
Sampling for Bayesian Program Learning

Kevin Ellis
Brain and Cognitive Sciences

MIT
ellisk@mit.edu

Armando Solar-Lezama
CSAIL

MIT
asolar@csail.mit.edu

Joshua B. Tenenbaum
Brain and Cognitive Sciences

MIT
jbt@mit.edu

Abstract

Towards learning programs from data, we introduce the problem of sampling
programs from posterior distributions conditioned on that data. Within this setting,
we propose an algorithm that uses a symbolic solver to efficiently sample programs.
The proposal combines constraint-based program synthesis with sampling via
random parity constraints. We give theoretical guarantees on how well the samples
approximate the true posterior, and have empirical results showing the algorithm is
efficient in practice, evaluating our approach on 22 program learning problems in
the domains of text editing and computer-aided programming.

1 Introduction

Learning programs from examples is a central problem in artificial intelligence, and many recent
approaches draw on techniques from machine learning. Connectionist approaches, like the Neural
Turing Machine [1, 2] and symbolic approaches, like Hierarchical Bayesian Program Learning [3,
4, 5], couple a probabilistic learning framework with either gradient- or sampling-based search
procedures. In this work, we consider the problem of Bayesian inference over program spaces. We
combine solver-based program synthesis [6] and sampling via random projections [7], showing how
to sample from posterior distributions over programs where the samples come from a distribution
provably arbitrarily close to the true posterior. The new approach is implemented in a system called
PROGRAMSAMPLE and evaluated on a set of program induction problems that include list and string
manipulation routines.

1.1 Motivation and problem statement Input Output
“1/21/2001” “01”

substr(pos(’0’,-1),-1) “last 0 til end”
const(’01’) “output 01”
substr(-2,-1) “take last two”

Figure 1: Learning string manipulation programs
by example (top input/output pair). Our system re-
ceives data like that shown above and then sampled
the programs shown below.

Consider the problem of learning string edit pro-
grams, a well studied domain for programming
by example. Often end users provide these ex-
amples and are unwilling to give more than one
instance, which leaves the target program highly
ambiguous. We model this ambiguity by sam-
pling string edit programs, allowing us to learn
from very few examples (Figure 1) and offer
different plausible solutions. Our sampler also
incorporates a description-length prior to bias
us towards simpler programs.

Another program learning domain comes from computer-aided programming, where the goal is
to synthesize algorithms from either examples or formal specifications. This problem can be ill
posed because many programs may satisfy the specification or examples. When this ambiguity
arises, PROGRAMSAMPLE proposes multiple implementations with a bias towards shorter or simpler
ones. The samples can also be used to efficiently approximate the posterior predictive distribution,

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.



effectively integrating out the program. We show PROGRAMSAMPLE learning routines for counting
and recursively sorting/reversing lists while modeling the uncertainty over the correct algorithm.

Because any model can be represented as a (probabilistic or deterministic) program, we need to
carefully delimit the scope of this work. The programs we learn are a subset of those handled
by constraint-based program synthesis tools. This means that the program is finite (bounded size,
bounded runtime, bounded memory consumption), can be modeled in a constraint solver (like a SAT
or SMT solver), and that the program’s high-level structure is already given as a sketch [6], which
can take the form of a recursive grammar over expressions. The sketch defines the search space and
imparts prior knowledge. For example, we use one sketch when learning string edit programs and a
different sketch when learning recursive list manipulation programs.

More formally, our sketch specifies a finite set of programs, S, as well as a measure of the programs’
description length, which we write as |x| for x ∈ S. This defines a prior (∝ 2−|x|). For each
program learning problem, we have a specification (such as consistency with input/output examples)
and want to sample from S conditioned upon the specification holding, giving the posterior over
programs ∝ 2−|x|1[specification holds for x]. Throughout the rest of the paper, we write p(·) to
mean this posterior distribution, and write X to mean the set of all programs in S consistent with the
specification. So the problem is to sample from p(x) = 2−|x|

Z where Z =
∑

x∈X 2−|x|.

We can invoke a solver, which enumerates members of X , possibly subject to extra constraints, but
without any guarantees on the order of enumeration. Throughout this work we use a SAT solver, and
encode x ∈ X in the values of n Boolean decision variables. With a slight abuse of notation we will
use x to refer to both a member of X and an assignment to those n decision variables. An assignment
to jth variable we write as xj for 1 ≤ j ≤ n. Section 1.2 briskly summarizes the constraint-solving
program synthesis approach.

