Toward Deeper Understanding of Neural Networks: The Power
of Initialization and a Dual View on Expressivity

Amit Daniely Roy Frostig* Yoram Singer
Google Brain Google Brain Google Brain
Abstract

We develop a general duality between neural networks and compositional kernel
Hilbert spaces. We introduce the notion of a computation skeleton, an acyclic
graph that succinctly describes both a family of neural networks and a kernel space.
Random neural networks are generated from a skeleton through node replication
followed by sampling from a normal distribution to assign weights. The kernel
space consists of functions that arise by compositions, averaging, and non-linear
transformations governed by the skeleton’s graph topology and activation functions.
We prove that random networks induce representations which approximate the
kernel space. In particular, it follows that random weight initialization often yields
a favorable starting point for optimization despite the worst-case intractability of
training neural networks.

1 Introduction

Neural network (NN) learning has underpinned state of the art empirical results in numerous applied
machine learning tasks, see for instance [25, 26]. Nonetheless, theoretical analyses of neural network
learning are still lacking in several regards. Notably, it remains unclear why training algorithms find
good weights and how learning is impacted by network architecture and its activation functions.

This work analyzes the representation power of neural networks within the vicinity of random
initialization. We show that for regimes of practical interest, randomly initialized neural networks
well-approximate a rich family of hypotheses. Thus, despite worst-case intractability of training
neural networks, commonly used initialization procedures constitute a favorable starting point for
training.

Concretely, we define a computation skeleton that is a succinct description of feed-forward networks.
A skeleton induces a family of network architectures as well as an hypothesis class H of functions
obtained by non-linear compositions mandated by the skeleton’s structure. We then analyze the set of
functions that can be expressed by varying the weights of the last layer, a simple region of the training
domain over which the objective is convex. We show that with high probability over the choice of
initial network weights, any function in H can be approximated by selecting the final layer’s weights.
Before delving into technical detail, we position our results in the context of previous research.

Current theoretical understanding of NN learning. Standard results from complexity theory [22]
imply that all efficiently computable functions can be expressed by a network of moderate size.
Barron’s theorem [7] states that even two-layer networks can express a very rich set of functions. The
generalization ability of algorithms for training neural networks is also fairly well studied. Indeed,
both classical [3, 9, 10] and more recent [18, 33] results from statistical learning theory show that, as
the number of examples grows in comparison to the size of the network, the empirical risk approaches
the population risk. In contrast, it remains puzzling why and when efficient algorithms, such as
stochastic gradient methods, yield solutions that perform well. While learning algorithms succeed in

*Most of this work performed while the author was at Stanford University.

30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain.

practice, theoretical analyses are overly pessimistic. For example, hardness results suggest that, in
the worst case, even very simple 2-layer networks are intractable to learn. Concretely, it is hard to
construct a hypothesis which predicts marginally better than random [15, 23, 24].

In the meantime, recent empirical successes of neural networks prompted a surge of theoretical
results on NN learning. For instance, we refer the reader to [1, 4, 12, 14, 16, 28, 32, 38, 42] and the
references therein.

Compositional kernels and connections to networks. The idea of composing kernels has repeat-
edly appeared in the machine learning literature. See for instance the early work by Grauman and
Darrell [17], Scholkopf et al. [41]. Inspired by deep networks’ success, researchers considered deep
composition of kernels [11, 13, 29]. For fully connected two-layer networks, the correspondence
between kernels and neural networks with random weights has been examined in [31, 36, 37, 45].
Notably, Rahimi and Recht [37] proved a formal connection, in a similar sense to ours, for the
RBF kernel. Their work was extended to include polynomial kernels [21, 35] as well as other
kernels [5, 6]. Several authors have further explored ways to extend this line of research to deeper,
either fully-connected networks [13] or convolutional networks [2, 20, 29].

This work establishes a common foundation for the above research and expands the ideas therein. We
extend the scope from fully-connected and convolutional networks to a broad family of architectures.
In addition, we prove approximation guarantees between a network and its corresponding kernel in
our general setting. We thus generalize previous analyses which are only applicable to fully connected
two-layer networks.

