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Abstract

Sensing is the process of deriving signals from the environment that allows artifi-
cial systems to interact with the physical world. The Shannon theorem specifies
the maximum rate at which information can be acquired [1]. However, this up-
per bound is hard to achieve in many man-made systems. The biological visual
systems, on the other hand, have highly efficient signal representation and pro-
cessing mechanisms that allow precise sensing. In this work, we argue that re-
dundancy is one of the critical characteristics for such superior performance. We
show architectural advantages by utilizing redundant sensing, including correction
of mismatch error and significant precision enhancement. For a proof-of-concept
demonstration, we have designed a heuristic-based analog-to-digital converter - a
zero-dimensional quantizer. Through Monte Carlo simulation with the error prob-
abilistic distribution as a priori, the performance approaching the Shannon limit
is feasible. In actual measurements without knowing the error distribution, we
observe at least 2-bit extra precision. The results may also help explain biological
processes including the dominance of binocular vision, the functional roles of the
fixational eye movements, and the structural mechanisms allowing hyperacuity.

1 Introduction

Visual systems have perfected the art of sensing through billions of years of evolution. As an exam-
ple, with roughly 100 million photoreceptors absorbing light and 1.5 million retinal ganglion cells
transmitting information [2, 3, 4], a human can see images in three-dimensional space with great
details and unparalleled resolution. Anatomical studies determine the spatial density of the photore-
ceptors on the retina, which limits the peak foveal angular resolution to 20-30 arcseconds according
to Shannon theory [1, 2]. There are also other imperfections due to nonuniform distribution of cells’
shape, size, location, and sensitivity that further constrain the precision. However, experiment data
have shown that human can achieve an angular separation close to 1 arcminute in a two-point acu-
ity test [5]. In certain conditions, it is even possible to detect an angular misalignment of only 2-5
arcseconds [6], which surpasses the virtually impossible physical barrier. This ability, known as
hyperacuity, has baffled scientists for decades: what kind of mechanism allows human to read an
undistorted image with such a blunt instrument?

Among the approaches to explain this astonishing feat of human vision, redundant sensing is a
promising candidate. It is well-known that redundancy is an important characteristic of many bio-
logical systems, from DNA coding to neural network [7]. Previous studies [8, 9] suggest there is
a connection between hyperacuity and binocular vision - the ability to see images using two eyes
with overlapping field of vision. Also known as stereopsis, it presents a passive form of redun-
dant sensing. In addition to the obvious advantage of seeing objects in three-dimensional space,
the binocular vision has been proven to increase visual dynamic range, contrast, and signal-to-noise
ratio [10]. It is evident that seeing with two eyes enables us to sense a higher level of information
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Figure 1: Illustration of n-dimensional quantizers without (ideal) and with mismatch error. (a) Two-
dimensional quantizers for image sensing. (b) Zero-dimensional quantizers for analog-to-digital
data conversion.

as well as to correct many intrinsic errors and imperfections. Furthermore, the eyes continuously
and involuntarily engage in a complex micro-fixational movement known as microsaccade, which
suggests an active form of redundant sensing [11]. During microsaccade, the image projected on the
retina is shifted across a few photoreceptors in a pseudo-random manner. Empirical studies [12] and
computational models [13] suggest that the redundancy created by these micro-movements allows
efficient sampling of spatial information that can surpass the static diffraction limitation.

Both biological and artificial systems encounter similar challenges to achieve precise sensing in the
presence of non-ideal imperfections. One of those is mismatch error. At a high resolution, even a
small degree of mismatch error can degrade the performance of many man-made sensors [14, 15].
For example, it is not uncommon for a 24-bit analog-to-digital converter (ADC) to have 18-20 bits
effective resolution [16]. Inspired by the human visual system, we explore a new computational
framework to remedy mismatch error based on the principle of redundant sensing. The proposed
mechanism resembles the visual systems’ binocular architecture and is designed to increase the
precision of a zero-dimensional data quantization process. By assuming the error probabilistic dis-
tribution as a priori, we show that precise data conversion approaching the Shannon limit can be
accomplished.

As a proof-of-concept demonstration, we have designed and validated a high-resolution ADC in-
tegrated circuit. The device utilizes a heuristic approach that allows unsupervised estimation and
calibration of mismatch error. Simulation and measurement results have demonstrated the efficacy
of the proposed technique, which can increase the effective resolution by 2-5 bits and linearity by
4-6 times without penalties in chip area and power consumption.

