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Abstract

We show that there are no spurious local minima in the non-convex factorized
parametrization of low-rank matrix recovery from incoherent linear measurements.
With noisy measurements we show all local minima are very close to a global
optimum. Together with a curvature bound at saddle points, this yields a polynomial
time global convergence guarantee for stochastic gradient descent from random
initialization.

1 Introduction

Low rank matrix recovery problem is heavily studied and has numerous applications in collaborative
filtering, quantum state tomography, clustering, community detection, metric learning and multi-task
learning [21, 12, 9, 27].

We consider the “matrix sensing” problem of recovering a low-rank (or approximately low rank)
p.s.d. matrix1

X

⇤ 2 Rn⇥n, given a linear measurement operator A : Rn⇥n ! Rm and noisy
measurements y = A(X

⇤
) +w, where w is an i.i.d. noise vector. An estimator for X⇤ is given by

the rank-constrained, non-convex problem

minimize
X:rank(X)r

kA(X)� yk2. (1)

This matrix sensing problem has received considerable attention recently [30, 29, 26]. This and other
rank-constrained problems are common in machine learning and related fields, and have been used
for applications discussed above. A typical theoretical approach to low-rank problems, including (1)
is to relax the low-rank constraint to a convex constraint, such as the trace-norm of X . Indeed, for
matrix sensing, Recht et al. [20] showed that if the measurements are noiseless and the measurement
operator A satisfies a restricted isometry property, then a low-rank X

⇤ can be recovered as the unique
solution to a convex relaxation of (1). Subsequent work established similar guarantees also for the
noisy and approximate case [14, 6].

However, convex relaxations to the rank are not the common approach employed in practice. In this
and other low-rank problems, the method of choice is typically unconstrained local optimization (via
e.g. gradient descent, SGD or alternating minimization) on the factorized parametrization

minimize
U2Rn⇥r

f(U) = kA(UU

>
)� yk2, (2)

1We study the case where X⇤ is PSD. We believe the techniques developed here can be used to extend
results to the general case.
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where the rank constraint is enforced by limiting the dimensionality of U . Problem (2) is a non-
convex optimization problem that could have many bad local minima (as we show in Section 5), as
well as saddle points. Nevertheless, local optimization seems to work very well in practice. Working
on (2) is much cheaper computationally and allows scaling to large-sized problems—the number
of optimization variables is only O(nr) rather than O(n2

), and the updates are usually very cheap,
especially compared to typical methods for solving the SDP resulting from the convex relaxation.
There is therefore a significant disconnect between the theoretically studied and analyzed methods
(based on convex relaxations) and the methods actually used in practice.

Recent attempts at bridging this gap showed that, some form of global “initialization”, typically
relying on singular value decomposition, yields a solution that is already close enough to X

⇤; that
local optimization from this initializer gets to the global optima (or to a good enough solution). Jain
et al. [15], Keshavan [17] proved convergence for alternating minimization algorithm provided the
starting point is close to the optimum, while Zheng and Lafferty [30], Zhao et al. [29], Tu et al.
[26], Chen and Wainwright [8], Bhojanapalli et al. [2] considered gradient descent methods on the
factor space and proved local convergence. But all these studies rely on global initialization followed
by local convergence, and do not tackle the question of the existence of spurious local minima or deal
with optimization starting from random initialization. There is therefore still a disconnect between
this theory and the empirical practice of starting from random initialization and relying only on the
local search to find the global optimum.

In this paper we show that, under a suitable incoherence condition on the measurement operator A
(defined in Section 2), with noiseless measurements and with rank(X

⇤
)  r, the problem (2) has no

spurious local minima (i.e. all local minima are global and satisfy X

⇤
= UU

>). Furthermore, under
the same conditions, all saddle points have a direction with significant negative curvature, and so
using a recent result of Ge et al. [10] we can establish that stochastic gradient descent from random
initialization converges to X

⇤ in polynomial number of iterations. We extend the results also to
the noisy and approximately-low-rank settings, where we can guarantee that every local minima is
close to a global minimum. The incoherence condition we require is weaker than conditions used
to establish recovery through local search, and so our results also ensures recovery in polynomial
time under milder conditions than what was previously known. In particular, with i.i.d. Gaussian
measurements, we ensure no spurious local minima and recovery through local search with the
optimal number O(nr) of measurements.