2 Setting

Notation. We denote vectors by bold-face letters (e.g. x), and matrices by upper case Greek letters
(e.g.). The 2-norm of x € R? is denoted by ||x||. For functions o : R — R we let

22

loll = VExowon () = /=[5, o2 (@)e S do
Let G = (V, E) be a directed acyclic graph. The set of neighbors incoming to a vertex v is denoted
in(w) :={ueV|ue E}.

The d — 1 dimensional sphere is denoted S?~! = {x € R? | ||x|| = 1}. We provide a brief overview
of reproducing kernel Hilbert spaces in the sequel and merely introduce notation here. In a Hilbert
space H, we use a slightly non-standard notation 7% for the ball of radius B, {x € H | ||x|lx < B}.
We use [z]4 to denote max(z, 0) and 1[b] to denote the indicator function of a binary variable b.

Input space. Throughout the paper we assume that each example is a sequence of n elements,
each of which is represented as a unit vector. Namely, we fix n and take the input space to be

X = X, 4 = (S?1)". Each input example is denoted,
x = (x',...,x"), where x’ € 1. (1)

We refer to each vector x* as the input’s ith coordinate, and use x; to denote it jth scalar entry.
Though this notation is slightly non-standard, it unifies input types seen in various domains. For
example, binary features can be encoded by taking d = 1, in which case X = {£1}". Meanwhile,
images and audio signals are often represented as bounded and continuous numerical values; we can
assume in full generality that these values lie in [—1, 1]. To match the setup above, we embed [—1, 1]
into the circle S', e.g. through the map

o o () en (5

When each coordinate is categorical, taking one of d values, one can represent the category j € [d]
by the unit vector e; € S4~1. When d is very large or the basic units exhibit some structure—such as
when the input is a sequence of words—a more concise encoding may be useful, e.g. using unit vectors

in a low dimension space S% where d’ < d (see for instance Levy and Goldberg [27], Mikolov et al.
[30D).

Supervised learning. The goal in supervised learning is to devise a mapping from the input space
X to an output space) based on a sample S = {(x1,41),- .-, (Xm,Ym)}, Where (x;,y;) € X x Y,
drawn i.i.d. from a distribution D over X x). A supervised learning problem is further specified
by an output length & and a loss function £ : R¥ x) — [0, 00), and the goal is to find a predictor
h: X — RF whose loss,
Lp(h):= E _£(h(x),y)
(x,y)~D

is small. The empirical loss
m

Ls(h) = %Zah(xi)ayi)

is commonly used as a proxy for the loss L£p. Regression problems correspond to) = R and, for
instance, the squared loss (¢, y) = (§ — y)?. Binary classification is captured by) = {#£1} and,
say, the zero-one loss ¢(¢,y) = 1[gy < 0] or the hinge loss £(§,y) = [1 — §y]+, with standard
extensions to the multiclass case. A loss £ is L-Lipschitz if |¢(y1,y) — £(y2,y)| < Lly1 — y2| for all
y1,92 € RF, 5y € Y, and it is convex if £(-, y) is convex for every y €).

Neural network learning. We define a neural network N to be directed acyclic graph (DAG)
whose nodes are denoted V' (N) and edges E(N). Each of its internal units, i.e. nodes with both
incoming and outgoing edges, is associated with an activation function o, : R — R. In this paper’s
context, an activation can be any function that is square integrable with respect to the Gaussian

measure on R. We say that o is normalized if ||c|| = 1. The set of nodes having only incoming
edges are called the output nodes. To match the setup of a supervised learning problem, a network N
has nd input nodes and k output nodes, denoted o1, . .., 0. A network N together with a weight

vector w = {wy, | wv € E} defines a predictor hxrw : X — R* whose prediction is given by
“propagating” x forward through the network. Formally, we define h,, w (-) to be the output of the
subgraph of the node v as follows: for an input node v, h, is the identity function, and for all other
nodes, we define h,, v recursively as

o () = 00 (Sueinge) @ huw() -

Finally, we let Ay w(X) = (Roy,w(X), ..., o, w(x)). We also refer to internal nodes as hidden
units. The output layer of N is the sub-network consisting of all output neurons of A/ along with
their incoming edges. The representation induced by a network N is the network rep(N) obtained
from N by removing the output layer. The representation function induced by the weights w is

RN w = hrep(N),w- Given a sample S, a learning algorithm searches for weights w having small

empirical loss Lg(w) = £ 3" £(hyw(x;),y;). A popular approach is to randomly initialize the

weights and then use a variant of the stochastic gradient method to improve these weights in the
direction of lower empirical loss.