1.2 Program synthesis by constraint solving

The constraint solving approach to program synthesis, pioneered in [6, 8], synthesizes programs by
(1) modeling the space of programs as assignments to Boolean decision variables in a constraint
satisfaction problem; (2) adding constraints to enforce consistency with a specification; (3) asking the
solver to find any solution to the constraints; and (4) reinterpreting that solution as a program.

Figure 2 illustrates this approach for the toy problem of synthesizing programs in a language consisting
of single-bit operators. Each program has one input (i in Figure 2) which it transforms using nand
gates. The grammar in Figure 2a is the sketch. If we inline the grammar, we can diagram the space of
all programs as an AND/OR graph (Figure 2b), where xj are Boolean decision variables that control
the program’s structure. For each of the input/output examples (Figure 2d) we have constraints that
model the program execution (Figure 2c) and enforce the desired output (P1 taking value 1). After
solving for a satisfying assignment to the xj’s, we can read these off as a program (Figure 2e). In this
work we measure the description length of a program x as the number of bits required to specify its
structure (so |x| is a natural number).1 PROGRAMSAMPLE further constrains unused bits to take
a canonical form, such as all being zero. This causes the mapping between programs x ∈ X and
variable assignments {xj}Nj=1 to be one-to-one.

1.3 Algorithmic contribution

In the past decade different groups of researchers have concurrently developed solver-based techniques
for (1) sampling of combinatorial spaces [9, 7, 10, 11] and (2) program synthesis [6, 8]. This work
merges these two lines of research to attack the problem of program learning in a probabilistic
setting. We use program synthesis tools to convert a program learning problem into a SAT formula.
Then, rather than search for one program (formula solution), we augment the formula with random
constraints that cause it to (approximately) sample the space of programs, effectively “upgrading”
our SAT solver from a program synthesizer to a program sampler.

The groundbreaking algorithms in [9] gave the first scheme (XORSample) for sampling discrete
spaces by adding random constraints to a constraint satisfaction problem. While one could use a tool
like Sketch to reduce a program learning problem to SAT and then use an algorithm like XORSample,

1This is equivalent to the assumption that x is drawn from a probabilistic grammar specified by the sketch

2



Program ::= i
| nand(Program,Program)

(a) Sketch

P1

i

x1

nand

P2

i

x2

nand

x2

P3

x1

. . . . . .

. . . . . .

(b) Program space

i⇔ 0 ∧ P1 ⇔ 1

x1 ⇒ (P1 ⇔ i)

x1 ⇒ (P1 ⇔ P2 ∧ P3)

x2 ⇒ (P2 ⇔ i)

x2 ⇒ (P2 ⇔ P4 ∧ P5)

x3 ⇒ (P3 ⇔ i)

· · · · · ·

(c) Constraints for SAT solver

Program(i = 0) = 1

(d) Specification

x1 = 0, x2 = 1, x3 = 1

Program = nand(i, i)

(e) A constraint solution; |x| = 3 bits

Figure 2: Synthesizing a program via sketching and constraint solving. Typewriter font refers
to pieces of programs or sketches, while math font refers to pieces of a constraint satisfaction problem.
The variable i is the program input.

PAWS, or WeightGen [9, 7, 10] to sample programs from a description length prior, doing so can
be surprisingly inefficient2. The efficiency of these sampling algorithms depends critically on a
quantity called the distribution’s tilt, introduced in [10] as maxx p(x)

minx p(x) . When there are a few very likely
(short) programs and many extremely unlikely (long) programs, the posterior over programs becomes
extremely tilted. Recent work has relied on upper bounding the tilt, often to around 20 [10]. For
program sampling problems, we usually face very high tilt upwards of 250. Our main algorithmic
contribution is a new approach that extends these techniques to distributions with high tilt, such as
those encountered in program induction.

2 The sampling algorithm

Given the distribution p(·) on the program spaceX , it is always possible to define a higher dimensional
space E (an embedding) and a mapping F : E → X such that sampling uniformly from E and
applying F will give us approximately p-distributed samples [7]. But, when the tilt of p(·) becomes
large, we found that such an approach is no longer practical.3

Our approach instead is to define an F ′ : E → X such that uniform samples on E map to a
distribution q(·) that is guaranteed to have low tilt, but whose KL divergence from p(·) is low. The
discrepancy between the distributions p(·) and q(·) can be corrected through rejection sampling.
Sampling uniformly from E is itself not trivial, but a variety of techniques exist to approximate
uniform sampling by adding random XOR constraints (random projections mod 2) to the set E,
which is extensively studied in [9, 12, 10, 13, 11]. These techniques introduce approximation error
that can be made arbitrarily small at the expense of lower efficiency. Figure 3 illustrates this process.