Related Work Our work is heavily inspired by Bandeira et al. [1], who recently showed similar
behavior for the problem of community detection—this corresponds to a specific rank-1 problem with
a linear objective, elliptope constraints and a binary solution. Here we take their ideas, extend them
and apply them to matrix sensing with general rank-r matrices. In the past several months, similar
type of results were also obtained for other non-convex problems (where the source of non-convexity
is not a rank constraint), specifically complete dictionary learning [24] and phase recovery [25]. A
related recent result of a somewhat different nature pertains to rank unconstrained linear optimization
on the elliptope, showing that local minima of the rank-constrained problem approximate well the
global optimum of the rank unconstrained convex problem, even though they might not be the global
minima (in fact, the approximation guarantee for the actual global optimum is better) [18].

Another non-convex low-rank problem long known to not possess spurious local minima is the
PCA problem, which can also be phrased as matrix approximation with full observations, namely
min

rank(X)r kA�XkF (e.g. [23]). Indeed, local search methods such as the power-method
are routinely used for this problem. Recently local optimization methods for the PCA problem
working more directly on the optimized formulation have also been studied, including SGD [22]
and Grassmannian optimization [28]. These results are somewhat orthogonal to ours, as they study
a setting in which it is well known there are never any spurious local minima, and the challenge is
obtaining satisfying convergence rates.

The seminal work of Burer and Monteiro [3] proposed low-rank factorized optimization for SDPs,
and showed that for extremely high rank r >

p
m (number of constraints), an Augmented Lagrangian

method converges asymptotically to the optimum. It was also shown that (under mild conditions)
any rank deficient local minima is a global minima [4, 16], providing a post-hoc verifiable sufficient
condition for global optimality. However, this does not establish any a-priori condition, based on
problem structure, implying the lack of spurious local minima.
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While preparing this manuscript, we also became aware of parallel work [11] studying the same
question for the related but different problem of matrix completion. For this problem they obtain
a similar guarantee, though with suboptimal dependence on the incoherence parameters and so
suboptimal sample complexity, and requiring adding a specific non-standard regularizer to the
objective—this is not needed for our matrix sensing results.

We believe our work, together with the parallel work of [11], are the first to establish the lack of
spurious local minima and the global convergence of local search from random initialization for a
non-trivial rank-constrained problem (beyond PCA with full observations) with rank r > 1.

Notation. For matrices X,Y 2 Rn⇥n, their inner product is hX,Y i = trace

�
X

>
Y

�
. We use

kXkF , kXk
2

and kXk⇤ for the Frobenius, spectral and nuclear norms of a matrix respectively.
Given a matrix X , we use �i (X) to denote singular values of X in decreasing order. Xr =

argmin

rank(Y )r kX � Y kF denotes the rank-r approximation of X , as obtained via its truncated
singular value decomposition. We use plain capitals R and Q to denote orthonormal matrices.

2 Formulation and Assumptions

We write the linear measurement operator A : Rn⇥n ! Rm as A(X)i = hAi,Xi where Ai 2
Rn⇥n, yielding yi = hAi,X

⇤i + wi, i = 1, · · · ,m. We assume wi ⇠ N (0,�2

w) is i.i.d Gaussian
noise. We are generally interested in the high dimensional regime where the number of measurements
m is usually much smaller than the dimension n2.

Even if we know that rank(X⇤
)  r, having many measurements might not be sufficient for recovery

if they are not “spread out” enough. E.g., if all measurements only involve the first n/2 rows and
columns, we would never have any information on the bottom-right block. A sufficient condition for
identifiability of a low-rank X

⇤ from linear measurements by Recht et al. [20] is based on restricted
isometry property defined below.
Definition 2.1 (Restricted Isometry Property). Measurement operator A : Rn⇥n ! Rm (with rows
Ai, i = 1, · · · ,m) satisfies (r, �r) RIP if for any n⇥ n matrix X with rank  r,

(1� �r)kXk2F  1

m

mX

i=1

hAi,Xi2  (1 + �r)kXk2F . (3)

In particular, X⇤ of rank r is identifiable if �
2r < 1 [see 20, Theorem 3.2]. One situation in which

RIP is obtained is for random measurement operators. For example, matrices with i.i.d. N (0, 1)
entries satisfy (r, �r)-RIP when m = O(

nr
�2 ) [see 6, Theorem 2.3]. This implies identifiability based

on i.i.d. Gaussian measurement with m = O(nr) measurements (coincidentally, the number of
degrees of freedom in X

⇤, optimal up to a constant factor).

3 Main Results

We are now ready to present our main result about local minima for the matrix sensing problem (2).
We first present the results for noisy sensing of exact low rank matrices, and then generalize the
results also to approximately low rank matrices.