Kernel learning. A function x : X x X — R is a reproducing kernel, or simply a kernel, if for
every Xi,...,X, € X, the r x r matrix I'; ; = {k(x;,x;)} is positive semi-definite. Each kernel
induces a Hilbert space H,; of functions from X to R with a corresponding norm || - ||4,.. A kernel and
its corresponding space are normalized if Vx € X, rk(x,x) = 1. Given a convex loss function ¢, a

sample S, and a kernel k, a kernel learning algorithm finds a function f = (fi,..., fx) € H* whose
empirical loss, Ls(f) = L 3. €(f(x;), ;). is minimal among all functions with }__ || f;|[2 < R?

for some R > 0. Alternatively, kernel algorithms minimize the regularized loss,

m

k
LR = = S0 + 3 S IAIE
1=1 i=1

a convex objective that often can be efficiently minimized.

3 Computation skeletons

In this section we define a simple structure that we term a computation skeleton. The purpose of a
computational skeleton is to compactly describe feed-forward computation from an input to an output.
A single skeleton encompasses a family of neural networks that share the same skeletal structure.
Likewise, it defines a corresponding kernel space.

53 84

Figure 1: Examples of computation skeletons.

Definition. A computation skeleton S is a DAG whose non-input nodes are labeled by activations.

Though the formal definition of neural networks and skeletons appear identical, we make a conceptual
distinction between them as their role in our analysis is rather different. Accompanied by a set of
weights, a neural network describes a concrete function, whereas the skeleton stands for a topology
common to several networks as well as for a kernel. To further underscore the differences we note
that skeletons are naturally more compact than networks. In particular, all examples of skeletons in
this paper are irreducible, meaning that for each two nodes v, u € V/(S), in(v) # in(u). We further
restrict our attention to skeletons with a single output node, showing later that single-output skeletons
can capture supervised problems with outputs in R¥. We denote by |S| the number of non-input
nodes of S.

Figure 1 shows four example skeletons, omitting the designation of the activation functions. The
skeleton S is rather basic as it aggregates all the inputs in a single step. Such topology can be
useful in the absence of any prior knowledge of how the output label may be computed from an input
example, and it is commonly used in natural language processing where the input is represented as a
bag-of-words [19]. The only structure in S is a single fully connected layer:

Terminology (Fully connected layer of a skeleton). An induced subgraph of a skeleton with r + 1
nodes, uy, ..., ur,v, is called a fully connected layer if its edges are uyv, ..., usv.

The skeleton Ss is slightly more involved: it first processes consecutive (overlapping) parts of the
input, and the next layer aggregates the partial results. Altogether, it corresponds to networks with a
single one-dimensional convolutional layer, followed by a fully connected layer. The two-dimensional
(and deeper) counterparts of such skeletons correspond to networks that are common in visual object
recognition.

Terminology (Convolution layer of a skeleton). Let s, w, q be positive integers and denote n =
s(qg—1) +w. A subgraph of a skeleton is a one dimensional convolution layer of width w and stride s
if it hasn + q nodes, uy, ..., Up,V1,. .., and qu edges, ug;_1)4; Vi, for 1 <i < ¢q,1 <j <w.

The skeleton S3 is a somewhat more sophisticated version of Sa: the local computations are first
aggregated, then reconsidered with the aggregate, and finally aggregated again. The last skeleton,
Sy, corresponds to the networks that arise in learning sequence-to-sequence mappings as used in
translation, speech recognition, and OCR tasks (see for example Sutskever et al. [44]).

3.1 From computation skeletons to neural networks

The following definition shows how a skeleton, accompanied with a replication parameter » > 1 and
a number of output nodes k, induces a neural network architecture. Recall that inputs are ordered sets
of vectors in S471.

S

Figure 2: A 5-fold realizations of the computation skeleton S with d = 1.

