2.

Let K : X × X → R be a continuous and bounded kernel function. Without loss of generality, we
assume that κ := sup

x,x′∈X
K(x, x′) ≤ 1 and for all |y| ≤ 1 for all y ∈ Y throughout this paper.

Besides the given samples z, the hypothesis function space is crucial to reach well learning perfor-
mance. The following data dependent hypothesis space has been used for kernel regression with
coefficient regularization:

Hn =
{
f(x) =

n∑
i=1

α̃iK(xi, x) : α̃ = (α̃1, ..., α̃n) ∈ Rn, x ∈ X
}
.

Given z, kernel regression with `2 regularization [19, 20] is formulated as

f̃z = fα̃z =

n∑
i=1

α̃z,iK(xi, ·) (1)

with

α̃z = arg min
α̃∈Rn

{ 1

n
‖Knnα̃− Y ‖22 + λnα̃T α̃

}
,

where Knn = (K(xi, xj))
n
i,j=1, Y = (y1, · · · , yn)T , and λ > 0 is a regularization parameter.

Even the positive semi-definiteness is not required for the kernel, (3) also can be solved by the
following linear system (see Theorem 3.1 in [20])

(KT
nnKnn + λn2In)α̃ = KT

nnY, (2)

where In is the n-order unit matrix.

From the viewpoint of learning function inHn, (1) can be rewritten as

f̃z = arg min
f∈Hn

{
Ez(f) + λn‖f‖2`2

}
, (3)

where

‖f‖2`2 = inf
{ n∑
i=1

α̃2
i : f =

n∑
i=1

α̃iK(xi, ·)
}
.

In a standard implementation of (2), the computational complexity is O(n3). This computation
requirement becomes the bottleneck of (3) when facing large data sets. To reduce the computational
burden, we consider to find the predictor in a smaller hypothesis space

Hm =
{
f(x) =

m∑
i=1

αiK(x̄i, x) : α = (α1, ..., αm) ∈ Rm, x ∈ X , {x̄i}mi=1 ⊂ {xi}ni=1

}
.
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The generalized Nyström kernel regression (GNKR) can be formulated as

fz = arg min
f∈Hm

{
Ez(f) + λm‖f‖2`2

}
. (4)

Denote (Knm)ij = K(xi, x̄j), (Kmm)jk = K(x̄i, x̄j) for i ∈ {1, ..., n}, j, k ∈ {1, ...,m}. We can
deduce that

fz =

m∑
i=1

αz,iK(x̄i, ·)

with

(KT
nmKnm + λmnIm)αz = KT

nmY. (5)

The key problem of (4) is how to select the subset {x̄i}mi=1 such that the computational complexity
can be decreased efficiently while satisfactory accuracy can be guaranteed. For the KRR, there
are several strategies to select the subset with different motivations [5, 11, 12]. In this paper we
preliminarily consider the following two strategies with low computational complexity:

• Uniform Subsampling. The subset {x̄i}mi=1 is drawn uniformly at random from the input
{xi}ni=1.

• Column-norm Subsampling. The subset {x̄i}mi=1 is drawn from {xi}ni=1 independently with
probabilities pi = ‖Ki‖2∑n

i=1 ‖Ki‖2
, where Ki = (K(x1, xi), ...,K(xn, xi))

T ∈ Rn.

Some discussions for the column-norm subsampling will be provided in Section 4.

4 Learning Theory Analysis

In this section, we will introduce our theoretical results on generalization bound and learning rate.
The detailed proofs can be found in the supplementary materials.

Inspired from analysis technique in [7, 19], we introduce the intermediate function for error decom-
position firstly. Let F be the square integrable space on X with norm ‖ · ‖L2

ρX
. For any bounded

continuous kernel K : X × X → R, the integral operator LK : F → F is defined as

LKf(x) =

∫
X
K(x, t)f(t)dρX (t),∀x ∈ X ,

where ρX is the marginal distribution of ρ. Given F and LK , introduce the function space

H =
{
g = LKf, f ∈ F

}
with ‖g‖H = inf

{
‖f‖L2

ρX
: g = LKf

}
.

