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Abstract

Planned experiments are the gold standard in reliably comparing the causal effect
of switching from a baseline policy to a new policy. One critical shortcoming of
classical experimental methods, however, is that they typically do not take into
account the dynamic nature of response to policy changes. For instance, in an
experiment where we seek to understand the effects of a new ad pricing policy on
auction revenue, agents may adapt their bidding in response to the experimental
pricing changes. Thus, causal effects of the new pricing policy after such adapta-
tion period, the long-term causal effects, are not captured by the classical method-
ology even though they clearly are more indicative of the value of the new policy.
Here, we formalize a framework to define and estimate long-term causal effects
of policy changes in multiagent economies. Central to our approach is behavioral
game theory, which we leverage to formulate the ignorability assumptions that are
necessary for causal inference. Under such assumptions we estimate long-term
causal effects through a latent space approach, where a behavioral model of how
agents act conditional on their latent behaviors is combined with a temporal model
of how behaviors evolve over time.

1 Introduction

A multiagent economy is comprised of agents interacting under specific economic rules. A common
problem of interest is to experimentally evaluate changes to such rules, also known as treatments, on
an objective of interest. For example, an online ad auction platform is a multiagent economy, where
one problem is to estimate the effect of raising the reserve price on the platform’s revenue. Assessing
causality of such effects is a challenging problem because there is a conceptual discrepancy between
what needs to be estimated and what is available in the data, as illustrated in Figure 1.

What needs to be estimated is the causal effect of a policy change, which is defined as the difference
between the objective value when the economy is treated, i.e., when all agents interact under the
new rules, relative to when the same economy is in control, i.e., when all agents interact under the
baseline rules. Such definition of causal effects is logically necessitated from the designer’s task,
which is to select either the treatment or the control policy based on their estimated revenues, and
then apply such policy to all agents in the economy. The long-term causal effect is the causal effect
defined after the system has stabilized, and is more representative of the value of policy changes
in dynamical systems. Thus, in Figure 1 the long-term causal effect is the difference between the
objective values at the top and bottom endpoints, marked as the “targets of inference”.

What is available in the experimental data, however, typically comes from designs such as the so-
called A/B test, where we randomly assign some agents to the treated economy (new rules B) and
the others to the control economy (baseline rules A), and then compare the outcomes. In Figure 1
the experimental data are depicted as the solid time-series in the middle of the plot, marked as the
“observed data”.
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Figure 1: The two inferential tasks for causal inference in multiagent economies. First, infer agent actions
across treatment assignments (y-axis), particularly, the assignment where all agents are in the treated economy
(top assignment, Z = 1), and the assignment where all agents are in the control economy (bottom assignment,
Z = 0). Second, infer across time, from t¢ (last observation time) to long-term 7". What we seek in order to
evaluate the causal effect of the new treatment is the difference between the objectives (e.g., revenue) at the two
inferential target endpoints.

Therefore the challenge in estimating long-term causal effects is that we generally need to perform
two inferential tasks simultaneously, namely,

(i) infer outcomes across possible experimental policy assignments (y-axis in Figure 1), and

(i1) infer long-term outcomes from short-term experimental data (x-axis in Figure 1).

The first task is commonly known as the “fundamental problem of causal inference” [14, 19] be-
cause it underscores the impossibility of observing in the same experiment the outcomes for both
policy assignments that define the causal effect; i.e., that we cannot observe in the same experiment
both the outcomes when all agents are treated and the outcomes when all agents are in control, the
assignments of which are denoted by Z = 1 and Z = 0, respectively, in Figure 1. In fact the
role of experimental design, as conceived by R.A. Fisher [8], is exactly to quantify the uncertainty
about such causal effects that cannot be observed due to the aforementioned fundamental problem,
by using standard errors that can be observed in a carefully designed experiment.