Definition (Realization of a skeleton). Let S be a computation skeleton and consider input coordi-
nates in S*! as in (1). Forr,k > 1 we define the following neural network N' = N'(S,r, k). For
each input node in S, N" has d corresponding input neurons. For each internal node v € S labeled
by an activation o, N has r neurons v, ..., v", each with an activation o. In addition, N has k
output neurons o1, . . ., o with the identity activation o(x) = x. There is an edge viu/ € E(N)
whenever uv € E(S). For every output node v in S, each neuron v’ is connected to all output
neurons o1, . . . , ox. We term N the (r, k)-fold realization of S. We also define the r-fold realization

of S as> N(S,r) = rep (N(S,r,1)).

Note that the notion of the replication parameter r corresponds, in the terminology of convolutional
networks, to the number of channels taken in a convolutional layer and to the number of hidden units
taken in a fully-connected layer.

Figure 2 illustrates a 5-realization of a skeleton with coordinate dimension d = 1. The realization is a
network with a single (one dimensional) convolutional layer having 5 channels, stride of 1, and width
of 2, followed by two fully-connected layers. The global replication parameter 7 in a realization
is used for brevity; it is straightforward to extend results when the different nodes in S are each
replicated to a different extent.

We next define a scheme for random initialization of the weights of a neural network, that is similar
to what is often done in practice. We employ the definition throughout the paper whenever we refer
to random weights.

Definition (Random weights). A random initialization of a neural network N is a multivariate
Gaussian W = (Wyy)uve B(N) SUCh that each weight w., is sampled independently from a normal

distribution with mean 0 and variance 1/ (||o,||? |in(v)|).

Architectures such as convolutional nets have weights that are shared across different edges. Again, it
is straightforward to extend our results to these cases and for simplicity we assume no weight sharing.

3.2 From computation skeletons to reproducing kernels

In addition to networks’ architectures, a computation skeleton S also defines a normalized kernel
ks : X x X — [—1,1] and a corresponding norm || - ||s on functions f : X — R. This norm has
the property that || f||s is small if and only if f can be obtained by certain simple compositions of
functions according to the structure of S. To define the kernel, we introduce a dual activation and
dual kernel. For p € [—1,1], we denote by N, the multivariate Gaussian distribution on R? with

mean 0 and covariance matrix (; 7)
Definition (Dual activation and kernel). The dual activation of an activation o is the function
6 : [-1,1] — R defined as
o) = E_, (X)),
The dual kernel w.rt. to a Hilbert space H is the kernel ko : H' x H' — R defined as
ko (x,y) = 6((x,¥)n) -

*Note that for every k, rep (N'(S,7, 1)) = rep (N'(S, 7, k)).

Activation Dual Activation Kernel Ref

Identity x p linear

2nd Hermite If/gl p? poly

ReLU V2] % + 2+ % + % +...= MJF(W;COS_l(p))p arccos; [13]
Step V21[z > 0) %4‘%"‘%4‘%"‘"':@ arccosy [13]

Exponential ~ ¢?~2 D RBF [29]

Table 1: Activation functions and their duals.

We show in the supplementary material that , is indeed a kernel for every activation o that adheres
with the square-integrability requirement. In fact, any continuous u : [—1,1] — R, such that
(x,y) — p((x,y)2) is a kernel for all #, is the dual of some activation. Note that ,, is normalized
iff o is normalized. We show in the supplementary material that dual activations are closely related
to Hermite polynomial expansions, and that these can be used to calculate the duals of activation
functions analytically. Table 1 lists a few examples of normalized activations and their corresponding
dual (corresponding derivations are in supplementary material). The following definition gives the
kernel corresponding to a skeleton having normalized activations.

Definition (Compositional kernels). Let S be a computation skeleton with normalized activations
and (single) output node o. For every node v, inductively define a kernel k., : X x X — R as follows.
For an input node v corresponding to the ith coordinate, define k,(x,y) = (x*,y"). For a non-input

node v, define
K (X) =& Zuein(v) Hu(X,y)
v X, Y) = 0Oy |1n(q])|)

The final kernel ks is k,, the kernel associated with the output node o. The resulting Hilbert space
and norm are denoted Hs and || - ||s respectively, and H., and || - ||, denote the space and norm
when formed at node v.