2.1 Getting high-quality samples

Low-tilt approximation. We introduce a parameter into the sampling algorithm, d, that parameter-
izes q(·). The parameter d acts as a threshold, or cut-off, for the description length of a program;
the distribution q(·) acts as though any program with description length exceeding d can be encoded
using d bits. Concretely,

q(x) ∝
{

2−|x|, if |x| ≤ d
2−d, otherwise

(1)

If we could sample exactly from q(·), we could reject a sample x with probability 1−A(x) where A
is

A(x) ∝
{

1, if |x| ≤ d
2−|x|+d, otherwise

(2)

2In many cases, slower than rejection sampling or enumerating all of the programs
3[10] take a qualitatively different approach from [7] not based on an embedding, but which still becomes

prohibitively expensive in the high-tilt regime.

3



and get exact samples from p(·), where the acceptance rate would approach 1 exponentially quickly
in d. We have the following result; see supplement for proofs.
Proposition 1. Let x ∈ X be a sample from q(·). The probability of accepting x is at least

1
1+|X|2|x∗|−d where x∗ = arg minx|x|.

Figure 3: PROGRAMSAMPLE twice distorts the
posterior distribution p(·). First it introduces a
parameter d that bounds the tilt; we correct for
this by accepting samples w.p. A(x). Second it
samples from q(·) by drawing instead from r(·),
where KL(q||r) can be made arbitrarily small by
appropriately setting another parameter, K. The
distribution of samples is A(x)r(x).

The distribution q(·) is useful because we can
guarantee that it has tilt bounded by 2d−|x∗|. In-
troducing the proposal q(·) effectively reifies the
tilt, making it a parameter of the sampling algo-
rithm, not the distribution over programs. We
now show how to approximately sample from
q(·) using a variant of the Embed and Project
framework [7].

The embedding. The idea is to define a new set
of programs, which we call E, such that short
programs are included in the set much more of-
ten than long programs. Each program x will be
represented in E by an amount proportional to
2−min(|x|,d), thus proportional to q(x), such that
sampling elements uniformly from E samples
according to q(·).

We embed X within the larger set E by intro-
ducing d auxiliary variables, written (y1, · · · , yd), such that every element of E is a tuple of an
element of x = (x1, · · · , xn) and an assignment to y = (y1, · · · , yd):

E = {(x, y) : x ∈ X,
∧

1≤j≤d

|x| ≥ j ⇒ yj = 1} (3)

Suppose we sample (x, y) uniformly from E. Then the probability of getting a particular x ∈ X
is proportional to |{(x′, y) ∈ E : x′ = x}| = |{y : |x| ≥ j ⇒ yj = 1}| = 2min(0,d−|x|) which is
proportional to q(x). Notice that |E| grows exponentially with d, and thus with the tilt of the q(·).
This is the crux of the inefficiency of sampling from high-tilt distributions in these frameworks: these
auxiliary variables combine with the random constraints to entangle otherwise independent Boolean
decision variables, while also increasing the number of variables and clauses.

The random projections. We could sample exactly from E by invoking the solver |E|+ 1 times to
get every element of E, but in general it will have O(|X|2d) elements, which could be very large.
Instead, we ask the solver for all the elements of E consistent with K random constraints such that
(1) few elements of E are likely to satisfy (“survive”) the constraints, and (2) any element of E is
approximately equally likely to satisfy the constraints. We can then sample a survivor uniformly to
get an approximate sample from E, an idea introduced in the XORSample′ algorithm [9]. Although
simple compared to recent approaches [10, 14, 15], it suffices for our theoretical and empirical results.

Our random constraints take the form of XOR, or parity constraints, which are random projections
mod 2. Each constraint fixes the parity of a random subset of SAT variables in x to either 1 or 0;
thus any x survives a constraint with probability 1

2 . A useful feature of random parity constraints
is that whether an assignment to the SAT variables survives is independent of whether another,
different assignment survives, which has been exploited to create a variety of approximate sampling
algorithms [9, 12, 10, 13, 11].

