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Abstract

Sobolev quantities (norms, inner products, and distances) of probability density
functions are important in the theory of nonparametric statistics, but have rarely
been used in practice, due to a lack of practical estimators. They also include,
as special cases, L? quantities which are used in many applications. We propose
and analyze a family of estimators for Sobolev quantities of unknown probability
density functions. We bound the finite-sample bias and variance of our estimators,
finding that they are generally minimax rate-optimal. Our estimators are signif-
icantly more computationally tractable than previous estimators, and exhibit a
statistical/computational trade-off allowing them to adapt to computational con-
straints. We also draw theoretical connections to recent work on fast two-sample
testing and empirically validate our estimators on synthetic data.

1 Introduction

L? quantities (i.e., inner products, norms, and distances) of continuous probability density functions
are important information theoretic quantities with many applications in machine learning and signal
processing. For example, L? norm estimates can be used for goodness-of-fit testing [7]], image
registration and texture classification [12], and parameter estimation in semi-parametric models [36].
L? inner products estimates can generalize linear or polynomial kernel methods to inputs which are
distributions rather than numerical vectors. [28] L? distance estimators are used for two-sample
testing [} 25]], transduction learning [30]], and machine learning on distributional inputs [27]]. [29]]
gives applications of L? quantities to adaptive information filtering, classification, and clustering.

L? quantities are a special case of less-well-known Sobolev quantities. Sobolev norms measure
global smoothness of a function in terms of integrals of squared derivatives. For example, for a
non-negative integer s and a function f : R — R with an s*" derivative f(*), the s-order Sobolev

norm || - || g7+ is given by || f|| s = [ (f(s)(x))2 dz (when this quantity is finite). See Sectionfor
more general definitions, and see [21] for an introduction to Sobolev spaces.

Estimation of general Sobolev norms has a long history in nonparametric statistics (e.g., [32 [13, 10}
2]) This line of work was motivated by the role of Sobolev norms in many semi- and non-parametric
problems, including density estimation, density functional estimation, and regression, (see [35]],
Section 1.7.1) where they dictate the convergence rates of estimators. Despite this, to our knowledge,
these quantities have never been studied in real data, leaving an important gap between the theory
and practice of nonparametric statistics. We suggest this is in part due a lack of practical estimators
for these quantities. For example, the only one of the above estimators that is statistically minimax-
optimal [2]] is extremely difficult to compute in practice, requiring numerical integration over each of
O(n?) different kernel density estimates, where n denotes the sample size. We know of no estimators
previously proposed for Sobolev inner products and distances.

The main goal of this paper is to propose and analyze a family of computationally and statistically
efficient estimators for Sobolev inner products, norms, and distances. Our specific contributions are:

1. We propose families of nonparametric estimators for all Sobolev quantities (Section ).
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2. We analyze the estimators’ bias and variance. Assuming the underlying density functions lie in
a Sobolev class of smoothness parametrized by s’, we show the estimator for Sobolev quantities
of order s < s’ converges to the true value at the “parametric” rate of O(n~!) in mean squared

8(s—s") . .
error when s’ > 2s + D /4, and at a slower rate of O <n 4s"+D ) otherwise. (Sectlon.

3. We validate our theoretical results on simulated data. (Section|8).

4. We derive asymptotic distributions for our estimators, and we use these to derive tests for the
general statistical problem of two-sample testing. We also draw theoretical connections between
our test and the recent work on nonparametric two-sample testing. (Section [J).

In terms of mean squared error, minimax lower bounds matching our convergence rates over Sobolev
or Holder smoothness classes have been shown by [16] for s = 0 (i.e., L? quantities), and [3] for
Sobolev norms with integer s. Since these lower bounds intuitively “span” the space of relevant
quantities, it is a small step to conjecture that our estimators are minimax rate-optimal for all Sobolev
quantities and s € [0, c0).

As described in Section[7} our estimators are computable in O(n'*¢) time using only basic matrix
operations, where n is the sample size and € € (0, 1) is a tunable parameter trading statistical and
computational efficiency; the smallest value of € at which the estimator continues to be minimax
rate-optimal approaches 0 as we assume more smoothness of the true density.