SinceH is sample independent, the intermediate function can be constructed as gλ = LKfλ, where

fλ = arg min
f∈F

{
E(LKf)− E(fρ) + λ‖f‖2L2

ρX

}
. (6)

In learning theory, usually gλ is called as the regularized function and

D(λ) = inf
g∈H
{E(g)− E(fρ) + λ‖g‖2H} = E(LKfλ)− E(fρ) + λ‖fλ‖2L2

ρX

is called the approximation error

To further bridge the gap between gλ and fz, we construct the stepping stone function

ĝλ =
1

m

m∑
i=1

fλ(x̄i)K(x̄i, ·). (7)

The following condition on K is used in this paper, which has been well studied in learning theory
literature [18, 19]. Examples include Gaussian kernel, the sigmoid kernel [17], and the fractional
power polynomials [13].
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Definition 1 The kernel function K is a Cs kernel with s > 0 if there exists some constant cs > 0,
such that

|K(t, x)−K(t, x′)| ≤ cs‖x− x′‖s2, ∀t, x, x′ ∈ X .

The definition of fρ tells us |fρ(x)| ≤ 1, so it is natural to restrict the predictor to [−1, 1]. The
projection operator

π(f)(x) = min{1, f(x)}I{f(x) ≥ 0}+ max{−1, f(x)}I{f(x) < 0}
has been extensively used in learning theory analysis, e.g. [6].

It is a position to present our result on the generalization error bound.

Theorem 1 Suppose that X is compact subset of Rd and K ∈ Cs(X × X ) for some s > 0. For any
0 < δ < 1, with confidence 1− δ, there holds

E(π(fz))− E(fρ) ≤ c̃1 log2(8/δ)
(

(1 +m−1λ−1 +m−2λ−2 + n−
2

2+pλ−2)D(λ) + n−
2

2+pλ−
p

2+p

)
,

where constant c̃1 is independent of m,n, δ, and

p =

{
2d/(d+ 2s), if 0 < s ≤ 1;
2d/(d+ 2), if 1 < s ≤ 1 + d/2;
d/s, if s > 1 + d/2.

(8)

Theorem 1 is a general result that applies to Lipschitz continuous kernel. Although the statement
appears somewhat complicated at first sight, it yields fast convergence rate on the error when
specialized to particular kernels. Before doing so, let us provide a few heuristic arguments for
intuition. Theorem 1 guarantees an upper bound of the form

‖π(fz)− fρ‖2L2
ρX
≤ O

(
c(m,n, λ) inf

f
{E(LKf)− E(fρ) + λ‖f‖2L2

ρX
}+ n−

2
2+pλ−

p
2+p

)
. (9)

Note that a smaller value of λ reduces the approximation error term, but increases the second term
associated with the sample error. This inequality demonstrates that the proper λ should be selected
to balance the two terms. This quantitative relationship (9) also can be considered as the oracle
inequality for GNKR, where the approximation errorD(λ) only can be obtained by an oracle knowing
the distribution.

Theorem 1 tells us that the generalization bound of GNKR depends on the numbers of samples m,n,
the continuous degree s, and the approximation error D(λ). In essential, the subsampling number m
has double impact on generalization error: one is the complexity of data dependent hypothesis space
Hm and the other is the selection of parameter λ.

Now we introduce the characterization of approximation error, which has been studied in [19, 20].

Definition 2 The target function fρ can be approximated with exponent 0 < β ≤ 1 in H if there
exists a constant cβ ≥ 1 such that D(λ) ≤ cβλβ for any λ > 0.

If the kernel is not symmetric or positive semi-definite, the approximation condition holds true for
β = 2r

3 when fρ ∈ L−r
K̃
∈ L2

ρX , where LK̃ is the integral operator associated with K̃(u, v) =∫
X K(u, x)K(v, x)dρX , (u, v) ∈ X 2 (see [7]).

Now we state our main results on the convergence rate.