Then the K constraints are of the form h ( x
y )

2≡ b where h is a K × (d+ n) binary matrix and b is a
K-dimensional binary vector. If no solutions satisfy the K constraints then the sampling attempt is
rejected. These samples are close to uniform in the following sense:
Proposition 2. The probability of sampling (x, y) is at least 1

|E| ×
1

1+2K/|E| and the probability of
getting any sample at all is at least 1− 2K/|E|.

So we get approximate samples from E as long as |E|2−K is not small. In reference to Figure 3,
we call the distribution of these samples r(x) =

∑
y r(x, y). Schemes more sophisticated than

XORSample′, like [7], also guarantee upper bounds on sampling probability, but we found that these

4



Algorithm 1 PROGRAMSAMPLE

Input: Program space X , number of samples N , failure probability δ, parameters ∆ > 0, γ > 0
Output: N samples
Set |x∗| = minx∈X |x|
Set BX = ApproximateUpperBoundModelCount(X ,δ/2)
Set d = dγ + logBX + |x∗|e
Define E = {(x, y) : x ∈ X,

∧
1≤j≤d|x| ≥ j =⇒ yj = 1}

Set BE = ApproximateLowerBoundModelCount(E,δ/2)
Set K = blogBE −∆c
Initialize samples = [ ]
repeat

Sample h uniformly from {0, 1}(d+n)×K

Sample b uniformly from {0, 1}K
Enumerate S = {(x, y) where h(x, y) = b ∧ x ∈ X}
if |S| > 0 then

Sample (x, y) uniformly from S
if Uniform(0, 1) < 2d−|x| then

samples = samples + [x]
end if

end if
until |samples| = N
return samples

were unnecessary for our main result, which is that the KL between p(·) and A(x)r(x) goes to zero
exponentially quickly in a new quantity we call ∆:

Proposition 3. Write Ar(x) to mean the distribution proportional to A(x)r(x). Then D(p||Ar) <
log
(

1 + 1+2−γ

1+2∆

)
where ∆ = log |E| −K and γ = d− log |X| − |x∗|.

So we can approximate the true distribution p(·) arbitrarily well, but at the expense of either more calls
to the solver (increasing ∆) or a larger embedding (increasing γ; our main algorithmic contribution).
See supplement for theoretical and empirical analyses of this accuracy/runtime trade-off.

Proposition 3 requires knowing minx|x| to set K and d. We compute minx|x| using the iterative
minimization routine in [16]; in practice this is very efficient for finite program spaces. We also need
to calculate |X| and |E|, which are model counts that are in general difficult to compute exactly.
However, many approximate model counting schemes exist, which provide upper and lower bounds
that hold with arbitrarily high probability. We use Hybrid-MBound [13] to upper bound |X| and
lower bound |E| that each individually hold with probability at least 1 − δ/2, thus giving lower
bounds on both the γ and ∆ parameters of Proposition 3 with probability at least 1− δ and thus an
upper bound on the KL divergence. Algorithm 1 puts these ideas together.

3 Experimental results

We evaluated PROGRAMSAMPLE on program learning problems in a text editing domain and a
list manipulation domain. For each domain, we wrote down a sketch and produced SAT formulas
using the tool in [6], specifying a large but finite set of possible programs. This implicitly defined a
description-length prior, where |x| is the number of bits required to specify x in the SAT encoding.
We used CryptoMiniSAT [17], which can efficiently handle parity constraints.

3.1 Learning Text Edit Scripts

We applied our program sampling algorithm to a suite of programming by demonstration problems
within a text editing domain. Here, the challenge is to learn a small text editing program from very
few examples and apply that program to held out inputs. This problem is timely, given the widespread
use of the FlashFill program synthesis tool, which now ships by default in Microsoft Excel [18]
and can learn sophisticated edit operations in real time from examples. We modeled a subset of

5



the FlashFill language; our goal here is not to compete with FlashFill, which is cleverly engineered
for its specific domain, but to study the behavior of our more general-purpose program learner in a
real-world task. To impart domain knowledge, we used a sketch equivalent to Figure 4.

Program ::= Term | Program + Term
Term ::= String | substr(Pos,Pos)
Pos ::= Number

| pos(String,String,Number)
Number ::= 0 | 1 | 2 | ...

| -1 | -2 | ...
String ::= Character

| Character + String
Character ::= a | b | c | ...