The second task, however, is unique to causal inference in dynamical systems, such as the multiagent
economies that we study in this paper, and has received limited attention so far. Here, we argue that
it is crucial to study long-term causal effects, i.e., effects measured after the system has stabilized,
because such effects are more representative of the value of policy changes. If our analysis focused
only on the observed data part depicted in Figure 1, then policy evaluation would reflect transient
effects that might differ substantially from the long-term effects. For instance, raising the reserve
price in an auction might increase revenue in the short-term but as agents adapt their bids, or switch
to another platform altogether, the long-term effect could be a net decrease in revenue [13].

1.1 Related work and our contributions

There have been several important projects related to causal inference in multiagent economies. For
instance, Ostrovsky and Schwartz [16] evaluated the effects of an increase in the reserve price of
Yahoo! ad auctions on revenue. Auctions were randomly assigned to an increased reserve price
treatment, and the effect was estimated using difference-in-differences (DID), which is a popular
econometric method [6, 7, 16]. In relation to Figure 1, DID extrapolates across assignments (y-axis)
and across time (x-axis) by making a strong additivity assumption [1, 3, Section 5.2], specifically,
by assuming that the dependence of revenue on reserve price and time is additive.

In a structural approach, Athey et.al. [4] studied the effects of auction format (ascending versus
sealed bid) on competition for timber tracts. In relation to Figure 1, their approach extrapolates



across assignments by assuming that agent individual valuations for tracts are independent of the
treatment assignment, and extrapolates across time by assuming that the observed agent bids are
already in equilibrium. Similar approaches are followed in econometrics for estimation of general
equilibrium effects [11, 12].

In a causal graph approach [17] Bottou et.al. [5] studied effects of changes in the algorithm that
scores Bing ads on the ad platform’s revenue. In relation to Figure 1, their approach is non-
experimental and extrapolates across assignments and across time by assuming a directed acyclic
graph (DAG) as the correct data model, which is also assumed to be stable with respect to treatment
assignment, and by estimating counterfactuals through the fitted model.

Our work is different from prior work because it takes into account the short-term aspect of experi-
mental data to evaluate long-term causal effects, which is the key conceptual and practical challenge
that arises in empirical applications. In contrast, classical econometric methods, such as DID, as-
sume strong linear trends from short-term to long-term, whereas structural approaches typically
assume that the experimental data are already long-term as they are observed in equilibrium. We
refer the reader to Sections 2 and 3 of the supplement for more detailed comparisons.

In summary, our key contribution is that we develop a formal framework that (i) articulates the
distinction between short-term and long-term causal effects, (ii) leverages behavioral game-theoretic
models for causal analysis of multiagent economies, and (iiii) explicates theory that enables valid
inference of long-term causal effects.

2 Definitions

Consider a set of agents Z and a set of actions .4, indexed by ¢ and a, respectively. The experiment
designer wants to run an experiment to evaluate a new policy against the baseline policy relative to
an objective. In the experiment each agent is assigned to one policy, and the experimenter observes
how agents act over time. Formally, let Z = (Z;) be the |Z| x 1 assignment vector where Z; = 1
denotes that agent ¢ is assigned to the new policy, and Z; = 0 denotes that ¢ is assigned to the
baseline policy; as a shorthand, Z = 1 denotes that all agents are assigned to the new policy, and
Z = 0 denotes that all agents are assigned to the baseline policy, where 1, O generally denote an
appropriately-sized vector of ones and zeroes, respectively. In the simplest case, the experiment is
an A/B test, where Z is uniformly random on {0, 1}1Z| subject to 3°, Z; = |Z|/2.