2 Mismatch Error

2.1 Quantization & Shannon Limit

Data quantization is the partition of a continuous n-dimensional vector space into M subspaces,
∆0, ...,∆M−1, called quantization regions as illustrated in Figure 1. For example, an eye is a two-
dimensional biological quantizer while an ADC is a zero-dimensional artificial quantizer, where the
partition occurs in a spatial, temporal and scalar domain. Each quantization region is assigned a
representative value, d0, ..., dM−1, which uniquely encodes the quantized information. While the
representative values are well-defined in the abstract domain, the actual partition often depends on
the physical properties of the quantization device and has a limited degree of freedom for adjustment.
An optimal data conversation is achieved with a set of uniformly distributed quantization regions. In
practice, it is difficult to achieve due to the physical constraints in the partition process. For example,
individual pixel cells can deviate from the ideal morphology, location, and sensitivity. These relative
differences, referred to as mismatch error, contribute to the data conversion error.

In this paper, we consider a zero-dimensional (scalar) quantizer, which is the mathematical equiv-
alence of an ADC device. A N -bit quantizer divides the continuous conversion full-range (FR =
[0, 2N ]) into 2N quantization regions, ∆0, ...,∆2N−1, with nominal unity length E(|∆i|) = ∆ = 1
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Figure 2: (a) Degeneration of entropy, i.e. maximum effective resolution, due to mismatch er-
ror versus quantizer’s intrinsic resolution. (b) The proportion of data conversion error measured
by mismatch-to-quantization ratio (MQR). With a conventional architecture, mismatch error is the
dominant source, especially in a high-resolution domain. The proposed method allows suppressing
mismatch error below quantization noise and approaching the Shannon limit.

least-significant-bit (LSB). The quantization regions are defined by a set of discrete references1,
SR = {θ0, ..., θ2N }, where 0 = θ0 < θ1 < ... < θ2N = 2N . An input signal x is assigned the
digital code d(x) = i ∈ SD = {0, 1, 2, ..., 2N − 1}, if it falls into region ∆i defined by

x← d(x) = i ⇔ x ∈ ∆i ⇔ θi ≤ x < θi+1. (1)

The Shannon entropy of a N -bit quantizer [17, 18] quantifies the maximum amount of information
that can be acquired by the data conversion process

H = − log2

√
12 ·M, (2)

where M is the normalized total mean square error integrated over each digital code

M =
1

23N

∫ 2N

0

[x− d(x)− 1/2]2dx

=
1

23N

2N−1∑
i=0

∫ θi+1

θi

(x− i− 1/2)2dx.

(3)

In this work, we consider both quantization noise and mismatch error. The Shannon limit is generally
preferred as the maximum rate at which information can be acquired without any mismatch error,
where θi = i,∀i or SR\{2N} = SD, M is equal to the total quantization noise Q = 2−2N/12,
and the entropy is equal to the quantizer’s intrinsic resolution H = N . The differences between
SR\{2N} and SD are caused by mismatch error and result in the degeneration of entropy. Figure
2(a) shows the entropy, i.e. maximum effective resolution, versus the quantizer’s intrinsic resolution
with fixed mismatch ratios σ0 = 1% and σ0 = 10%. Figure 2(b) describes the proportion of error
contributed by each source, as measured by mismatch-to-quantization ratio (MQR)

MQR =
M −Q
Q

. (4)

It is evident that at a high resolution, mismatch error is the dominant source causing data conver-
sion error. The Shannon theory implies that mismatch error is the fundamental problem relating to
the physical distribution of the reference set. [19, 20] have proposed post-conversion calibration
methods, which are ineffective in removing mismatch error without altering the reference set itself.
A standard workaround solution is using larger components thus better matching characteristics;
however, this incurs penalties concerning cost and power consumption. As a rule of thumb, 1-bit
increase in resolution requires a 4-time increase of resources [14]. To further advance the system
performance, a design solution that is robust to mismatch error must be realized.

1θ2N = 2N is a dummy reference to define the conversion full-range.
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Figure 3: Simulated distribution of mismatch error in terms of (a) expected absolute error |PE(i)|
and (b) expected differential error PD(i) in a 16-bit quantizer with 10% mismatch ratio. (c, d)
Optimal mismatch error distribution in the proposed strategy. At the maximum redundancy 16 ·
(15, 1), mismatch error becomes negligible.