Figure 4: The sketch (program space) for learning text
edit scripts

Because FlashFill’s training set is not yet
public, we drew text editing problems
from [19] and adapted them to our sub-
set of FlashFill, giving 19 problems, each
with 5 training examples. The supplement
contains these text edit problems.

We are interested both in the ability of
the learner to generalize and in PRO-
GRAMSAMPLE’s ability to generate sam-
ples quickly. Table 1 shows the aver-
age time per sampling attempt using PRO-
GRAMSAMPLE, which is on the order of
a minute. These text edit problems come
from distributions with extremely high tilt:
often the smallest program is only tens of bits long, but the program space contains (implausible)
solutions with over 100 bits. By putting d to |x∗| − n we eliminate the tilt correction and recover a
variant of the approaches in [7]. This baseline does not produce any samples for any of our text edit
problems in under an hour.4 Other baselines also failed to produce samples in a reasonable amount
of time (see supplement). For example, pure rejection sampling (drawing from the prior) is also
infeasible, with consistent programs having prior probability ≤ 2−50 in some cases.

The learner generalizes to unseen examples, as Figure 5 shows. We evaluated the performance of the
learner on held out test examples while varying training set size, and compare with baselines that
either (1) enumerate programs in the arbitrary order provided by the underlying solver, or (2) takes the
most likely program under p(x) (MDL learner). The posterior is sharply peaked, with most samples
being from the MAP solution, and so our learner does about as well as the MDL learner. However,
sampling offers an (approximate) predictive posterior over predictions on the held out examples; in a
real world scenario, one would offer the top C predictions to the user and let them choose, much like
how spelling correction works. This procedure allows us to offer the correct predictions more often
than the MDL learner (Figure 6), because we correctly handle ambiguous problems like in Figure 1.
We see this as a primary strength of the sampling approach to Bayesian program learning: when
learning from one or a few examples, a point estimate of the posterior can often miss the mark.

Figure 5: Generalization when learning text
edit operations by example. Results averaged
across 19 problems. Solid: 100 samples from
PROGRAMSAMPLE . Dashed: enumerating
100 programs. Dotted: MDL learner. Test
cases past 1 (respectively 2,3) examples are
held out when trained on 1 (respectively 2,3)
examples.

Figure 6: Comparing the MDL learner
(dashed black line) to program sampling when
doing one-shot learning. We count a problem
as “solved” if the correct joint prediction to
the test cases is in the top C most frequent
samples.

4Approximate model counting of E was also intractable in this regime, so we used the lower bound
|E| ≥ 2d−|x∗| + |X| − 1

6



Table 1: Average solver time to generate a sam-
ple measured in seconds. See Figure 9 and 5 for
training set sizes. n ≈ 180, 65 for text edit, list
manipulation domains, respectively. w/o tilt cor-
rection, sampling text edit & count takes > 1 hour.

Large set Medium set Small set
text edit 49±3 21 ±1 84 ±3
sort 1549±155 905 ±58 463 ±65
reverse 326±42 141 ±18 39 ±3
count ≤ 1 ≤ 1 ≤ 1

Figure 7: Sampling frequency vs.
ground truth probability on a counting
task with ∆ = 3 and γ = 4.

3.2 Learning list manipulation algorithms

One goal of program synthesis is computer-aided programming [6], which is the automatic generation
of executable code from either declarative specifications or examples of desired behavior. Systems
with this goal have been successfully applied to, for example, synthesizing intricate bitvector routines
from specifications [18]. However, when learning from examples, there is often uncertainty over
the correct program. While past approaches have handled this uncertainty within an optimization
framework (see [20, 21, 16]), we show that PROGRAMSAMPLE can sample algorithms.

Program ::=
(if Bool List

(append RecursiveList
RecursiveList
RecursiveList))

Bool ::= (<= Int) | (>= Int)
Int ::= 0 | (1+ Int) | (1- Int)

| (length List) | (head List)
List ::= nil | (filter Bool List)

| X | (tail List) | (list Int)
RecursiveList ::= List

| (recurse List)

Figure 8: The sketch (program space) for learning
list manipulation routines; X is program input

Figure 9: Learning to manipulate lists. Trained on
lists of length ≤ 3; tested on lists of length ≤ 14.

We take as our goal to learn recursive routines
for sorting, reversing, and counting list elements
from input/output examples, particularly in the
ambiguous, unconstrained regime of few exam-
ples. We used a sketch with a set of basis prim-
itives capable of representing a range of list ma-
nipulation routines equivalent to Figure 8.