After the initial assignment Z agents play actions at discrete time points from ¢t = 0 to ¢t = y. Let
A;(t; Z) € A be the random variable that denotes the action of agent ¢ at time ¢ under assignment
Z. The population action o (t; Z) € A where AP denotes the p-dimensional simplex, is the fre-
quency of actions at time ¢ under assignment Z of agents that were assigned to game j; for example,
assuming two actions A = {a1,az}, then a1(0; Z) = [0.2,0.8] denotes that, under assignment Z,
20% of agents assigned to the new policy play action a; at ¢ = 0, while the rest play as. We assume
that the objective value for the experimenter depends on the population action, in a similar way that,
say, auction revenue depends on agents’ aggregate bidding. The objective value in policy j at time
t under assignment Z is denoted by R(a;(t; Z)), where R : A — R. For instance, suppose in
the previous example that a; and ay produce revenue $10 and —$2, respectively, each time they are
played, then R is linear and R([.2,.8]) = 0.2 - $10 — 0.8 - $2 = $0.4.

Definition 1 The average causal effect on objective R at time t of the new policy relative to the
baseline is denoted by CE(t) and is defined as

CE(t) = E (R(a1(t;1)) — R(ao(t;0))) - (1)

Suppose that (¢, T'] is the time interval required for the economy to adapt to the experimental con-
ditions. The exact definition of 7" is important but we defer this discussion for Section 3.1. The
designer concludes that the new policy is better than the baseline if CE(T) > 0. Thus, CE(T)
is the long-term average causal effect and is a function of two objective values, R(«1(7’;1)) and
R(ao(T;0)), which correspond to the two inferential target endpoints in Figure 1. Neither value is
observed in the experiment because agents are randomly split between policies, and their actions are
observed only for the short-term period [0, to]. Thus we need to (i) extrapolate across assignments
by pivoting from the observed assignment to the counterfactuals Z = 1 and Z = 0; (ii) extrap-
olate across time from the short-term data [0, ¢o] to the long-term ¢ = T. We perform these two
extrapolations based on a latent space approach, which is described next.



2.1 Behavioral and temporal models

We assume a latent behavioral model of how agents select actions, inspired by models from be-
havioral game theory. The behavioral model is used to predict agent actions conditional on agent
behaviors, and is combined with a temporal model to predict behaviors in the long-term. The two
models are ultimately used to estimate agent actions in the long-term, and thus estimate long-term
causal effects. As the choice of the latent space is not unique, in Section 3.1 we discuss why we
chose to use behavioral models from game theory.

Let B;(t; Z) denote the behavior that agent ¢ adopts at time ¢ under experimental assignment Z. The
following assumption puts a constraints on the space of possible behaviors that agents can adopt,
which will simplify the subsequent analysis.

Assumption 1 (Finite set of possible behaviors) There is a fixed and finite set of behaviors B such
that for every time t, assignment Z and agent i, it holds that B;(t; Z) € B, i.e., every agent can only
adopt a behavior from B.

Definition 2 (Behavioral model) The behavioral model for policy j defined by set B of behaviors
is the collection of probabilities

P(Ai(t; Z) = a|Bi(t; Z) = b,Gj), (2)

for every action a € A and every behavior b € B, where G ; denotes the characteristics of policy j.

As an example, a non-sophisticated behavior by could imply that P(A;(t; Z) = alby, G;) = 1/|A|,
i.e., that the agent adopting by simply plays actions at random. Conditioning on policy j in Def-
inition 2 allows an agent to choose its actions based on expected payoffs, which depend on the
policy characteristics. For instance, in the application of Section 4 we consider a behavioral model
where an agent picks actions in a two-person game according to expected payoffs calculated from
the game-specific payoft matrix—in that case G; is simply the payoff matrix of game j.

The population behavior 3;(t; Z) € AlBl denotes the frequency at time ¢ under assignment Z of
the adopted behaviors of agents assigned to policy j. Let F; denote the entire history of population
behaviors in the experiment up to time ¢. A temporal model of behaviors is defined as follows.