As we show later, ks is indeed a (normalized) kernel for every skeleton S. To understand the
kernel in the context of learning, we need to examine which functions can be expressed as moderate
norm functions in Hs. As we show in the supplementary material, these are the functions obtained
by certain simple compositions according to the feed-forward structure of S. For intuition, we
contrast two examples of two commonly used skeletons. For simplicity, we restrict to the case
X = X, 1 = {£1}", and omit the details of derivations.

Example 1 (Fully connected skeletons). Let S be a skeleton consisting of [fully connected layers,

where the 4’th layer is associated with the activation ;. We have ks(x,x’) =6;0...0067 (@ .

For such kernels, any moderate norm function in 4 is well approximated by a low degree polynomial.
For example, if || f||s < n, then there is a second degree polynomial p such that || f —plls < O (ﬁ)

We next argue that convolutional skeletons define kernel spaces that are quite different from kernels
spaces defined by fully connected skeletons. Concretely, suppose f : X — R is of the form
f =", fi where each f; depends only on g adjacent coordinates. We call f a g-local function. In
Example 1 we stated that for fully-connected skeletons, any function of in the induced space of norm
less then n is well approximated by second degree polynomials. In contrast, the following example
underscores that for convolutional skeletons, we can find functions that are more complex, provided
that they are local.

Example 2 (Convolutional skeletons). Let S be a skeleton consisting of a convolutional layer of
stride 1 and width ¢, followed by a single fully connected layer. (The skeleton S, from Figure 1 is a
concrete example with ¢ = 2 and n = 4.) To simplify the argument, we assume that all activations
are o(x) = e® and q is a constant. For any g-local function f : X — R we have

1flls <C-vn-|fllz-

3For a skeleton S with unnormalized activations, the corresponding kernel is the kernel of the skeleton S’
obtained by normalizing the activations of S.

Here, C' > 0 is a constant depending only on gq. Hence, for example, any average of functions
from X to [—1, 1], each of which depends on ¢ adjacent coordinates, is in Hs and has norm of

merely O (y/n).
4 Main results

We review our main results. Proofs can be found in the supplementary material. Let us fix a
compositional kernel S. There are a few upshots to underscore upfront. First, our analysis implies
that a representation generated by a random initialization of N' = N(S, r, k) approximates the kernel
ks. The sense in which the result holds is twofold. First, with the proper rescaling we show that
(R w(X), Rarw (X)) = ks(x,x"). Then, we also show that the functions obtained by composing
bounded linear functions with R »r v are approximately the bounded-norm functions in Hs. In other
words, the functions expressed by N under varying the weights of the final layer are approximately
bounded-norm functions in Hs. For simplicity, we restrict the analysis to the case £ = 1. We also
confine the analysis to either bounded activations, with bounded first and second derivatives, or the
ReLU activation. Extending the results to a broader family of activations is left for future work.
Through this and remaining sections we use 2 to hide universal constants.

Definition. An activation o : R — R is C-bounded if it is twice continuously differentiable and
lollocs lo"[[ocs lo” oo < [lofIC

Note that many activations are C'-bounded for some constant C' > 0. In particular, most of the popular
sigmoid-like functions such as 1/(1 + e~%), erf(x), z/v/1 + 2, tanh(x), and tan—! () satisfy the
boundedness requirements. We next introduce terminology that parallels the representation layer
of A with a kernel space. Concretely, let N be a network whose representation part has ¢ output
neurons. Given weights w, the normalized representation ¥, is obtained from the representation
Ry ,w by dividing each output neuron v by |0 ||\/q. The empirical kernel corresponding to w is
defined as Ky (x,x') = (U (x), Uw(x')). We also define the empirical kernel space corresponding
to w as Hy = H,.,,. Concretely,

Hw = {hv(x) = <V7 lIIW(X» | v e Rq})

and the norm of H, is defined as ||h|lw = inf{||v|| | » = hy}. Our first result shows that the
empirical kernel approximates the kernel k.

Theorem 3. Let S be a skeleton with C-bounded activations. Let w be a random initialization of
N = N(S,r) with
(O o (815]/5)
r .

= 2

Then, for all x,x" € X, with probability of at least 1 — 0,
|bw (x,x") — ks(x,x')| < €.

