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Abstract

In this work we develop a theory of hierarchical clustering for graphs. Our mod-
eling assumption is that graphs are sampled from a graphon, which is a powerful
and general model for generating graphs and analyzing large networks. Graphons
are a far richer class of graph models than stochastic blockmodels, the primary
setting for recent progress in the statistical theory of graph clustering. We define
what it means for an algorithm to produce the “correct” clustering, give sufficient
conditions in which a method is statistically consistent, and provide an explicit
algorithm satisfying these properties.

1 Introduction

A fundamental problem in the theory of clustering is that of defining a cluster. There is no single
answer to this seemingly simple question. The right approach depends on the nature of the data
and the proper modeling assumptions. In a statistical setting where the objects to be clustered
come from some underlying probability distribution, it is natural to define clusters in terms of the
distribution itself. The task of a clustering, then, is twofold — to identify the appropriate cluster
structure of the distribution and to recover that structure from a finite sample. Thus we would like
to say that a clustering is good if it is in some sense close to the ideal structure of the underlying
distribution, and that a clustering method is consistent if it produces clusterings which converge to
the true clustering, given larger and larger samples. Proving the consistency of a clustering method
deepens our understanding of it, and provides justification for using the method in the appropriate
setting.

In this work, we consider the setting in which the objects to be clustered are the vertices of a graph
sampled from a graphon — a very general random graph model of significant recent interest. We
develop a statistical theory of graph clustering in the graphon model; To the best of our knowledge,
this is the first general consistency framework developed for such a rich family of random graphs.
The specific contributions of this paper are threefold. First, we define the clusters of a graphon. Our
definition results in a graphon having a tree of clusters, which we call its graphon cluster tree. We
introduce an object called the mergeon which is a particular representation of the graphon cluster
tree that encodes the heights at which clusters merge. Second, we develop a notion of consistency
for graph clustering algorithms in which a method is said to be consistent if its output converges to
the graphon cluster tree. Here the graphon setting poses subtle yet fundamental challenges which
differentiate it from classical clustering models, and which must be carefully addressed. Third, we
prove the existence of consistent clustering algorithms. In particular, we provide sufficient condi-
tions under which a graphon estimator leads to a consistent clustering method. We then identify a
specific practical algorithm which satisfies these conditions, and in doing so present a simple graph
clustering algorithm which provably recovers the graphon cluster tree.

Related work. Graphons are objects of significant recent interest in graph theory, statistics, and
machine learning. The theory of graphons is rich and diverse; A graphon can be interpreted as
a generalization of a weighted graph with uncountably many nodes, as the limit of a sequence of
finite graphs, or, more importantly for the present work, as a very general model for generating
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unweighted, undirected graphs. Conveniently, any graphon can be represented as a symmetric, mea-
surable function W : [0, 1]> — [0, 1], and it is this representation that we use throughout this paper.

The graphon as a graph limit was introduced in recent years by [16], [5], and others. The interested
reader is directed to the book by Lovasz [15] on the subject. There has also been a considerable
recent effort to produce consistent estimators of the graphon, including the work of [20], [8], [2],
[18], and others. We will analyze a simple modification of the graphon estimator proposed by [21]
and show that it leads to a graph clustering algorithm which is a consistent estimator of the graphon
cluster tree.

Much of the previous statistical theory of graph clustering methods assumes that graphs are gen-
erated by the so-called stochastic blockmodel. The simplest form of the model generates a graph
with 7 nodes by assigning each node, randomly or deterministically, to one of two communities. An
edge between two nodes is added with probability « if they are from the same community and with
probability 8 otherwise. A graph clustering method is said to achieve exact recovery if it identifies
the true community assignment of every node in the graph with high probability as n — oco. The
blockmodel is a special case of a graphon model, and our notion of consistency will imply exact
recovery of communities.

Stochastic blockmodels are widely studied, and it is known that, for example, spectral methods
like that of [17] are able to recover the communities exactly as n — oo, provided that o and 8
remain constant, or that the gap between them does not shrink too quickly. For a summary of
consistency results in the blockmodel, see [1], which also provides information-theoretic thresholds
for the conditions under which exact recovery is possible. In a related direction, [4] examines the
ability of spectral clustering to withstand noise in a hierarchical block model.