2.2 Mismatch Error Model

For artificial systems, binary coding is popularly used to encode the reference set. It involves parti-
tioning the array of unit cells into a set of binary-weighted components SC , and assembling different
components in SC to form the needed references. The precision of the data conversion is related
to the precise matching of these unit cells, which can be in forms of comparators, capacitors, re-
sistors, or transistors, etc. Due to fabrication variations, undesirable parasitics, and environmental
interference, each unit cell follows a probabilistic distribution which is the basis of mismatch error.
We consider the situation where the distribution of mismatch error is known as a priori. Each unit
cell, cu, is assumed to be normally distributed with mismatch ratio σ0: cu ∼ N(1, σ2

0). SC is then a
collection of the binary-weighted components ci, each has 2i independent and identically distributed
unit cells

SC = {ci|ci ∼ N(2i, 2iσ2
0)}, ∀i ∈ [0, N − 1]. (5)

Each reference θi is associated with a unique assembly Xi of the components2

SR\{2N} = {θi =

∑
ck∈Xi

ck
1

2N−1
∑N−1
j=0 cj

|Xi ∈ P(SC)}, ∀i ∈ [0, 2N − 1], (6)

where P(SC) is the power set of SC . Binary coding allows the shortest data length to encode the
references: N control signals are required to generate 2N elements of SR. However, because each
reference is bijectively associated with an assembly of components, it is not possible to rectify the
mismatch error due to the random distribution of the components’ weight without physically altering
the components themselves.

The error density function defined as PE(i) = θi − i quantifies the mismatch error at each digital
code. Figure 3(a) shows the distribution of |PE(i)| at 10% mismatch ratio through Monte Carlo

2The dummy reference θ2N = 2N is exempted. Other references are normalized over the total weight to
define the conversion full-range of FR = [0, 2N ]
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Figure 4: Associating and exchanging the information between individual pixels in the same field of
vision generate an exponential number of combinations and allow efficient spatial data acquisition
beyond physical constraints. Inspired by this process, we propose a redundant sensing strategy that
involves blending components between two imperfect sets to gain extra precision.

simulations, where there is noticeably larger error associating with middle-range codes. In fact, it
can be shown that if unit cells are independent, identically distributed, PE(i) approximates a normal
distribution as follows

PE(i) = θi − i ∼ N(0,

N−1∑
j=0

2j−1
∣∣∣∣Dj −

i

2N − 1

∣∣∣∣σ2
0), i ∈ [0, 2N − 1], (7)

where i = DN−1...D1D0 (Dj ∈ {0, 1},∀j) is the binary representation of i.

Another drawback of binary coding is that it can create differential “gap” between the references.
Figure 3(b) presents the estimated distribution of differential gap PD(i) = θi+1 − θi at 10% mis-
match ratio. When the gap exceeds two unit-length, signals that should be mapped to two or multiple
codes collapse into a single code, resulting in a loss of information. This phenomenon is commonly
known as wide code, an unrecoverable situation by any post-conversion calibration methods. Also,
wide gaps tend to appear at two adjacent codes that have large Hamming distance, e.g. 01111 and
10000. Subsequently, the amount of information loss can be signal dependent and amplified at
certain parts of data conversation range.

3 Proposed Strategy

The proposed general strategy is to incorporate redundancy into the quantization process such that
one reference θi can be generated by a large number of distinct component assemblies Xi, each
yields a different amount of mismatch. Among numerous options that lead to the same goal, the
optimal reference set is the collection of assemblies with the least mismatch error over every digital
code.

Furthermore, we propose that such redundant characteristic can be achieved by resembling the visual
systems’ binocular structure. It involves a secondary component set that has overlapping weights
with the primary component set. By exchanging the components with similar weights between the
two sets, excessive redundant component assemblies can be realized. We hypothesize that a simi-
lar mechanism may have been employed in the brain that allows associating information between
individual pixels on the same field of vision in each eye as illustrated in Figure 4. Because such
association creates an exponential number of combinations, even a small percentage of 100 million
photoreceptors and 1.5 million retinal ganglion cells that are “interchangeable” could result in a
significant degree of redundancy.