Theorem 2 Let X be a compact subset of Rd. Assume that fρ can be approximated with exponent
0 < β ≤ 1 inH and K ∈ Cs(X × X ) for some s > 0. Choose m ≤ n

1
2+p and λ = m−θ for some

θ > 0. For any 0 < δ < 1, with confidence 1− δ, there holds

E(π(fz))− E(fρ) ≤ c̃2 log2(8/δ)m−γ ,

where constant c̃2 is independent of m, δ, and

γ = min
{

2− pθ

2 + p
, 2 + βθ − 2θ, βθ, 1 + βθ − θ

}
.
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Theorem 2 states the polynomial convergence rate of GNKR and indicates its dependence on the
subsampling size m as n ≥ m2+p. Similar observation also can be found in Theorem 2 [16] for
Nyström KRR, where the fast learning rate also is relied on the grow of m under fixed hypothesis
space complexity. However, even we do not consider the complexity of hypothesis space, the increase
of m will add the computation complexity. Hence, a suitable size of m is a trade off between the
approximation performance and the computation complexity. When p ∈ (0, 2), m = n

1
2+p means

that m can be chosen between n
1
4 and 1

2 under the conditions in Theorem 4. In particular, the fast
convergence rate O(m−1) can be obtained as K ∈ C∞, θ → 1, and β → 1.

The most related works with Theorems 1 and 2 are presented in [16, 24], where learning bounds are
established for Nyström KRR. Compared with the previous results, the features of this paper can be
summarized as below.

• Learning model. This paper considered Nyström regression with data dependent hypothesis
space and coefficient regularization, which can employ general kernel including the indefi-
nite kernel and nonsymmetric kernel. However, the previous analysis just focuses on the
positive semi-definite kernel and the regularizer in RKHS. For a fixed design KRR, the fast
convergence O(m−1) in [24] depends on the eigenvalue condition of kernel matrix. Differ-
ently from [24], our result relies on the Lipschitz continuity of kernel and the approximation
condition D(λ) for the statistical learning setting.

• Analysis technique. The previous analysis in [16, 24] utilizes the theoretical techniques for
operator approximation and matrix decomposition, which depends heavily on the symmetric
positive semi-definite kernel. For GNKR (4), the previous analysis is not valid directly since
the kernel is not necessary to satisfy the positive semi-definite or symmetric condition. The
flexibility on kernel and the adaptivity on hypothesis space induce the additional difficulty
on error analysis. Fortunately, the error analysis is obtained by incorporating the error
decomposition ideas in [7] and the concentration estimate techniques in [18, 19]. An
interesting future work is to establish the optimal bound of GNKR to extend Theorem 2 in
[16] to the general setting.

For the proofs of Theorem 1 and 2, the key idea is using ĝλ as the stepping stone function to bridge fz
and gλ. Additionally, the connection between gλ = LKfλ and fρ has been well studied in learning
theory. Hence, the proofs in Appendix follow from the approximation decomposition.

In remainder of this section, we present a simple analysis for column-norm subsampling.

Given the full samples z = {(xi, yi)}ni=1 and sampling number m, the key of subsampling is to
select a subset of z with strong inference ability. In other words, we should select the subset with
small divergence with the full sample estimator. Following this idea, the optimal subsampling
criterion is studied in [28, 22] for the linear regression. Given z = {zi}ni=1 and Knn, we introduce
the objective function S(p) := S(p1, ..., pn) =

∑n
i=1

1−Lii
pi
‖Ki‖22 by extending (16) in [28] to

the kernel-based setting. Here {pi}ni=1 are the sampling probabilities with respect to {xi}ni=1 and
Lii = (Knn(KT

nnKnn + λn2In)−1KT
nn)ii, i ∈ {1, ..., n} are basic leverage values obtained from

(2). For the fixed design setting, assume that yi = KT
i α0 + εi, i = 1, ..., n, α0 ∈ Rn, where {εi}ni=1

are drawn identically and independently from N (0, σ2). Then, for λ = 0, min
p
S(p1, ..., pn) can

be transformed as min
p
Etr((Knn)T (diag(p))−1Knn), which is related with the A-optimality or

A-criterion for subset selection in [22].

When Lii → 0 for any i ∈ {1, ..., n}, we can get the following sampling probabilities.

Theorem 3 When hii = o(1) for 1 ≤ i ≤ n, the minimizer of S(p1, ..., pn) can be approximated by

pi =
‖Ki‖2∑n
i=1 ‖Ki‖2

, i ∈ {1, ..., n}.