Now we will present our result characterizing local minima of f(U), for low-rank X

⇤. Recall that
measurements are y = A(X

⇤
) +w, where entries of w are i.i.d. Gaussian - wi ⇠ N (0,�2

w).
Theorem 3.1. Consider the optimization problem (2) where y = A(X

⇤
) +w, w is i.i.d. N (0,�2

w),
A satisfies (4r, �

4r)-RIP with �
4r < 1

10

, and rank(X

⇤
)  r. Then, with probability � 1� 10

n2 (over
the noise), for any local minimum U of f(U):

kUU

> �X

⇤kF  20

r
log(n)

m
�w.

In particular, in the noiseless case (�w = 0) we have UU

>
= X

⇤ and so f(U) = 0 and every local
minima is global. In the noiseless case, we can also relax the RIP requirement to �

4r < 1/5 (see
Theorem 4.1 in Section 4). In the noisy case we cannot expect to ensure we always get to an exact
global minima, since the noise might cause tiny fluctuations very close to the global minima possibly
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creating multiple very close local minima. But we show that all local minima are indeed very close
to some factorization U

⇤
U

⇤>
= X

⇤ of the true signal, and hence to a global optimum, and this
“radius” of local minima decreases as we have more observations.

The proof of the Theorem for the noiseless case is presented in Section 4. The proof for the general
setting follows along the same lines and can be found in the Appendix.

So far we have discussed how all local minima are global, or at least very close to a global minimum.
Using a recent result by Ge et al. [10] on the convergence of SGD for non-convex functions, we
can further obtain a polynomial bound on the number of SGD iterations required to reach the global
minima. The main condition that needs to be established in order to ensure this, is that all saddle
points of (2) satisfy the “strict saddle point condition”, i.e. have a direction with significant negative
curvature:
Theorem 3.2 (Strict saddle). Consider the optimization problem (2) in the noiseless case, where
y = A(X

⇤
), A satisfies (4r, �

4r)-RIP with �
4r < 1

10

, and rank(X

⇤
)  r. Let U be a first order

critical point of f(U) with UU

> 6= X

⇤. Then the smallest eigenvalue of the Hessian satisfies

�
min


1

m
r2

(f(U))

�
 �2

5

�r(X
⇤
).

Now consider the stochastic gradient descent updates,

U

+

= Projb

 
U � ⌘

 
mX

i=1

(

⌦
Ai,UU

>↵� yi)AiU +  

!!
, (4)

where  is uniformly distributed on the unit sphere and Projb is a projection onto kUkF  b. Using
Theorem 3.2 and the result of Ge et al. [10] we can establish:
Theorem 3.3 (Convergence from random initialization). Consider the optimization problem (2)
under the same noiseless conditions as in Theorem 3.2. Using b � kU⇤kF , for some global optimum
U

⇤ of f(U), for any ✏, c > 0, after T = poly
⇣

1

�r(X
⇤
)

,�
1

(X

⇤
), b, 1

✏ , log(1/c)
⌘

iterations of (4)
with an appropriate stepsize ⌘, starting from a random point uniformly distributed on kUkF = b,
with probability at least 1� c, we reach an iterate UT satisfying

kUT �U

⇤kF  ✏.

The above result guarantees convergence of noisy gradient descent to a global optimum. Alternatively,
second order methods such as cubic regularization (Nesterov and Polyak [19]) and trust region (Cartis
et al. [7]) that have guarantees based on the strict saddle point property can also be used here.

RIP Requirement: Our results require (4r, 1/10)-RIP for the noisy case and (4r, 1/5)-RIP for the
noiseless case. Requiring (2r, �

2r)-RIP with �
2r < 1 is sufficient to ensure uniqueness of the global

optimum of (1), and thus recovery in the noiseless setting [20], but all known efficient recovery
methods require stricter conditions. The best guarantees we are aware of require (5r, 1/10)-RIP [20]
or (4r, 0.414)-RIP [6] using a convex relaxation. Alternatively, (6r, 1/10)-RIP is required for global
initialization followed by non-convex optimization [26]. In terms of requirements on (2r, �

2r)-RIP
for non-convex methods, the best we are aware of is requiring �

2r < ⌦(1/r) [15, 29, 30]–this is a
much stronger condition than ours, and it yields a suboptimal required number of spherical Gaussian
measurements of ⌦(nr3). So, compared to prior work our requirement is very mild—it ensures
efficient recovery, and requires the optimal number of spherical Gaussian measurements (up to a
constant factor) of O(nr).