Definition 3 (Temporal model) For an experimental assignment Z a temporal model for policy j
is a collection of parameters ¢;(Z),;(Z), and densities (, f), such that for all t,

Bi(0; Z2) ~ (-5 6;(2)),
Bi(t; Z)| Fio1,Gj ~ f(|4i(Z), Fi1). 3)
A temporal model defines the distribution of population behavior as a time-series with a Markovian
structure. As defined, the temporal model imposes the restriction that the prior 7 of population
behavior at ¢ = 0 and the density f of behavioral evolution are both independent of treatment
assignment Z. In other words, regardless of how agents are assigned to games, the population

behavior in the game will evolve according to a fixed model described by f and 7. The model
parameters ¢, 1) may still depend on the treatment assignment Z.

3 Estimation of long-term causal effects

Here we develop the assumptions that are necessary for inference of long-term causal effects.

Assumption 2 (Stability of initial behaviors) Let pz = . ; Z;/|Z| be the proportion of agents
assigned to the new policy under assignment Z. Then, for every possible assignment Z,

pzB1(0; Z) + (1 — pz)Bo(0; Z) = B, 4)

where (%) is a fixed population behavior invariant to Z.

Assumption 3 (Behavioral ignorability) The assignment is independent of population behavior at
time t, conditional on policy and behavioral history up to t; i.e., for every t > 0 and policy j,

A J_ ﬁj(t;Z) | -7'—16—17Gj-



Remarks. Assumption 2 implies that the agents do not anticipate the assignment Z as they “have
made up their minds” to adopt a population behavior 5() before the experiment. Quantities such as
that in Eq. (4) are crucial in causal inference because they can be used as a pivot for extrapolation
across assignments. Assumption 3 states that the treatment assignment does not add information
about the population behavior at time ¢, if we already know the full behavioral history of up to ,
and the policy which agents are assigned to; hence, the treatment assignment is conditionally ignor-
able. This ignorability assumption precludes, for instance, an agent adopting a different behavior
depending on whether it was assigned with friends or foes in the experiment.

Algorithm 1 is the main methodological contribution of this paper. It is a Bayesian procedure as it
puts priors on parameters ¢, 1) of the temporal model, and then marginalizes these parameters out.

Algorithm 1 Estimation of long-term causal effects
Input: Z, T,.A, B, GhGo,Dl = {al(t; Z) 1t = 0, N 7t0},D0 = {ao(t; Z) it = 0, N ,to}.
Output: Estimate of long-term causal effect CE(T') in Eq. (1).

1: By Assumption 3, define ¢; = ¢;(Z), ¥; = ¢;(Z).

2: Set 1 < 0 and pg < 0, both of size | A|; set vy = v = 0.

3: for iter =1,2,...do

4: For j = 0, 1, sample ¢;,1; from prior, and sample 5;(0; Z) conditional on ¢,.

5: Calculate 3 = p31(0; Z) + (1 — pz)Bo(0; Z).

6: for ; =0,1do

7: Set 3;(0; 1) = B,

8: Sample B; = {8;(t;j1) : t =0,...,T} given ¢, and 3;(0,51).  #temporal model
9: Sample «;(T'; j1) conditional on 3;(T'; j1).  # behavioral model

10: Set pj <= pj + P (D;|B;, Gj) - R(ey (T j1)).

11: Set v; (—Vj+P(Dj‘Bj7Gj).

12: end for

13: end for

14: Return estimate (/]E(T) = p1/v1 — po/Vo-

Theorem 1 (Estimation of long-term causal effects) Suppose that behaviors evolve according to
a known temporal model, and actions are distributed conditionally on behaviors according to a
known behavioral model. Suppose that Assumptions 1, 2 and 3 hold for such models. Then, for
every policy j € {0,1} as the iterations of Algorithm 1 increase, 1j/v; — E (R(a;(T;51))|D;) .
The output CE(T) of Algorithm 1 asymptotically estimates the long-term causal effect, i.e.,

E(CE(T)) = E (R(0(T;1)) — R(a(T0))) = CE(T).