The design of the primary and secondary component set, SC,0 and SC,1, specifies the level and
distribution of redundancy. Specifically, SC,1 is derived by subtracting from the conventional binary-
weighted set SC , while the remainders form the primary component set SC,0. The total nominal
weight remains unchanged as

∑
ci,j∈(SC,0∪SC,1)

ci,j = 2N0 − 1, where N0 is the resolution of the
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Figure 5: The distribution of the number of assemblies NA(i) with different geometrical identity
in (a) 2-component-set design and (b) 3-component-set design. Higher assembly count, i.e., larger
level of redundancy, is allocated for digital codes with larger mismatch error.

quantizer as well as the primary component set. It is worth mentioning that mismatch error is mostly
contributed by the most-significant-bit (MSB) rather than the least-significant-bit (LSB) as implied
by Equation (5). Subsequently, to optimize the level and distribution of redundancy, the secondary
set should advantageously consist of binary-weighted components that are derived from the MSB.
SC,0 and SC,1 can be described as follows

Primary: SC,0 = {c0,i|c0,i =

{
2i, if i < N0 −N1

2i − c1,i−N0+N1 , otherwise
,∀i ∈ [0, N0 − 1]},

Secondary: SC,1 = {c1,i|c1,i = 2N0−N1+i−s1 ,∀i ∈ [0, N1 − 1]},
(8)

where N1 is the resolution of SC,1 and s1 is a scaling factor satisfying 1 ≤ N1 ≤ N0 − 1 and
1 ≤ s1 ≤ N0 − N1. Different values of N1 and s1 result in different degree and distribution
of redundancy. Any design within this framework can be represented by its unique geometrical
identity: N0 · (N1, s1). The total number of components assemblies is |P(SC,0 ∪SC,1)| = 2N0+N1 ,
which is much greater than the cardinality of the reference-set |SR| = 2N0 , thus implies the high
level of intrinsic redundancy.

NA(i) is defined as the number of assemblies that represent the same reference θi and is an essential
indicator that specifies the redundancy distribution

NA(i) = |{X|X ∈ P(SC,0 ∪ SC,1) ∧
∑

cj,k∈X
cj,k = i}|, i ∈ [0, 2N0 − 1]. (9)

Figure 5(a) shows NA(i) versus digital codes with N0 = 8 and multiple combinations of
(N1, s1). The design of SC,1 should generate more options for middle-range codes, which suf-
fer from larger mismatch error. Simulations suggest N1 decides the total number of assemblies,∑2N0−1
i=0 NA(i) = |P(SC,0 ∪ SC,1)| = 2N0+N1 ; s1 defines the morphology of the redundancy dis-

tribution. A larger value of s1 gives a more spreading distribution.

Removing mismatch error is equivalent to searching for the optimal component assembly Xop,i that
generates the reference θi with the least amount of mismatch

Xop,i = argmin
X∈P(SC,0∪SC,1)

∣∣∣∣∣∣i−
∑

cj,k∈X
cj,k

∣∣∣∣∣∣ , i ∈ [0, 2N0 − 1]. (10)

The optimal reference set SR,op is then the collection of all references generated by Xop,i. In this
work, we do not attempt to find Xop,i as it is an NP-optimization problem with the complexity of
O(2N0+N1) that may not have a solution in the polynomial space. Instead, this section focuses
on showing the achievable precision with the proposed architecture while section 4 will describe a
heuristic approach. The simulation results in Figure 2(b) demonstrate our technique can suppress
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mismatch error below quantization noise, thus approaching the Shannon limit even at high resolution
and large mismatch ratio. In this simulation, the secondary set is chosen as N1 = N0 − 1 for
maximum redundancy. Figure 3(c, d) shows the distribution of mismatch error after correction.
Even at the minimum redundancy (N1 = 1), a significant degree of mismatch is rectified. At the
maximum redundancy (N1 = N0 − 1), the mismatch error becomes negligible compared with
quantization noise.

Based on the same principles, a n-set components design (n = 3, 4, ...) can be realized, which gives
an increased level redundancy and more complex distribution as shown in Figure 5(b), where n = 3
and the geometrical identity is N0 · (N1, s1) · (N2, s2). With different combinations of Nk and
sk (k = 1, 2, ...), NA(i) can be catered to a known mismatch error distribution and yield a better
performance. However, adding more component set(s) can increase the computational burden as
the complexity increases rapidly with every additional set(s): O(2N0+N1+N2+...). Given mismatch
error can be well rectified with a two-set implementation over a wide range of resolution, n > 2
might be unnecessary.