Extension to Approximate Low Rank We can also obtain similar results that deteriorate gracefully
if X⇤ is not exactly low rank, but is close to being low-rank (see proof in the Appendix):
Theorem 3.4. Consider the optimization problem (2) where y = A(X

⇤
) and A satisfies (4r, �

4r)-
RIP with �

4r < 1

100

, Then, for any local minima U of f(U):

kUU

> �X

⇤kF  4(kX⇤ �X

⇤
r

kF + �
2rkX⇤ �X

⇤
r

k⇤),

where X

⇤
r

is the best rank r approximation of X⇤.
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This theorem guarantees that any local optimum of f(U) is close to X

⇤ upto an error depending on
kX⇤ �X

⇤
r

k. For the low-rank noiseless case we have X

⇤
= X

⇤
r

and the right hand side vanishes.
When X

⇤ is not exactly low rank, the best recovery error we can hope for is kX⇤ �X

⇤
r

kF , since
UU

> is at most rank k. On the right hand side of Theorem 3.4, we have also a nuclear norm term,
which might be higher, but it also gets scaled down by �

2r, and so by the number of measurements.
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Figure 1: The plots in this figure compare the success probability of gradient descent between
(left) random and (center) SVD initialization (suggested in [15]), for problem (2), with increasing
number of samples m and various values of rank r. Right most plot is the first m for a given r,
where the probability of success reaches the value 0.5. A run is considered success if kUU

> �
X

⇤kF /kX⇤kF  1e� 2. White cells denote success and black cells denote failure of recovery. We
set n to be 100. Measurements yi are inner product of entrywise i.i.d Gaussian matrix and a rank-r
p.s.d matrix with random subspace. We notice no significant difference between the two initialization
methods, suggesting absence of local minima as shown. Both methods have phase transition around
m = 2 · n · r.

4 Proof for the Noiseless Case

In this section we present the proof characterizing the local minima of problem (2). For ease of
exposition we first present the results for the noiseless case (w = 0). Proof for the general case can
be found in the Appendix.
Theorem 4.1. Consider the optimization problem (2) where y = A(X

⇤
), A satisfies (4r, �

4r)-RIP
with �

4r < 1

5

, and rank(X

⇤
)  r. Then, for any local minimum U of f(U):

UU

>
= X

⇤.

For the proof of this theorem we first discuss the implications of the first and second order optimality
conditions and then show how to combine them to yield the result.

Invariance of f(U) over r ⇥ r orthonormal matrices introduces additional challenges in comparing a
given stationary point to a global optimum. We have to find the best orthonormal matrix R to align a
given stationary point U to a global optimum U

⇤, where U

⇤
U

⇤>
= X

⇤, to combine results from
the first and second order conditions, without degrading the isometry constants.

Consider a local optimum U that satisfies first and second order optimality conditions of problem (2).
In particular U satisfies rf(U) = 0 and z>r2f(U)z � 0 for any z 2 Rn·r. Now we will see how
these two conditions constrain the error UU

> �U

⇤
U

⇤>.

First we present the following consequence of the RIP assumption [see 5, Lemma 2.1].
Lemma 4.1. Given two n⇥ n rank-r matrices X and Y , and a (4r, �)-RIP measurement operator
A, the following holds:�����

1

m

mX

i=1

hAi,Xi hAi,Y i � hX,Y i

�����  �kXkF kY kF . (5)

4.1 First order optimality

First we will consider the first order condition, rf(U) = 0. For any stationary point U this implies
X

i

D
Ai,UU

> �U

⇤
U

⇤>
E
AiU = 0. (6)
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Now using the isometry property of Ai gives us the following result.
Lemma 4.2. [First order condition] For any first order stationary point U of f(U), and A satisfying
the (4r, �)-RIP (3), the following holds:

k(UU

> �U

⇤
U

⇤>
)QQ>kF  �

���UU

> �U

⇤
U

⇤>
���
F
,

where Q is an orthonormal matrix that spans the column space of U .

This lemma states that any stationary point of f(U) is close to a global optimum U

⇤ in the subspace
spanned by columns of U . Notice that the error along the orthogonal subspace Q?, kX⇤Q?Q

>
?kF

can still be large making the distance between X and X

⇤ arbitrarily far.