The density setting. The problem of defining the underlying cluster structure of a probability dis-
tribution goes back to Hartigan [12] who considered the setting in which the objects to be clustered
are points sampled from a density f : X — R*. In this case, the high density clusters of f are
defined to be the connected components of the upper level sets {x : f(x) > A} for any 2 > 0. The
set of all such clusters forms the so-called density cluster tree. Hartigan [12] defined a notion of
consistency for the density cluster tree, and proved that single-linkage clustering is not consistent.
In recent years, [9] and [14] have demonstrated methods which are Hartigan consistent. [10] in-
troduced a distance between a clustering of the data and the density cluster tree, called the merge
distortion metric. A clustering method is said to be consistent if the trees it produces converge in
merge distortion to density cluster tree. It is shown that convergence in merge distortion is stronger
than Hartigan consistency, and that the method of [9] is consistent in this stronger sense.

In the present work, we will be motivated by the approach taken in [12] and [10]. We note, however,
that there are significant and fundamental differences between the density case and the graphon
setting. Specifically, it is possible for two graphons to be equivalent in the same way that two
graphs are: up to a relabeling of the vertices. As such, a graphon W is a representative of an
equivalence class of graphons modulo appropriately defined relabeling. It is therefore necessary to
define the clusters of W in a way that does not depend upon the particular representative used. A
similar problem occurs in the density setting when we wish to define the clusters not of a single
density function, but rather of a class of densities which are equal almost everywhere; Steinwart
[19] provides an elegant solution. But while the domain of a density is equipped with a meaningful
metric — the mass of a ball around a point x is the same under two equivalent densities — the ambient
metric on the vertices of a graphon is not useful. As a result, approaches such as that of [19] do not
directly apply to the graphon case, and we must carefully produce our own. Additionally, we will
see that the procedure for sampling a graph from a graphon involves latent variables which are in
principle unrecoverable from data. These issues have no analogue in the classical density setting,
and present very distinct challenges.

Miscellany. Due to space constraints, most of the (rather involved) technical details are in the
appendix. We will use [#] to denote the set {1,...,n}, A for the symmetric difference, u for the
Lebesgue measure on [0, 1], and bold letters to denote random variables.



2 The graphon model

In order to discuss the statistical properties of a graph clustering algorithm, we must first model the
process by which graphs are generated. Formally, a random graph model is a sequence of random
variables G1, G», ... such that the range of G,, consists of undirected, unweighted graphs with node
set [n], and the distribution of G, is invariant under relabeling of the nodes — that is, isomorphic
graphs occur with equal probability. A random graph model of considerable recent interest is the
graphon model, in which the distribution over graphs is determined by a symmetric, measurable
function W : [0, 11> — [0, 1] called a graphon. Informally, a graphon W may be thought of as the
weight matrix of an infinite graph whose node set is the continuous unit interval, so that W(x, y)
represents the weight of the edge between nodes x and y.

Interpreting W(x, y) as a probability suggests the following graph sampling procedure: To draw a
graph with n nodes, we first select n points Xj, ..., X, at random from the uniform distribution on
[0, 1] — we can think of these Xx; as being random “nodes” in the graphon. We then sample a random
graph G on node set [n] by admitting the edge (i, j) with probability W(x;, x;); by convention, self-
edges are not sampled. It is important to note that while we begin by drawing a set of nodes {x;}
from the graphon, the graph as given to us is labeled by integers. Therefore, the correspondence
between node i in the graph and node x; in the graphon is latent.

It can be shown that this sampling procedure defines a distribution on finite graphs, such that the
probability of graph G = ([n], E) is given by

PW(G:G)zf [] wexp [T [1-wexp| [ ] dx (1)
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For a fixed choice of xi,...,x, € [0, 1], the integrand represents the likelihood that the graph G is
sampled when the probability of the edge (i, j) is assumed to be W(x;, x;). By integrating over all
possible choices of xi, ..., x,, we obtain the probability of the graph.