2 Problem setup and notation

Let X = [—7, 7] and let i denote the Lebesgue measure on X'. For D-tuples z € ZP of integers,
lety, € L? = L?(X) deﬁned by 1. (z) = e~##2) forall € X denote the z*" element of the L>-

orthonormal Fourier basis, and, for f € L?, let f(z) := (1, f)r2 = [, ¥. () f(2) du(z) denote
the 2'" Fourier coefficient of f. E] For any s € [0, 00), define the Sobolev space H* = H*(X) C L?

of order s on X byE]
HS:{feLQ: > e

2€ZP

f(z)‘2 < oo}. (1)

Fix a known s € [0, 00) and a unknown probability density functions p, ¢ € H®, and suppose we
have n IID samples X1, ..., X,, ~pand Y7,...,Y, ~ ¢ from each of p and q. We are interested in
estimating the inner product

(p, @) gs = Z 22p(2)q(z)  defined forall p,q e H°. (2)
2€ZP
Estimating the inner product gives an estimate for the (squared) induced norm and distance, since
Il == Y 2 15()" = (p.p)ue and  lp—qllfe = IplFe — 2, @) + a3 3
2€LP

Since our theoretical results assume the samples from p and g are independent, when estimating
lp||%, we split the sample from p in half to compute two independent estimates of p, although this
may not be optimal in practice.

For a more classical intuition, we note that, in the case D = 1 and s € {0, 1,2, ... }, (via Parseval’s

identity and the identity ]76(2) = (iz)* f(z)), that one can show the following: H* includes the

"We suppress dependence on X’; all function spaces are over X except as discussed in Section
’Here, (-, -) denotes the dot product on RP. Fora complex number ¢ = a + bi, ¢ = a — bi denotes the
complex conjugate of ¢, and |¢| = v/¢¢ = va? + b? denotes the modulus of c.

*When D > 1, 2* = HjD:1 22°. For z < 0, z*° should be read as (z*)°, so that z°* € R even when

2s ¢ 7. In the L? case, we use the convention that 0° = 1.

*|pllzs is pseudonorm on H*® because it fails to distinguish functions identical almost everywhere up to
additive constants; a combination of ||p|| ;2 and ||p|| ms is used when a proper norm is needed. However, since
probability densities integrate to 1, || - — - || zz= is a proper metric on the subset of (almost-everywhere equivalence
classes of) probability density functions in H®, which is important for two-sample testing (see Section[9). For

<

simplicity, we use the terms “norm”, “inner product”, and “distance” for the remainder of the paper.



Functional Name Functional Form References
L? norms 2. = [ (p(x))* da (32, 6]
(Integer) Sobolev norms pll3. = [ (p(k')(ac))2 dx (2]
Density functionals [ o(z,p(z)) dx [18.19]
Derivative functionals | [ ¢(z,p(z),p'(x),...,p"* (z)) dz 131
L? inner products (p1,p2)r2 = [ p1(@)pa2(x) dz [16,[17]
Multivariate functionals (@, pi(2),...,pp(x))d [34,14]

Table 1: Some related functional forms for which estimators for which nonparametric estimators have
been developed and analyzed. p, p1, ..., pr, are unknown probability densities, from each of which we
draw n IID samples, ¢ is a known real-valued measurable function, and k is a non-negative integer.

subspace of L? functions with at least s derivatives in L? and, if f(*) denotes the s*" derivative of f

11 =2 [ (£9@) do=2e |19 . v e @

2
L2

In particular, when s = 0, H° = L?, || - ||g= = || - ||z2» and (-, ")+ = (-,-)z>. As we describe in
the supplement, equation (@) and our results generalizes trivially to weak derivatives, as well as to
non-integer s € [0, 00) via a notion of fractional derivative.

2.1 Unbounded domains

A notable restriction above is that p and ¢ are supported in X' := [—, 7T]D . In fact, our estimators
and tests are well-defined and valid for densities supported on arbitrary subsets of R”. In this
case, they act on the 27-periodic summation py, : [—7, 7P — [0,00] defined for + € X by

par(x) := >, cyp p(x + 27mz), which is itself a probability density function on X'. For example, the
estimator for ||p|| ;= will instead estimate ||pa, || frs, and the two-sample test for distributions p and ¢
will attempt to distinguish pa, from gs,. Typically, this is not problematic; for example, for most
realistic probability densities, p and ps, have similar orders of smoothness, and ps, = g2 if and
only if p = q. However, there are (meagre) sets of exceptions; for example, if g is a translation of p
by exactly 27, then pa, = ¢o2,, and one can craft a highly discontinuous function p such that ps; is
uniform on &. [39] These exceptions make it difficult to extend theoretical results to densities with
arbitrary support, but they are fixed, in practice, by randomly rescaling the data (as in [4]). If the
densities have (known) bounded support, they can simply be shifted and scaled to be supported on X’