Remarks. Theorem 1 shows that CE(T') consistently estimates the long-term causal effect in Eq. (1).
We note that it is also possible to derive the variance of this estimator with respect to the random-
ization distribution of assignment Z. To do so we first create a set of assignments Z by repeatedly
sampling Z according to the experimental design. Then we adapt Algorithm 1 so that (i) Step 4 is
removed; (ii) in Step 5, 3 0 s sampled from its posterior distribution conditional on observed data,
which can be obtained from the original Algorithm 1. The empirical variance of the outputs over

Z from the adapted algorithm estimates the variance of the output (/IE(T) of the original algorithm.
We leave the full characterization of this variance estimation procedure for future work.

3.1 Discussion

Methodologically, our approach is aligned with the idea that for long-term causal effects we need a
model for outcomes that leverages structural information pertaining to how outcomes are generated
and how they evolve. In our application such structural information is the microeconomic infor-
mation that dictates what agent behaviors are successful in a given policy and how these behaviors
evolve over time.

In particular, Step 1 in the algorithm relies on Assumptions 2 and 3 to infer that model parameters,
®;,; are stable with respect to treatment assignment. Step 5 of the algorithm is the key estimation
pivot, which uses Assumption 2 to extrapolate from the experimental assignment Z to the coun-
terfactual assignments Z = 1 and Z = 0, as required in our problem. Having pivoted to such



counterfactual assignment, it is then possible to use the temporal model parameters 1);, which are
unaffected by the pivot under Assumption 3, to sample population behaviors up to long-term 7', and
subsequently sample agent actions at 7" (Steps 8 and 9).

Thus, a lot of burden is placed on the behavioral game-theoretic model to predict agent actions,
and the accuracy of such models is still not settled [10]. However, it does not seem necessary
that such prediction is completely accurate, but rather that the behavioral models can pull relevant
information from data that would otherwise be inaccessible without game theory, thereby improving
over classical methods. A formal assessment of such improvement, e.g., using information theory,
is open for future work. An empirical assessment can be supported by the extensive literature in
behavioral game theory [20, 15], which has been successful in predicting human actions in real-
world experiments [22].

Another limitation of our approach is Assumption 1, which posits that there is a finite set of pre-
defined behaviors. A nonparametric approach where behaviors are estimated on-the-fly might do
better. In addition, the long-term horizon, 7', also needs to be defined a priori. We should be careful
how T interferes with the temporal model since such a model implies a time 7" at which population
behavior reaches stationarity. Thus if 77 < T we implicitly assume that the long-term causal effect
of interest pertains to a stationary regime (e.g., Nash equilibrium), but if 77 > T we assume that the
effect pertains to a transient regime, and therefore the policy evaluation might be misguided.

4 Application: Long-term causal effects from a behavioral experiment

In this section, we apply our methodology to experimental data from Rapoport and Boebel [18],
as reported by McKelvey and Palfrey [15]. The experiment consisted of a series of zero-sum two-
agent games, and aimed at examining the hypothesis that human players play according to minimax
solutions of the game, the so-called minimax hypothesis initially suggested by von Neumann and
Morgenstern [21]. Here we repurpose the data in a slightly artificial way, including how we construct
the designer’s objective. This enables a suitable demonstration of our approach.

Each game in the experiment was a simultaneous-move game with five discrete actions for the row
player and five actions for the column player. The structure of the payoff matrix, given in the
supplement in Table 1, is parametrized by two values, namely W and L; the experiment used two
different versions of payoff matrices, corresponding to payments by the row agent to the column
agent when the row agent won (W), or lost (L): modulo a scaling factor, Rapoport and Boebel [18]
used (W, L) = (810, —$6) for game 0 and (W, L) = ($15, —$1) for game 1.