Proof of Lemma 4.2. Let U = QR, for some orthonormal Q. Consider any matrix of the form
ZQR†> 2. The first order optimality condition then implies,

mX

i=1

D
Ai,UU

> �U

⇤
U

⇤>
E ⌦

Ai,UR†Q>
Z

>↵
= 0

The above equation together with Restricted Isometry Property (equation (5)) gives us the following
inequality:

���
D
UU

> �U

⇤
U

⇤>, QQ>
Z

>
E���  �

���UU

> �U

⇤
U

⇤>
���
F

��QQ>
Z

>��
F
.

Note that for any matrix A,
⌦
A, QQ>

Z

↵
=

⌦
QQ>

A,Z
↵
. Furthermore, for any matrix A,

sup{Z:kZkF1} hA,Zi = kAkF . Hence the above inequality implies the lemma statement.

4.2 Second order optimality

We now consider the second order condition to show that the error along Q?Q
>
? is indeed bounded

well. Let r2f(U) be the hessian of the objective function. Note that this is an n · r ⇥ n · r matrix.
Fortunately for our result we need to only evaluate the Hessian along vec(U � U

⇤R) for some
orthonormal matrix R. Here vec(.) denotes writing a matrix in vector form.
Lemma 4.3. [Hessian computation] Let U be a first order critical point of f(U). Then for any r⇥ r
orthonormal matrix R and �j = �eje

>
j ( � = U �U

⇤R),

rX

j=1

vec (�j)
> ⇥r2f(U)

⇤
vec (�j) =

mX

i=1

(

rX

j=1

4

⌦
Ai,U�

>
j

↵
2 � 2

D
Ai,UU

> �U

⇤
U

⇤>
E
2

),

Hence from second order optimality of U we get,
Corollary 4.1. [Second order optimality] Let U be a local minimum of f(U) . For any r ⇥ r
orthonormal matrix R,

rX

j=1

mX

i=1

4

⌦
Ai,U�

>
j

↵
2 � 1

2

mX

i=1

D
Ai,UU

> �U

⇤
U

⇤>
E
2

, (7)

Further for A satisfying (2r, �) -RIP (equation (3)) we have,
rX

j=1

kUeje
>
j (U �U

⇤R)

>k2F � 1� �

2(1 + �)
kUU

> �U

⇤
U

⇤>k2F . (8)

The proof of this result follows simply by applying Lemma 4.3. The above Lemma gives a bound
on the distance in the factor (U) space kU(U � U

⇤R)

>k2F . To be able to compare the second
order condition to the first order condition we need a relation between kU(U � U

⇤R)

>k2F and
kX �X

⇤k2F . Towards this we show the following result.

2R† is the pseudo inverse of R
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Lemma 4.4. Let U and U

⇤ be two n⇥ r matrices, and Q is an orthonormal matrix that spans the
column space of U . Then there exists an r ⇥ r orthonormal matrix R such that for any first order
stationary point U of f(U), the following holds:

rX

j=1

kUeje
>
j (U �U

⇤R)

>k2F  1

8

kUU

> �U

⇤
U

⇤>k2F +

34

8

k(UU

> �U

⇤
U

⇤>
)QQ>k2F .

This Lemma bounds the distance in the factor space (k(U�U

⇤R)U

>k2F ) with kUU

>�U

⇤
U

⇤>k2F
and k(UU

>�U

⇤
U

⇤>
)QQ>k2F . Combining this with the result from second order optimality (Corol-

lary 4.1) shows kUU

>�U

⇤
U

⇤>k2F is bounded by a constant factor of k(UU

>�U

⇤
U

⇤>
)QQ>k2F .

This implies kX⇤Q?Q?kF is bounded, opposite to what the first order condition implied
(Lemma 4.2). The proof of the above lemma is in Section B. Hence from the above optimality
conditions we get the proof of Theorem 4.1.

Proof of Theorem 4.1. Assuming UU

> 6= U

⇤
U

⇤>, from Lemmas 4.2, 4.4 and Corollary 4.1 we
get, ✓

1� �

2(1 + �)
� 1

8

◆
kUU

> �U

⇤
U

⇤>k2F  34

8

�2
���(UU

> �U

⇤
U

⇤>
)

���
2

F
.

If �  1

5

the above inequality holds only if UU

>
= U

⇤
U

⇤>.

5 Necessity of RIP

We showed that there are no spurious local minima only under a restricted isometry assumption.
A natural question is whether this is necessary, or whether perhaps the problem (2) never has any
spurious local minima, perhaps similarly to the non-convex PCA problem min

U

��
A�UU

>
��.