3 Related work

There is a large body of work on estimating nonlinear functionals of probability densities, with
various generalizations in terms of the class of functionals considered. Table[T] gives a subset of such
work, for functionals related to Sobolev quantities. As shown in Section 2] the functional form we
consider is a strict generalization of L2 norms, Sobolev norms, and L? inner products. It overlaps
with, but is neither a special case nor a generalization of the remaining functional forms in the table.

Nearly all of the above approaches compute an optimally smoothed kernel density estimate and
then perform bias corrections based on Taylor series expansions of the functional of interest. They
typically consider distributions with densities that are 5-Holder continuous and satisfy periodicity
assumptions of order 8 on the boundary of their support, for some constant 8 > 0 (see, for example,
Section 4 of [[16]] for details of these assumptions). The Sobolev class we consider is a strict superset
of this Holder class, permitting, for example, certain “small” discontinuities. In this regard, our
results are slightly more general than most of these prior works.

Finally, there is much recent work on estimating entropies, divergences, and mutual informations,
using methods based on kernel density estimates [[14} [17, [16] 24} 33| 34]] or k-nearest neighbor
statistics [20, 123} 22} 26]. In contrast, our estimators are more similar to orthogonal series density
estimators, which are computationally attractive because they require no pairwise operations between
samples. However, they require quite different theoretical analysis; unlike prior work, our estimator



is constructed and analyzed entirely in the frequency domain, and then related to the data domain via
Parseval’s identity. We hope our analysis can be adapted to analyze new, computationally efficient
information theoretic estimators.

4 Motivation and construction of our estimator

For a non-negative integer parameter Z,, (to be specified later), let

D 1= Z p(2)Y, and ¢, = Z q(z).  where |z]loo ::jemax zj (5)

Izlloc <Zn 12|l 00 < Zn

denote the L? projections of p and g, respectively, onto the linear subspace spanned by the L2-

orthonormal family F,, := {¢, : z € ZP |z| < Z,}. Note that, since 1, (y) = 0 whenever y # z,
the Fourier basis has the special property that it is orthogonal in {-,-) ys as well. Hence, since
pr, and ¢, lie in the span of F,, while p — p,, and ¢ — ¢, lie in the span of {¢, : z € Z}\F,,
(P — Dnsqn)Hs = (Pn,q — qn) s = 0. Therefore,

(@) e = (Pns@n) s + (P = Prs@n) s + (P — Gn)ris + (P = Pns @ — ) o
= <pnaQn>HS +<p—pn,q—qn>Hs. (6)

We propose an unbiased estimate of S,, := (pn, gn)gs = Z\\z\lmsZn 2%5p,,(2)qn(2). Notice that
Fourier coefficients of p are the expectations p(z) = Ex~p [-(X)]. Thus, p(z) := 2 > i = (X5)

T n

and §(z) == 1 Z?Zl 1, (Y;) are independent unbiased estimates of p and g, respectively. Since S,
is bilinear in p and ¢, the plug-in estimator for S,, is unbiased. That is, our estimator for (p, ¢) g is
S, = Z 225p(2)4(2). (7

l2llco<Zn

5 Finite sample bounds

Here, we present our main theoretical results, bounding the bias, variance, and mean squared error of
our estimator for finite n.

By construction, our estimator satisfies

E[S:.]= Y PEBGIEGEI= Y. FR)n() = S
Izlloc <Zn Izlloc <Zn

Thus, via @ and Cauchy-Schwarz, the bias of the estimator S'n satisfies

< \/Hp—pnl\ifs lg = anll3-- (8)

‘IE [Sn} — 0 @ms| =P —Pnsq — @n)m

lp — pnll s is the error of approximating p by an order-Z,, trigonometric polynomial, a classic
problem in approximation theory, for which Theorem 2.2 of [15] shows:

ifpe H* forsomes’ >s, then ||p — Dnllgs < ||pHH5/Zfl_s/. )

In combination with (8)), this implies the following bound on the bias of our estimator:

Theorem 1. (Bias bound) If p,q € H® for some s' > s, then, for C := ||p|| ;-

(I”HS"

‘IE [Sn} —(p, @) | < Cpz26=) (10)

Hence, the bias of S, decays polynomially in Z,,, with a power depending on the “extra” s’ — s
orders of smoothness available. On the other hand, as we increase Z,,, the number of frequencies at
which we estimate p increases, suggesting that the variance of the estimator will increase with Z,,.
Indeed, this is expressed in the following bound on the variance of the estimator.