A description-length prior that penalizes longer
programs allowed learning of recursive list ma-
nipulation routines (from production Program)
and a non-recursive count routine (from produc-
tion Int); see Figure 9, which shows average
accuracy on held out test data when trained on
variable numbers of short randomly generated
lists. With the large training set (5–11 exam-
ples) PROGRAMSAMPLE recovers a correct im-
plementation, and with less data it recovers a
distribution over programs that functions as a
probabilistic algorithm despite being composed
of only deterministic programs.

For some of these tasks the number of consistent
programs is small enough that we can enumerate
all of them, allowing us to compare our sampler
with ground-truth probabilities. Figure 7 shows
this comparison for a counting problem with 80
consistent programs, showing empirically that
the tilt correction and random constraints do not
significantly perturb the distribution.

Table 1 shows the average solver time per sam-
ple. Generating recursive routines like sort-
ing and reversing is much more costly than
generating the nonrecursive counting routine.
The constraint-based approach propositional-
izes higher-order constructs like recursion, and
so reasoning about them is much more costly.
Yet counting problems are highly tilted due to
count’s short implementation, which makes them intractable without our tilt correction.

7



4 Discussion

4.1 Related work

There is a vast literature on program learning in the AI and machine learning communities. Many
employ a (possibly stochastic) heuristic search over structures using genetic programming [22] or
MCMC [23]. These approaches often find good programs and can discover more high-level structure
than our approach. However, they are prone to getting trapped in local minima and, when used as a
sampler, lack theoretical guarantees. Other work has addressed learning priors over programs in a
multitask setting [4, 5]. We see our work as particularly complementary to these methods: while they
focus on learning the structure of the hypothesis space, we focus on efficiently sampling an already
given hypothesis space (the sketch). Several recent proposals for recurrent deep networks can learn
algorithms [2, 1]. We see our system working in a different regime, where we want to quickly learn
an algorithm from a small number of examples or an ambiguous specification.

The program synthesis community has several recently proposed learners that work in an optimization
framework [20, 21, 16]. By computing a posterior over programs, we can more effectively represent
uncertainty, particularly in the small data limit, but at the cost of more computation.

PROGRAMSAMPLE borrows heavily from a line of work started in [9, 13] on sampling of combi-
natorial spaces using random XOR constraints. An exciting new approach is to use sparse XOR
constraints [14, 15] , which might sample more efficiently from our embedding of the program space.

4.2 Limitations of the approach

Constraint-based synthesis methods tend to excel in domains where the program structure is restricted
by a sketch [6] and where much of the program’s description length can be easily computed from
the program text. For example, PROGRAMSAMPLE can synthesize text editing programs that are
almost 60 bits long in a couple seconds, but spends 10 minutes synthesizing a recursive sorting
routine that is shorter but where the program structure is less restricted. Constraint-based methods
also require the entire problem to be represented symbolically, so they have trouble when the function
to be synthesized involves difficult to analyze building blocks such as numerical routines. For such
problems, stochastic search methods [23, 22] can be more effective because they only need to run the
functions under consideration. Finally, past work shows empirically that these methods scale poorly
with data set size, although this can be mitigated by considering data incrementally [21, 20].

The requirement of producing representative samples imposes additional overhead on our approach,
so scalability can more limited than for standard symbolic techniques on some problems. For
example, our method requires 1 MAP inference query, and 2 queries to an approximate model
counter. These serve to “calibrate” the sampler, and its cost can be amortized because they only has
to be invoked once in order to generate an arbitrary number of iid samples. Approximate model
counters like MBound [13] have complexity comparable with that of generating a sample, but the
complexity can depend on the number of solutions. Thus, for good performance, PROGRAMSAMPLE
requires that there not be too many programs consistent with the data—the largest spaces considered
in our experiments had ≤ 107 programs. This limitation, together with the general performance
characteristics of symbolic techniques, means that the approach will work best for “needle in a
haystack” problems, where the space of possible programs is large but restricted in its structure, and
where only a small fraction of the programs satisfy the constraints.

4.3 Future work

This work could naturally extend to other domains that involve inducing latent symbolic structure
from small amounts of data, such as semantic parsing to logical forms [24], synthesizing motor
programs [3], or learning relational theories [25]. These applications have some component of
transfer learning, and building efficient program learners that can transfer inductive biases across
tasks is a prime target for future research.