We note that if we fix the activation and assume that the depth of S is logarithmic, then the required
bound on r is polynomial. For the ReLU activation we get a stronger bound with only quadratic
dependence on the depth. However, it requires that € < 1/depth(S).

Theorem 4. Let S be a skeleton with ReLU activations. Let w be a random initialization of N'(S,r)
with

2
. depth™(S) 210g(|5\/5)

€
Then, for all x,x’ € X and ¢ < 1/depth(S), with probability of at least 1 — 6,

lhw (%, %) — ks(x,x')| < €.

For the remaining theorems, we fix a L-Lipschitz loss £ : R x) — [0, oo). For a distribution D on
X x Y we denote by ||D||o the cardinality of the support of the distribution. We note that log (||D||o)
is bounded by, for instance, the number of bits used to represent an element in X x). We use the
following notion of approximation.

Definition. Let D be a distribution on X x Y. A space H, C R e-approximates the space Hy C RY
w.r.t. D if for every ho € Hy there is hy € Hy such that Lp(h1) < Lp(he) + €

Theorem 5. Let S be a skeleton with C-bounded activations and let R > 0. Let w be a random
initialization of N'(S,) with

lepth(S LRC|S|
L4 R4 (404)(epth(S)+1 log (=)
4

r2
€

Then, with probability of at least 1 — § over the choices of w we have that, for any data distribution,
Hv‘{iR e-approximates HE and ”H‘\SﬁR e-approximates HE.

Theorem 6. Let S be a skeleton with ReLU activations, ¢ < 1/depth(C), and R > 0. Let w be a
random initialization of N'(S,) with

L* R* depth?(S) log (w)
r2 .

et

Then, with probability of at least 1 — § over the choices of w we have that, for any data distribution,
’HV‘VER e-approximates HE and Hg/iR e-approximates HE.

As in Theorems 3 and 4, for a fixed C-bounded activation and logarithmically deep S, the required
bounds on r are polynomial. Analogously, for the ReL.U activation the bound is polynomial even
without restricting the depth. However, the polynomial growth in Theorems 5 and 6 is rather large.
Improving the bounds, or proving their optimality, is left to future work.

Acknowledgments

We would like to thank Percy Liang and Ben Recht for fruitful discussions, comments, and sugges-
tions.

References

[1] A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang. Learning polynomials with neural networks. In
Proceedings of the 31st International Conference on Machine Learning, pages 1908-1916, 2014.

[2] F. Anselmi, L. Rosasco, C. Tan, and T. Poggio. Deep convolutional networks are hierarchical kernel
machines. arXiv:1508.01084, 2015.

[3] M. Anthony and P. Bartlet. Neural Network Learning: Theoretical Foundations. Cambridge University
Press, 1999.

[4] S. Arora, A. Bhaskara, R. Ge, and T. Ma. Provable bounds for learning some deep representations. In
Proceedings of The 31st International Conference on Machine Learning, pages 584-592, 2014.

[5] F. Bach. Breaking the curse of dimensionality with convex neural networks. arXiv:1412.8690, 2014.

[6] F.Bach. On the equivalence between kernel quadrature rules and random feature expansions. 2015.

[7] A.R.Barron. Universal approximation bounds for superposition of a sigmoidal function. IEEE Transactions
on Information Theory, 39(3):930-945, 1993.

[8] P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3:463-482, 2002.

[9] PL. Bartlett. The sample complexity of pattern classification with neural networks: the size of the weights
is more important than the size of the network. IEEE Transactions on Information Theory, 44(2):525-536,
March 1998.

[10] E.B. Baum and D. Haussler. What size net gives valid generalization? Neural Computation, 1(1):151-160,
1989.

[11] L. Bo, K. Lai, X. Ren, and D. Fox. Object recognition with hierarchical kernel descriptors. In Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 1729-1736. IEEE, 2011.

[12] J. Bruna and S. Mallat. Invariant scattering convolution networks. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(8):1872—-1886, 2013.

[13] Y. Cho and L.K. Saul. Kernel methods for deep learning. In Advances in neural information processing
systems, pages 342—-350, 2009.

[14] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun. The loss surfaces of multilayer
networks. In AISTATS, pages 192-204, 2015.

[15] A. Daniely and S. Shalev-Shwartz. Complexity theoretic limitations on learning DNFs. In COLT, 2016.