Similarly, three or more eyes may give better vision. However, the brain circuits and control network
would become much more complicated to integrate signals and information. In fact, stereopsis is an
advanced feature to human and animals with well-developed neural capacity [7]. Despite possessing
two eyes, many reptiles, fishes and other mammals, have their eyes located on the opposite sides of
the head, which limits the overlapping region thus stereopsis, in exchange for a wider field of vision.
Certain species of insect such as Arachnids can possess from six to eight eyes. However, studies have
pointed out that their eyes do not function in synchronous to resolve the fine resolution details [21].
It is not a coincidence that at least 30% of the human brain cortex is directly or indirectly involved
in processing visual data [7]. We conjecture that the computational limitation is a major reason that
many higher-order animals are evolved to have two eyes, thus keep the cyclops and triclops remain
in the realm of mythology. No less as it would sacrifice visual processing precision, yet no more as
it would overload the brain’s circuit complexity.

4 Practical Implementation & Results

A mixed-signal ADC integrated circuit has been designed and fabricated to demonstrate the feasi-
bility of the proposed architecture. The nature of hardware implementation limits the deployment
of sophisticated learning algorithms. Instead, the circuit relies on a heuristic approach to efficiently
estimate the mismatch error and adaptively reconfigure its components in an unsupervised manner.
The detailed hardware algorithm and circuits implementation are presented seperately. In this paper,
we only briefly summarize the techniques and results.

The ADC design is based on successive-approximation register (SAR) architecture and features
redundant sensing with a geometrical identity 14 · (13, 1). The component set SC is a binary-
weighted capacitor array. We have chosen the smallest capacitance available in the CMOS process to
implement the unit cell for reducing circuits power and area. However, it introduces large capacitor
mismatch ratios up to 5% which limits the effective resolution to 10-bit or below for previous works
reported in the literature [14, 19, 20].

The resolution of the secondary array is chosen as N1 = N0− 1 to maximize the exchange capacity
between two component sets

c0,i = c1,i−1 = 1/2c0,i+1, i ∈ [1, N − 2]. (11)

In the auto-calibration mode, the mismatch error of each component is estimated by comparing the
capacitors with similar nominal values implied by Equation (11). The procedure is unsupervised
and fully automatic. The result is a reduced dimensional set of parameters that characterize the
distribution of mismatch error. In the data conversion mode, a heuristic algorithm is employed that
utilizes the estimated parameters to generate the component assembly with near-minimal mismatch
error for each reference. A key technique is to shift the capacitor utilization towards the MSB by
exchanging the components with similar weight, then to compensate the left-over error using the
LSB. Although the algorithm has the complexity of O(N0 + N1), parallel implementation allows
the computation to finish within a single clock cycle.

By assuming the LSB components contribute an insignificant level of mismatch error as implied by
Equation (5), this heuristic approach trades accuracy for speed. However, the excessive amount of
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Figure 6: High-resolution ADC implementation. (a) Monte Carlo simulations of the unsupervised
error estimation and calibration technique. (b) The chip micrograph. (c) Differential nonlinearity
(DNL) and (d) integral nonlinearity (INL) measurement results.

redundancy guarantees the convergence of an adequate near-optimal solution. Figure 6(a) shows
simulated plots of effective-number-of-bits (ENOB) versus unit-capacitor mismatch ratio, σ0(Cu).
With the proposed method, the effective resolution is shown to approach the Shannon limit even with
large mismatch ratios. It is worth mentioning that we also take the mismatch error associated with
the bridge-capacitor, σ0(Cb), into consideration. Figure 6(b) shows the chip micrograph. Figure
6(c, d) gives the measurement results of standard ADC performance merit in terms of differential
nonlinearity (DNL) and integral nonlinearity (INL). The results demonstrate that a 4-6 fold increase
of linearity is feasible.

5 Conclusion

This work presents a redundant sensing architecture inspired by the binocular structure of the hu-
man visual system. We show architectural advantages of using redundant sensing in removing mis-
match error and enhancing sensing precision. A high resolution, zero-dimensional data quantizer
is presented as a proof-of-concept demonstration. Through Monte Carlo simulation with the error
probabilistic distribution as a priori, we find the precision can approach the Shannon limit. In actual
measurements without knowing the error probabilistic distribution, the gain of extra 2-bit precision
and 4-6 times linearity is observed. We envision that the framework can be generalized to handle
higher dimensional data and apply to a variety of applications such as digital imaging, functional
magnetic resonance imaging (fMRI), 3D data acquisition, etc. Moreover, engineering such bio-
inspired artificial systems may help better understand the biological processes such as stereopsis,
microsaccade, and hyperacuity.
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