Theorem 2. (Variance bound) Ifp,q € H s’ for some s’ > s, then

2PT (4s + 1)
T(de 1L D L1 2 11

4s+D

V[Sn}gwl ’;2 +@

,  Wwhere C;:=

and Cy := (|lpllz+ + llgllz+) lIpllw2ssllallwas s + [Pl [lall - are the constants (in n)

The proof of Theorem [2]is perhaps the most significant theoretical contribution of this work. Due to
space constraints, the proof is given in the supplement. Combining Theorems [T]and 2] gives a bound

on the mean squared error (MSE) of S,, via the usual decomposition into squared bias and variance:
Corollary 3. (Mean squared error bound) If p,q € H s for some s’ > s, then

~ 2 , Z45+D C
E{(Sn—<RQMﬁ)}f§C%Z§SS)+2CH B+t (12)

If, furthermore, we choose Z,, < naED (optimizing the rate in inequality , then
N 2 max 8(s—s)
EK&—@ﬂmﬁ]xn“ s (13)

Corollaryrecovers the phenomenon discovered by [2]]: when s’ > 2s + %, the minimax optimal
MSE decays at the “semi-parametric” n~! rate, whereas, when s’ € (s, 2s + %), the MSE decays at

. . . . — 2 .
a slower rate. Also, the estimator is L2?-consistent if Z,, — oo and Z,n~ %+D — 0 as n — oo. This
is useful in practice, since s is known but s’ is not.

Finally, it is worth reiterating that, by (3), these finite sample rates extend, with additional constant
factors, to estimating Sobolev norms and distances.

6 Asymptotic distributions

In this section, we derive the asymptotic distributions of our estimator in two cases: (1) the inner
product estimator and (2) the distance estimator in the case p = q. These results provide confidence
intervals and two-sample tests without computationally intensive resampling. While (1) is more
general in that it can be used with (3)) to bound the asymptotic distributions of the norm and distance
estimators, (2) provides a more precise result leading to a more computationally and statistically
efficient two-sample test. Proofs are given in the supplementary material.

Theorem [ shows that our estimator has a normal asymptotic distribution, assuming Z,, — co slowly
enough as n — oo, and also gives a consistent estimator for its asymptotic variance. From this, one
can easily estimate asymptotic confidence intervals for inner products, and hence also for norms.

Theorem 4. (Asymptotic normality) Suppose that, for some s’ > 2s + % p,q € H ' and

1 .
suppose Z,n4=s" — oo and Z,n" D 5 0asn — oo Then, S, is asymptotically normal
with mean (p,q)ps. In particular, for j € {1,...,n} and z € ZP with ||z||ec < Z,, define
W, = 2°e"*Xi and V; , = 2°¢"*Yi, so that W; and V; are column vectors in R(2Z)” . Let
W .— Ly . 1\ 27,)"P
Wi=25"% W, V=137 V; e REZDT,

T n

n n

1 1 — — D D
Swo= = Y (W=W)(W;=W)" d Sy==3 (V;=V)(V;=V)" € RE#)"x(20)
w nj:1( J )(W; ). an % nj:1( J )(V; )T €

denote the empirical means and covariances of W and V', respectively. Then, for

52 = {v‘[//r FOW EOV} Bf/] . wehave <S”_<pq>H> 2 N0, 1),

n

D e
where = denotes convergence in distribution.

Since distances can be written as a sum of three inner products (Eq. (3)), Theorem ] might suggest
an asymptotic normal distribution for Sobolev distances. However, extending asymptotic normality



from inner products to their sum requires that the three estimates be independent, and hence that we
split data between the three estimates. This is inefficient in practice and somewhat unnatural, as we
know, for example, that distances should be non-negative. For the particular case p = ¢ (as in the
null hypothesis of two-sample testing), the following theoremE]prOVides a more precise asymptotic
(x?) distribution of our Sobolev distance estimator, after an extra decorrelation step. This gives, for
example, a more powerful two-sample test statistic (see Section[J] for details).