A good indication that this is not the case is that (2) is NP-hard, even in the noiseless case when
y = A(X

⇤
) for rank(X⇤

)  k [20] (if we don’t require RIP, we can have each Ai be non-zero on
a single entry in which case (2) becomes a matrix completion problem, for which hardness has been
shown even under fairly favorable conditions [13])3. That is, we are unlikely to have a poly-time
algorithm that succeeds for any linear measurement operator. Although this doesn’t formally preclude
the possibility that there are no spurious local minima, but it just takes a very long time to find a local
minima, this scenario seems somewhat unlikely.

To resolve the question, we present an explicit example of a measurement operator A and y = A(X

⇤
)

(i.e. f(X⇤
) = 0), with rank(X

⇤
) = r, for which (1), and so also (2), have a non-global local minima.

Example 1: Let f(X) = (X
11

+X
22

� 1)

2

+(X
11

� 1)

2

+X2

12

+X2

21

and consider (1) with r = 1

(i.e. a rank-1 constraint). For X⇤ =


1 0
0 0

�
we have f(X⇤

) = 0 and rank(X

⇤
) = 1. But X =


0 0
0 1

�

is a rank 1 local minimum with f(X) = 1.

We can be extended the construction to any rank r by simply adding
Pr+2

i=3

(Xii�1)

2 to the objective,
and padding both the global and local minimum with a diagonal beneath the leading 2⇥ 2 block.

In Example 1, we had a rank-r problem, with a rank-r exact solution, and a rank-r local minima.
Another question we can ask is what happens if we allow a larger rank than the rank of the optimal
solution. That is, if we have f(X⇤

) = 0 with low rank(X

⇤
), even rank(X

⇤
) = 1, but consider (1)

or (2) with a high r. Could we still have non-global local minima? The answer is yes...

Example 2: Let f(X) = (X
11

+X
22

+X
33

� 1)

2

+ (X
11

� 1)

2

+ (X
22

�X
33

)

2

+

P
i,j:i 6=j X

2

ij

and consider the problem (1) with a rank r = 2 constraint. We can verify that X⇤ =

2

4
1 0 0
0 0 0
0 0 0

3

5

is a rank=1 global minimum with f(X⇤
) = 0, but X =

2

4
0 0 0
0 1/2 0
0 0 1/2

3

5 is a local minimum with

3Note that matrix completion is tractable under incoherence assumptions, similar to RIP
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f(X) = 1. Also for an arbitrary large rank constraint r > 1 (taking r to be odd for simplicity),
extend the objective to f(X) = (X

11

� 1)

2

+

P
(r�1)/2
i=1

⇥
(X

11

+X
2i,2i +X

(2i+1),(2i+1)

� 1)

2

+(X
2i,2i �X

(2i+1),(2i+1)

)

2

⇤
. We still have a rank-1 global minimum X

⇤ with a single non-zero
entry X

⇤
11

= 1, while X = (I �X

⇤
)/2 is a local minimum with f(X) = 1.

6 Conclusion

We established that under conditions similar to those required for convex relaxation recovery guaran-
tees, the non-convex formulation of matrix sensing (2) does not exhibit any spurious local minima (or,
in the noisy and approximate settings, at least not outside some small radius around a global minima),
and we can obtain theoretical guarantees on the success of optimizing it using SGD from random
initialization. This matches the methods frequently used in practice, and can explain their success.
This guarantee is very different in nature from other recent work on non-convex optimization for
low-rank problems, which relied heavily on initialization to get close to the global optimum, and on
local search just for the final local convergence to the global optimum. We believe this is the first
result, together with the parallel work of Ge et al. [11], on the global convergence of local search for
common rank-constrained problems that are worst-case hard.

Our result suggests that SVD initialization is not necessary for global convergence, and random
initialization would succeed under similar conditions (in fact, our conditions are even weaker than in
previous work that used SVD initialization). To investigate empirically whether SVD initialization
is indeed helpful for ensuring global convergence, in Figure 1 we compare recovery probability
of random rank-k matrices for random and SVD initialization—there is no significant difference
between the two.

Beyond the implications for matrix sensing, we are hoping these type of results could be a first step
and serve as a model for understanding local search in deep networks. Matrix factorization, such as
in (2), is a depth-two neural network with linear transfer—an extremely simple network, but already
non-convex and arguably the most complicated network we have a good theoretical understanding of.
Deep networks are also hard to optimize in the worst case, but local search seems to do very well
in practice. Our ultimate goal is to use the study of matrix recovery as a guide in understating the
conditions that enable efficient training of deep networks.
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