Forty agents, Z = {1,2,...,40}, were randomized to one game design (20 agents per game), and
each agent played once as row and once as column, matched against two different agents. Every
match-up between a pair of agents lasted for two periods of 60 rounds, with each round consisting
of a selection of an action from each agent and a payment. Thus, each agent played for four periods
and 240 rounds in total. If Z is the entire assignment vector of length 40, Z; = 1 means that agent
i was assigned to game 1 with payoff matrix (W, L) = ($15, —$1) and Z; = 0 means that ¢ was
assigned to game 0 with payoff matrix (W, L) = ($10, —$6).

In adapting the data, we take advantage of the randomization in the experiment, and ask a question
in regard to long-term causal effects. In particular, assuming that agents pay a fee for each action
taken, which accounts for the revenue of the game, we ask the following question:

“What is the long-term causal effect on revenue if we switch from payoffs (W, L) = ($10, —$6) of
game 0 to payoffs (W, L) = ($15, —$1) of game 1?”.

The games induced by the two aforementioned payoff matrices represent the two different policies
we wish to compare. To evaluate our method, we consider the last period as long-term, and hold out
data from this period. We define the causal estimand in Eq. (1) as

CE = cT(a1(T;1) — ao(T}; 0)), Q)
where T' = 3 and c is a vector of coefficients. The interpretation is that, given an element ¢, of c, the

agent playing action «a is assumed to pay a constant fee c,. To check the robustness of our method
we test Algorithm 1 over multiple values of c.



4.1 Implementation of Algorithm 1 and results

Here we demonstrate how Algorithm 1 can be applied to estimate the long-term causal effect in
Eq. (5) on the Rapoport & Boebel dataset. To this end we clarify Algorithm 1 step by step, and give
more details in the supplement.

Step 1: Model parameters. For simplicity we assume that the models in the two games share
common parameters, and thus (¢1, %1, A1) = (¢o, %o, Ao) = (&, ¥, N), where A are the parame-
ters of the behavioral model to be described in Step 8. Having common parameters also acts as
regularization and thus helps estimation.

Step 4: Sampling parameters and initial behaviors As explained later we assume that there are
3 different behaviors and thus ¢, ¢, A are vectors with 3 components. Let x ~ U(m, M) denote
that every component of z is uniform on (m, M), independently. We choose diffuse priors for our
parameters, specifically, ¢ ~ U(0, 10), ¢ ~ U(—5,5), and A ~ U(—10,10). Given ¢ we sample
the initial behaviors as Dirichlet, i.e., 81(0; Z) ~ Dir(¢) and 34(0; Z) ~ Dir(¢), independently.

Steps 5 & 7: Pivot to counterfactuals. Since we have a completely randomized experiment (A/B
test) it holds that pz = 0.5 and therefore 3(°) = 0.5(531(0; Z) + Bo(0; Z)). Now we can pivot to the
counterfactual population behaviors under Z = 1 and Z = 0 by setting 5, (0; 1) = 5y(0;0) = 3.

Step 8: Sample counterfactual behavioral history. As the temporal model, we adopt the lag-one
vector autoregressive model, also known as VAR(1). We transform! the population behavior into
a new variable w; = logit(53;(t;1)) € R? (also do so for 8y(¢;0)). Such transformation with a
unique inverse is necessary because population behaviors are constrained on the simplex, and thus
form so-called compositional data [2, 9]. The VAR(1) model implies that

w = Y1 4+ Y[2]w 1 + P[3]eq, (6)

where (k] is the kth component of ¢ and €; ~ N(0,I) is i.i.d. standard bivariate normal. Eq. (6)
is used to sample the behavioral history, I;, in Step 8 of Algorithm 1.

Step 9: Behavioral model. For the behavioral model, we adopt the guantal p-response (QL,)
model [20], which has been successful in predicting human actions in real-world experiments [22].
We choose p = 3 behaviors, namely B = {bg, b1, b2} of increased sophistication parametrized by
A = (A1, A[2], A[3]) € R3. Let G; denote the 5 x 5 payoff matrix of game j and let the term
strategy denote a distribution over all actions. An agent with behavior by plays the uniform strategy,

P(A;(t; Z) = a|B;(t; Z) = by, G;j) = 1/5.