[16] R. Giryes, G. Sapiro, and A.M. Bronstein. Deep neural networks with random gaussian weights: A
universal classification strategy? arXiv preprint arXiv:1504.08291, 2015.

(17]
(18]

(19]
(20]

(21]
(22]

(23]
[24]
[25]

[26]
(27]

(28]
[29]
(30]
(31]
(32]
(33]

[34]
(35]

[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]

[45]

K. Grauman and T. Darrell. The pyramid match kernel: Discriminative classification with sets of image
features. In Tenth IEEE International Conference on Computer Vision, volume 2, pages 1458-1465, 2005.

M. Hardt, B. Recht, and Y. Singer. Train faster, generalize better: Stability of stochastic gradient descent.
arXiv:1509.01240, 2015.

Z.S. Harris. Distributional structure. Word, 1954.

T. Hazan and T. Jaakkola. Steps toward deep kernel methods from infinite neural networks.
arXiv:1508.05133, 2015.

P. Kar and H. Karnick. Random feature maps for dot product kernels. arXiv:1201.6530, 2012.

R.M. Karp and R.J. Lipton. Some connections between nonuniform and uniform complexity classes. In
Proceedings of the twelfth annual ACM symposium on Theory of computing, pages 302-309. ACM, 1980.

M. Kearns and L.G. Valiant. Cryptographic limitations on learning Boolean formulae and finite automata.
In STOC, pages 433—444, May 1989.

A.R. Klivans and A.A. Sherstov. Cryptographic hardness for learning intersections of halfspaces. In FOCS,
2006.

A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep convolutional neural
networks. In Advances in neural information processing systems, pages 1097-1105, 2012.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.

O. Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization. In Advances in Neural
Information Processing Systems, pages 2177-2185, 2014.

R. Livni, S. Shalev-Shwartz, and O. Shamir. On the computational efficiency of training neural networks.
In Advances in Neural Information Processing Systems, pages 855-863, 2014.

J. Mairal, P. Koniusz, Z. Harchaoui, and Cordelia Schmid. Convolutional kernel networks. In Advances in
Neural Information Processing Systems, pages 2627-2635, 2014.

T. Mikolov, I. Sutskever, K. Chen, G.S. Corrado, and J. Dean. Distributed representations of words and
phrases and their compositionality. In NIPS, pages 3111-3119, 2013.

R.M. Neal. Bayesian learning for neural networks, volume 118. Springer Science & Business Media,
2012.

B. Neyshabur, R. R Salakhutdinov, and N. Srebro. Path-SGD: Path-normalized optimization in deep neural
networks. In Advances in Neural Information Processing Systems, pages 2413-2421, 2015.

B. Neyshabur, N. Srebro, and R. Tomioka. Norm-based capacity control in neural networks. In COLT,
2015.

R. O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

J. Pennington, F. Yu, and S. Kumar. Spherical random features for polynomial kernels. In Advances in
Neural Information Processing Systems, pages 1837-1845, 2015.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In NIPS, pages 1177-1184,
2007.

A. Rahimi and B. Recht. Weighted sums of random kitchen sinks: Replacing minimization with random-
ization in learning. In Advances in neural information processing systems, pages 1313-1320, 2009.

I. Safran and O. Shamir. On the quality of the initial basin in overspecified neural networks.
arxiv:1511.04210, 2015.

S. Saitoh. Theory of reproducing kernels and its applications. Longman Scientific & Technical England,
1988.

I.J. Schoenberg et al. Positive definite functions on spheres. Duke Mathematical Journal, 9(1):96-108,
1942.

B. Scholkopf, P. Simard, A. Smola, and V. Vapnik. Prior knowledge in support vector kernels. In Advances
in Neural Information Processing Systems 10, pages 640-646. MIT Press, 1998.

H. Sedghi and A. Anandkumar. Provable methods for training neural networks with sparse connectivity.
arXiv:1412.2693, 2014.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms.
Cambridge University Press, 2014.

I. Sutskever, O. Vinyals, and Q.V. Le. Sequence to sequence learning with neural networks. In Advances
in neural information processing systems, pages 3104-3112, 2014.

C.K.I. Williams. Computation with infinite neural networks. pages 295-301, 1997.