Theorem 5. (Asymptotic null distribution) Suppose that, for some s’ > 2s + % p.q€ H*, and

1 1 . .
suppose Z,n~" — oo and Z,n~ %D — 0asn — oo. Forj € {1,...,n} and z € ZP with
[2lloc < Zn, define W, . := 2* (e7*%i — e=#2Y3), so0 that W is a column vector in RZ%»)" Let

= %Z Wj S R(2Z,L)D and Y = %Z (WJ _ W) (W] B W)T c R(2Z7L)DX(2Z”)D
j=1 —1

denote the empirical mean and covariance of W, and define T := nWTXle. Then, if p = q, then
Qy2((22,)7)(T) 3 Uniform([0,1]) as n — oo,

where Qy2(q) : [0,00) — [0, 1] denotes the quantile function (inverse CDF) of the x? distribution
X2(d) with d degrees of freedom.

Let M denote our estimator for ||p — g|| 7+ (i.e., plugging S,, into (3)). While Theoremimmediately
provides a valid two-sample test of desired level, it is not immediately clear how this relates to

M, nor is there any suggestion of why the test statistic ought to be a good (i.e., consistent) one.
Some intuition is as follows. Notice that M = T W. Since, by the central limit theorem, TV
has a normal asymptotic distribution, if the components of W were uncorrelated (and Z,, were
fixed), we would expect nM to have an asymptotic x? distribution with (2Z )P degrees of freedom.
However, because we use the same data to compute each component of M, they are not typically
uncorrelated, and so the asymptotic distribution of M is difficult to derive. This motivates the statistic

T
= (\ / EW1W> \/ S W, since the components of |/ 3;! W are (asymptotically) uncorrelated.

7 Parameter selection and statistical/computational trade-off

Here, we give statistical and computational considerations for choosing the smoothing parameter Z,,.

Statistical perspective: In practice, of course, we do not typically know s’, so we cannot simply

2
set Z, < n4’+D  as suggested by the mean squared error bound lb Fortunately (at least for ease
. . . __1
of parameter selection), when s’ > 2s + Q , the dominant term of l.) is Cy/n for Z, < n~ %+D,

Hence if we are willing to assume that the dens1ty has at least 2s + - orders of smoothness (which
may be a mlld assumption in practice), then we achieve statzstzcal optimality (in rate) by setting

Ly =< n"~ D , which depends only on known parameters. On the other hand, the estimator can
continue to benefit from additional smoothness computationally.

Computational perspective An attractive property of the estimator discussed is its computational

simplicity and efficiency, in low dimensions. Most competing nonparametric estimators, such

as kernel-based or nearest-neighbor methods, either take O(n?) time or rely on complex data

structures such as k-d trees or cover trees [31] for O(2”n logn) time performance. Since computing

the estimator takes O(nZP) time and O(ZP) memory (that is, the cost of estimating each of

(2Z,)P Fourier coefficients by an average), a statistically optimal choice of Z,, gives a runtime of
4s’ +

O (n++D ) . Since the estimate requires only a vector outer product, exponentiation, and averaging,
constants involved are small and computations parallelize trivially over frequencies and data.

Under severe computational constraints, for very large data sets, or if D is large relative to s’, we can
reduce Z,, to trade off statistical for computational efficiency. For example, if we want an estimator

This result is closely related to Proposition 4 of [4]. However, in their situation, s = 0 and the set of test
frequencies is fixed as n — oo, whereas our set is increasing.
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with runtime O(n'*%) and space requirement O(n?) for some 6 € (0, %) , setting Z,, =< n?/P
. . . . . 40(s—s’)
still gives a consistent estimator, with mean squared error of the order O (nmax{ D ’_1}) .

Kernel- or nearest-neighbor-based methods, including nearly all of the methods described in Section
tend to require storing previously observed data, resulting in O(n) space requirements. In
contrast, orthogonal basis estimation requires storing only O(Z) estimated Fourier coefficients.
The estimated coefficients can be incrementally updated with each new data point, which may make
the estimator or close approximations feasible in streaming settings.

8 Experimental results

In this section, we use synthetic data to demonstrate effectiveness of our methods. E] All experiments
use 10,102, ..., 10° samples for estimation.