Usually, the leverage values are computed by fast approximation algorithms [1, 16] since Lii involves
the inverse matrix. Different from the leverage values, the sampling probabilities in Theorem 3 can
be computed directly, which just involves the `2 column-norm of empirical matrix.
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Table 1: Average RMSE of GNKR with Gaussian(G)/Epanechnikov(E) kernel under different
sampling strategies and sampling size. US:=Uniform subsampling, CS: Column-norm subsampling.

Function Algorithm ]300 ]400 ]500 ]600 ]700 ]800 ]900 ]1000
f1(x) = x sin x G-GNKR-US 0.03412 0.03145 0.02986 0.02919 0.02897 0.02906 0.02896 0.02908
x ∈ [0, 2π] G-GNKR-CS 0.03420 0.03086 0.02954 0.02911 0.02890 0.02878 0.02891 0.02889

E-GNKR-US 0.10159 0.09653 0.09081 0.08718 0.08515 0.08278 0.08198 0.08024
E-GNKR-CS 0.09941 0.09414 0.08908 0.08631 0.08450 0.08237 0.08118 0.07898

f2(x) = sin x
x

G-GNKR-US 0.03442 0.03434 0.03418 0.03409 0.03404 0.03400 0.03398 0.03395
x ∈ [−2π, 2π] G-GNKR-CS 0.03444 0.03423 0.03419 0.03408 0.03397 0.03397 0.03396 0.03389

E-GNKR-US 0.04786 0.04191 0.04073 0.03692 0.03582 0.03493 0.03470 0.03440
E-GNKR-CS 0.04607 0.03865 0.03709 0.03573 0.03510 0.03441 0.03316 0.03383

f3(x) = sign(x) G-GNKR-US 0.29236 0.29102 0.29009 0.28908 0.28867 0.28839 0.28755 0.28742
x ∈ [−3, 3] G-GNKR-CS 0.29319 0.29071 0.28983 0.28975 0.28903 0.28833 0.28797 0.28768

E-GNKR-US 0.16170 0.15822 0.15537 0.15188 0.15086 0.14889 0.14730 0.14726
E-GNKR-CS 0.16500 0.15579 0.15205 0.15201 0.14949 0.14698 0.14597 0.14566

f4(x) = cos(ex) + sin x
x

G-GNKR-US 0.34916 0.35158 0.35155 0.35148 0.35156 0.35140 0.35136 0.35139
x ∈ [−2, 4] G-GNKR-CS 0.34909 0.35171 0.35168 0.35133 0.35153 0.35145 0.35141 0.35138

E-GNKR-US 0.22298 0.21012 0.20265 0.19977 0.19414 0.19126 0.18916 0.18560
E-GNKR-CS 0.21624 0.20783 0.20024 0.19698 0.19260 0.18996 0.18702 0.18662

5 Experimental Analysis

Since kernel regression with different types of regularization has been well studied in [7, 20, 21], this
section just presents the empirical evaluation of GNKR to illustrate the roles of sampling strategy and
kernel function. Gaussian kernel KG(x, t) = exp

{
− ‖x−t‖

2
2

2σ2

}
is used for simulated data and real

data. Epanechnikov kernel KE(x, t) =
(
1− ‖x−t‖

2
2

2σ2

)
+

is used in the simulated experiment. Here, σ
denotes the scale parameter selected form [10−5 : 10 : 104]. Following the discussion on parameter
selection in [16], we select the regularization parameter of GNKR from [10−15 : 10 : 10−3]. The
best results are reported according to the measure of Root Mean Squared Error (RMSE).

5.1 Experiments on synthetic data

Following the empirical studies in [20, 21], we design simulation experiments on f1(x) = x sinx, x ∈
[0, 2π], f2(x) = sin x

x , x ∈ [−2π, 2π], f3(x) = sign(x), x ∈ [−3, 3], and f4(x) = cos(ex) +
sin x
x , x ∈ [−2, 4]. The function fi is considered as the truly regression function for 1 ≤ i ≤ 4. Note

that f1, f2 are smooth, f3 is not continuous, and f4 embraces a highly oscillatory part. First, we select
10000 points randomly from the preset interval and generate the dependent variable y according to
the corresponding function. Then we divided these data into two parts with equal size. we chose one
part as the training samples and the other is regarded as testing samples. For the training samples, the
output y is contaminated by Gaussian noise N (0, 1). For each function and each kernel, we run the
experiment 20 times. The average RMSE is shown in Table 1. The results indicate that the column
norm subsampling can achieve the satisfactory performance. In particular, GNKR with the indefinite
Epanechnikov kernel has better performance than Gaussian kernel for the noncontinuous function f3
and the non-flat function f4. This observation is consistent with the empirical result in [21].