An agent of level-1 (row player) assumes to be playing only against level-0 agents and thus expects
per-action profit u; = (1/5)G;1 (for column player we use the transpose of G;). The level-1 agent
will then play a strategy proportional to e*1“1, where e for vector x denotes the element-wise
exponentiation, e® = (e*[¥). The precision parameter A[1] determines how much an agent insists
on maximizing expected utility; for example, if A[1] = oo, the agent plays the action with maximum
expected payoff (best response); if A\[1] = 0, the agent acts as a level-0 agent. An agent of level-
2 (row player) assumes to be playing only against level-1 agents with precision \[2] and therefore
expects to face strategy proportional to e* 2“1 Thus its expected per-action profit is us o G N eA2lu
and plays strategy oc e*Bl42,

Given G; and \ we calculate a 5 x 3 matrix (); where the kth column is the strategy played by an
agent with behavior b;_1. The expected population action is therefore @;(¢; Z) = Q;5;(t; Z). The
population action «;(¢; Z) is distributed as a normalized multinomial random variable with expecta-
tion &;(t; Z), and so P(cy;(t;1)|5;(t;1), G5) = Multi(|Z] - «;(¢; 1); @;(¢; 1)), where Multi(n; p)
is the multinomial density of observations n = (nq,...,nx) with probabilities p = (p1,...,DK)-
Hence, the full likelihood for observed actions in game j in Steps 10 and 11 of Algorithm 1 is given
by the product

T—1

P(D;|B;,G;) = [ ] Multi(|Z| - a;(#; 1); @, (t; 51)).
t=0

Running Algorithm 1 on the Rapoport and Boebel dataset yields the estimates shown in Figure 2,
for 25 different fee vectors ¢, where each component ¢, is sampled uniformly at random from (0, 1).

'y = logit(z) is defined as the function A™ — R™ ™!, y[i] = log(x[i + 1]/x[1]), where z[1] # 0 wlog.



Figure 2: Estimates of long-term effects of different methods corresponding to 25 random objective
coefficients c in Eq. (5). For estimates of our method we ran Algorithm 1 for 100 iterations.
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We also test difference-in-differences (DID), which estimates the causal effect through
797 = [R(1(2; Z)) = R(a1(0; 2))] = [R(ao(2; Z)) — R(ao(0; 2))],

and a naive method (“naive” in the plot), which ignores the dynamical aspect and estimates the long-
term causal effect as 7" = [R(a1(2; Z)) — R(ao(2; Z))]. Our estimates (“LACE” in the plot) are
closer to the truth (mse = 0.045) than the estimates from the naive method (mse = 0.185) and from
DID (mse = 0.361). This illustrates that our method can pull game-theoretic information from the
data for long-term causal inference, whereas the other methods cannot.

5 Conclusion

One critical shortcoming of statistical methods of causal inference is that they typically do not assess
the long-term effect of policy changes. Here we combined causal inference and game theory to
build a framework for estimation of such long-term effects in multiagent economies. Central to
our approach is behavioral game theory, which provides a natural latent space model of how agents
act and how their actions evolve over time. Such models enable to predict how agents would act
under various policy assignments and at various time points, which is key for valid causal inference.
Working on a real-world dataset [18] we showed how our framework can be applied to estimate the
long-term effect of changing the payoff structure of a normal-form game.

Our framework could be extended in future work by incorporating learning (e.g., fictitious play,
bandits, no-regret learning) to better model the dynamic response of multiagent systems to policy
changes. Another interesting extension would be to use our framework for optimal design of exper-
iments in such systems, which needs to account for heterogeneity in agent learning capabilities and
for intrinsic dynamical properties of the systems’ responses to experimental treatments.