We first test our estimators on 1D Lo distances. Figure [1alshows estimated distance between A/ (0, 1)
and \V (1,1); Figure[Ib|shows estimated distance between N (0, 1) and AV (0, 4); Figure [Ic|shows
estimated distance between Unif [0, 1] and Unif[0.5, 1.5]; Figure|ld|shows estimated distance between
[0, 1] and a triangular distribution whose density is highest at z = 0.5. Error bars indicate asymptotic
95% confidence intervals based on Theorem |4} These experiments suggest 10° samples is sufficient
to estimate Lo distances with high confidence. Note that we need fewer samples to estimate Sobolev
quantities of Gaussians than, say, of uniform distributions, consistent with our theory, since (infinitely
differentiable) Gaussians are smoothier than (discontinuous) uniform distributions.

Next, we test our estimators on Lo distances of multivariate distributions. Figure [2alshows estimated
distance between N ([0, 0,0],I) and NV ([1, 1, 1], I); Figure [2b|shows estimated distance between
N ([0,0,0],I) and AV ([0,0, 0] ,4I). These experiments show that our estimators can also handle
multivariate distributions. Lastly, we test our estimators for H° norms. Figure [2c|shows estimated
H° norm of V' (0, 1) and Figure 2d[shows H* norm of A (0, 1). Additional experiments with other
distributions and larger values of s are given in the supplement.

9 Connections to two-sample testing

We now discuss the use of our estimator in two-sample testing. From the large literature on nonpara-
metric two-sample testing, we discuss only some recent approaches closely related to ours.

Let M denote our estimate of the Sobolev distance, consisting of plugging S into equation H

Since || - — - || g+ is a metric on the space of probability density functions in H?®, computing M
leads naturally to a two-sample test on this space. Theorem [5] suggests an asymptotic test, which
is computationally preferable to a permutation test. In particular, for a desired Type I error rate
a € (0,1) our test rejects the null hypothesis p = ¢ if and only if Qy2(220)(T) < a.

SMATLAB code for these experiments is available at https://github.com/sss1/SobolevEstimation!


https://github.com/sss1/SobolevEstimation

When s = 0, this approach is closely related to several two-sample tests in the literature based on
comparing empirical characteristic functions (CFs). Originally, these tests [[L1, 5] computed the same
statistic 7" with a fixed number of random RP-valued frequencies instead of deterministic Z”-valued
frequencies. This test runs in linear time, but is not generally consistent, since the two CFs need
not differ almost everywhere. Recently, [4] suggested using smoothed CFs, i.e., the convolution of
the CF with a universal smoothing kernel k. This is computationally easy (due to the convolution
theorem) and, when p # q, (p * k)(z) # (¢ * k)(z) for almost all z € R, reducing the need for
carefully choosing test frequencies. Furthermore, this test is almost-surely consistent under very
general alternatives. However, it is not clear what sort of assumptions would allow finite sample
analysis of the power of their test. Indeed, the convergence as n — oo can be arbitrarily slow,
depending on the random test frequencies used. Our analysis instead uses the assumption p,q € H s’
to ensure that small, Z”-valued frequencies contain most of the power of p.

These fixed-frequency approaches can be thought of as the extreme point § = 0 of the compu-
tational/statistical trade-off described in section [/} they are computable in linear time and (with
smoothing) are strongly consistent, but do not satisfy finite-sample bounds under general conditions.

At the other extreme (§ = 1) are MMD-based tests of [8] 9], which use the entire spectrum p. These
tests are statistically powerful and have strong guarantees for densities in an RKHS, but have O(n?)
computational complexity. [°| The computational/statistical trade-off discussed in Section|7|can be
thought of as an interpolation (controlled by 6) of these approaches, with runtime in the case § = 1
approaching quadratic for large D and small s'.

10 Conclusions and future work

In this paper, we proposed nonparametric estimators for Sobolev inner products, norms and distances
of probability densities, for which we derived finite-sample bounds and asymptotic distributions.

A natural follow-up question to our work is whether estimating smoothness of a density can guide the
choice of smoothing parameters in nonparametric estimation. When analyzing many nonparametric
estimators, Sobolev norms appear as the key unknown term in error bounds. While theoretically
optimal smoothing parameter values are often suggested based on optimizing these error bounds,
our work may suggest a practical way of mimicking this procedure by plugging estimated Sobolev
norms into these bounds. For some problems, such as estimating functionals of a density, this may
be especially useful, since no error metric is typically available for cross-validation. Even when
cross-validation is an option, as in density estimation or regression, estimating smoothness may be
faster, or may suggest an appropriate range of parameter values.
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