Acknowledgments

We are grateful for feedback from Adam Smith, Kuldeep Meel, and our anonymous reviewers. Work
supported by NSF-1161775 and AFOSR award FA9550-16-1-0012.

8



References
[1] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv:1410.5401, 2014.

[2] Scott Reed and Nando de Freitas. Neural programmer-interpreters. CoRR, abs/1511.06279, 2015.

[3] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning through
probabilistic program induction. Science, 350(6266):1332–1338, 2015.

[4] Percy Liang, Michael I. Jordan, and Dan Klein. Learning programs: A hierarchical bayesian approach. In
Johannes Fürnkranz and Thorsten Joachims, editors, ICML, pages 639–646. Omnipress, 2010.

[5] Aditya Menon, Omer Tamuz, Sumit Gulwani, Butler Lampson, and Adam Kalai. A machine learning
framework for programming by example. In ICML, pages 187–195, 2013.

[6] Armando Solar Lezama. Program Synthesis By Sketching. PhD thesis, EECS Department, University of
California, Berkeley, Dec 2008.

[7] Stefano Ermon, Carla P Gomes, Ashish Sabharwal, and Bart Selman. Embed and project: Discrete sampling
with universal hashing. In Advances in Neural Information Processing Systems, pages 2085–2093, 2013.

[8] Susmit Jha, Sumit Gulwani, Sanjit A Seshia, and Ashish Tiwari. Oracle-guided component-based program
synthesis. In ICSE, volume 1, pages 215–224. IEEE, 2010.

[9] Carla P Gomes, Ashish Sabharwal, and Bart Selman. Near-uniform sampling of combinatorial spaces
using xor constraints. In Advances In Neural Information Processing Systems, pages 481–488, 2006.

[10] Supratik Chakraborty, Daniel Fremont, Kuldeep Meel, Sanjit Seshia, and Moshe Vardi. Distribution-aware
sampling and weighted model counting for sat. In AAAI Conference on Artificial Intelligence, 2014.

[11] Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. A scalable and nearly uniform generator of sat
witnesses. In International Conference on Computer Aided Verification, pages 608–623. Springer, 2013.

[12] Leslie G Valiant and Vijay V Vazirani. Np is as easy as detecting unique solutions. In Proceedings of the
seventeenth annual ACM symposium on Theory of computing, pages 458–463. ACM, 1985.

[13] Carla P Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy for obtaining good
bounds. In AAAI Conference on Artificial Intelligence, 2006.

[14] Stefano Ermon, Carla Gomes, Ashish Sabharwal, and Bart Selman. Low-density parity constraints for
hashing-based discrete integration. In ICML, pages 271–279, 2014.

[15] Dimitris Achlioptas and Pei Jiang. Stochastic integration via errorcorrecting codes. UAI, 2015.

[16] Rishabh Singh, Sumit Gulwani, and Armando Solar-Lezama. Automated feedback generation for introduc-
tory programming assignments. In ACM SIGPLAN Notices, volume 48, pages 15–26. ACM, 2013.

[17] Cryptominisat. http://www.msoos.org/documentation/cryptominisat/.

[18] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In ACM
SIGPLAN Notices, volume 46, pages 317–330. ACM, 2011.

[19] Dianhuan Lin, Eyal Dechter, Kevin Ellis, Joshua B. Tenenbaum, and Stephen Muggleton. Bias reformula-
tion for one-shot function induction. In ECAI 2014, pages 525–530, 2014.

[20] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. Learning programs from noisy data.
In POPL, pages 761–774. ACM, 2016.

[21] Kevin Ellis, Armando Solar-Lezama, and Josh Tenenbaum. Unsupervised learning by program synthesis.
In Advances in Neural Information Processing Systems, pages 973–981, 2015.

[22] John R. Koza. Genetic programming - on the programming of computers by means of natural selection.
Complex adaptive systems. MIT Press, 1993.

[23] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superoptimization. In ACM SIGARCH Computer
Architecture News, volume 41, pages 305–316. ACM, 2013.

[24] P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based compositional semantics. In Association
for Computational Linguistics (ACL), pages 590–599, 2011.

[25] Yarden Katz, Noah D. Goodman, Kristian Kersting, Charles Kemp, and Joshua B. Tenenbaum. Modeling
semantic cognition as logical dimensionality reduction. In CogSci, pages 71–76, 2008.

9

http://www.msoos.org/documentation/cryptominisat/