5.2 Experiments on real data

In order to better evaluate the empirical performance, four data sets are used in our study including
the Wine Quality, CASP, Year Prediction datasets (http://archive.ics.uci.edu/ml/) and the census-house
dataset (http://www.cs.toronto.edu/ delve/data/census-house/desc.html). The detailed information
about the data sets are showed in Table 2. Firstly, each data set is standardized by subtracting its
mean and dividing its standard deviation. Then, each input vector is unitized. For CASP and Year
Prediction, 20000 samples are drawn randomly from data sets, where half is used for training and the
rest is for testing. For other datasets, we random select part samples to training and use the rest part
as test set. Table 3 reports the average RMSE over ten trials.

Table 3 shows the performance of two sampling strategies. For CASP, and Year Prediction, we can
see that GNKR with 100 selected samples can achieve the satisfactory performance, which reduce
the computation complexity of (2) efficiently. Additionally, the competitive performance of GNKR
with Epanechnikov kernel is demonstrated via the experimental results on the four data sets. These
empirical examples support the effectiveness of the proposed method.
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Table 2: Statistics of data sets
Dataset #Features #Instances #Train #Test Dataset #Feature #Instance #Train #Test

Wine Quality 12 4898 2000 2898 CASP 9 45730 10000 10000
Year Prediction 90 515345 10000 10000 census-house 139 22784 12000 10784

Table 3: Average RMSE (×10−3) with Gaussian(G)/Epanechnikov(E) kernel under different sampling
levels and strategies. US:=Uniform subsampling, CS: Column-norm subsampling.

Function Algorithm ]50 ]100 ]200 ]400 ]600 ]800 ]1000
Wine Quality G-GNKR-US 14.567 14.438 14.382 14.292 14.189 14.103 13.936

G-GNKR-CS 14.563 14.432 14.394 14.225 14.138 14.014 13.936
E-GNKR-US 13.990 13.928 13.807 13.636 13.473 13.381 13.217
E-GNKR-CS 13.969 13.899 13.798 13.601 13.445 13.362 13.239

CASP G-GNKR-US 9.275 9.238 9.205 9.222 9.204 9.207 9.205
G-GNKR-CS 9.220 9.196 9.205 9.193 9.198 9.199 9.198
E-GNKR-US 4.282 4.196 4.213 4.153 4.181 4.174 4.180
E-GNKR-CS 4.206 4.249 4.206 4.182 4.172 4.165 4.118

Year Prediction G-GNKR-US 8.806 8.802 8.798 8.795 8.792 8.790 8.782
G-GNKR-CS 8.806 8.801 8.798 8.793 8.792 8.789 8.781
E-GNKR-US 7.013 6.842 6.739 6.700 6.676 6.671 6.637
E-GNKR-CS 7.006 6.861 6.804 6.705 6.697 6.663 6.662

census-house G-GNKR-US 111.084 111.083 111.082 111.079 111.077 111.074 111.071
G-GNKR-CS 111.083 111.080 111.080 111.079 111.075 111.071 111.068
E-GNKR-US 102.731 99.535 99.698 99.718 99.715 99.714 99.713
E-GNKR-CS 102.703 99.528 99.697 99.716 99.714 99.714 99.712

6 Conclusion

This paper focuses on the learning theory analysis of Nyström kernel regression. One key difference
with the previous related work is that GNKR uses general continuous kernel function and `2 coefficient
regularization. The stepping-stone functions are constructed to overcome the analysis difficulty
induced by the difference. The learning bound with fast convergence is derived under mild conditions
and empirical analysis is provided to verify our theoretical analysis.
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