Acknowledgements

The authors wish to thank Leon Bottou, the organizers and participants of CODE@MIT’ 15,
GAMES?’ 16, the Workshop on Algorithmic Game Theory and Data Science (EC’15), and the anony-
mous NIPS reviewers for their valuable feedback. Panos Toulis has been supported in part by the
2012 Google US/Canada Fellowship in Statistics. David C. Parkes was supported in part by NSF
grant CCF-1301976 and the SEAS TomKat fund.



References

[1] Alberto Abadie. Semiparametric difference-in-differences estimators. The Review of Economic
Studies, 72(1):1-19, 2005.

[2] John Aitchison. The statistical analysis of compositional data. Springer, 1986.

[3] Joshua D Angrist and Jorn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s
companion. Princeton university press, 2008.

[4] Susan Athey, Jonathan Levin, and Enrique Seira. Comparing open and sealed bid auctions:
Evidence from timber auctions. The Quarterly Journal of Economics, 126(1):207-257, 2011.

[5] Léon Bottou, Jonas Peters, Joaquin Quifionero-Candela, Denis X Charles, D Max Chickering,
Elon Portugualy, Dipankar Ray, Patrice Simard, and Ed Snelson. Couterfactual reasoning and
learning systems. J. Machine Learning Research, 14:3207-3260, 2013.

[6] David Card and Alan B Krueger. Minimum wages and employment: A case study of the fast
food industry in New Jersey and Pennsylvania. American Economic Review, 84(4):772-793,
1994.

[7] Stephen G Donald and Kevin Lang. Inference with difference-in-differences and other panel
data. The review of Economics and Statistics, 89(2):221-233, 2007.

[8] Ronald Aylmer Fisher. The design of experiments. Oliver & Boyd, 1935.

[9] Gary K Grunwald, Adrian E Raftery, and Peter Guttorp. Time series of continuous proportions.
Journal of the Royal Statistical Society. Series B (Methodological), pages 103—-116, 1993.

[10] P Richard Hahn, Indranil Goswami, and Carl F Mela. A bayesian hierarchical model for
inferring player strategy types in a number guessing game. The Annals of Applied Statistics,
9(3):1459-1483, 2015.

[11] James J Heckman, Lance Lochner, and Christopher Taber. General equilibrium treatment
effects: A study of tuition policy. American Economic Review, 88(2):3810386, 1998.

[12] James J Heckman and Edward Vytlacil. Structural equations, treatment effects, and economet-
ric policy evaluationl. Econometrica, 73(3):669-738, 2005.

[13] John H Holland and John H Miller. Artificial adaptive agents in economic theory. The Ameri-
can Economic Review, pages 365-370, 1991.

[14] Paul W Holland. Statistics and causal inference. Journal of the American statistical Associa-
tion, 81(396):945-960, 1986.

[15] Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form
games. Games and economic behavior, 10(1):6-38, 1995.

[16] Michael Ostrovsky and Michael Schwarz. Reserve prices in internet advertising auctions: A
field experiment. In Proceedings of the 12th ACM conference on Electronic commerce, pages
59-60. ACM, 2011.

[17] Judea Pearl. Causality: models, reasoning and inference. Cambridge University Press, 2000.

[18] Amnon Rapoport and Richard B Boebel. Mixed strategies in strictly competitive games: A
further test of the minimax hypothesis. Games and Economic Behavior, 4(2):261-283, 1992.

[19] Donald B Rubin. Causal inference using potential outcomes. Journal of the American Statis-
tical Association, 2011.

[20] Dale O Stahl and Paul W Wilson. Experimental evidence on players’ models of other players.
Journal of Economic Behavior & Organization, 25(3):309-327, 1994.

[21] J Von Neumann and O Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1944.

[22] James R Wright and Kevin Leyton-Brown. Beyond equilibrium: Predicting human behavior
in normal-form games. In Proc. 24th AAAI Conf. on Artificial Intelligence, 2010.