A very general class of random graph models may be represented as graphons.  ggy, @ . ),
In particular, a random graph model G|, G, ... is said to be consistent if the
random graph F;_; obtained by deleting node k from Gy has the same distribution
as Gi. A random graph model is said to be local if whenever S,T C [k] are
disjoint, the random subgraphs of Gy induced by S and 7" are independent random
variables. A result of Lovasz and Szegedy [16] is that any consistent, local random
graph model is equivalent to the distribution on graphs defined by Py for some
graphon W; the converse is true as well. That is, any such random graph model is 7 7 7
equivalent to a graphon.

(a) Graphon W.
A particular random graph model is not uniquely defined by a graphon — it is clear

from Equation 1 that two graphons W and W, which are equal almost everywhere
(i.e., differ on a set of measure zero) define the same distribution on graphs. In
fact, the distribution defined by W is unchanged by “relabelings” of W’s nodes.
More formally, if X is the sigma-algebra of Lebesgue measurable subsets of [0, 1]
and u is the Lebesgue measure, we say that a relabeling function ¢ : ([0, 1],Z) —
([0, 11, 2) is measure preserving if for any measurable set A € X, u(¢~'(A)) = u(A).
We define the relabeled graphon W#¢ by W#(x,y) = W(g(x), ¢(y)). By analogy () W?* weakly
with finite graphs, we say that graphons W, and W, are weakly isomorphic if they = >°™°'P hic  to
are equivalent up to relabeling, i.e., if there exist measure preserving maps ¢; and
¢ such that W' = W5 almost everywhere. Weak isomorphism is an equivalence
relation, and most of the important properties of a graphon in fact belong to its
equivalence class. For instance, a powerful result of [15] is that two graphons
define the same random graph model if and only if they are weakly isomorphic.

An example of a graphon W is shown in Figure la. It is conventional to plot
the graphon as one typically plots an adjacency matrix: with the origin in the
upper-left corner. Darker shades correspond to higher values of W. Figure 1b

(c) An instance

. o . . . . of a graph ad-
depicts a graphon W# which is weakly isomorphic to W. In particular, W¥ is  jacency sampled

the relabeling of W by the measure preserving transformation ¢(x) = 2x mod 1. from W.
As such, the graphons shown in Figures la and 1b define the same distribution )
on graphs. Figure 1c shows the adjacency matrix A of a graph of size n = 50 Figure 1



sampled from the distribution defined by the equivalence class containing W and W¥. Note that it is
in principle not possible to determine from A alone which graphon W or W¥ it was sampled from,
or to what node in W a particular column of A corresponds to.

3 The graphon cluster tree

We now identify the cluster structure of a graphon. We will define a graphon’s clusters such that
they are analogous to the maximally-connected components of a finite graph. It turns out that the
collection of all clusters has hierarchical structure; we call this object the graphon cluster tree. We
propose that the goal of clustering in the graphon setting is the recovery of the graphon cluster tree.

Connectedness and clusters. Consider a finite weighted graph. It is natural to cluster the graph
into connected components. In fact, because of the weighted edges, we can speak of the clusters of
the graph at various levels. More precisely, we say that a set of nodes A is internally connected —
or, from now on, just connected — at level A if for every pair of nodes in A there is a path between
them such that every node along the path is also in A, and the weight of every edge in the path is at
least A. Equivalently, A is connected at level A if and only if for every partitioning of A into disjoint,
non-empty sets A; and A, there is an edge of weight A or greater between A| and A,. The clusters at
level A are then the largest connected components at level A.

A graphon is, in a sense, an infinite weighted graph, and we will define the clusters of a graphon
using the example above as motivation. In doing so, we must be careful to make our notion robust to
changes of the graphon on a set of zero measure, as such changes do not affect the graph distribution
defined by the graphon. We base our definition on that of Janson [13], who defined what it means for
a graphon to be connected as a whole. We extend the definition in [13] to speak of the connectivity
of subsets of the graphon’s nodes at a particular height. Our definition is directly analogous to the
notion of internal connectedness in finite graphs.

Definition 1 (Connectedness). Let W be a graphon, and let A C [0, 1] be a set of positive measure.
We say that A is disconnected at level A if there exists a measurable S C A such that 0 < u(S) < u(A),
and W < A almost everywhere on S X (A \ §). Otherwise, we say that A is connected at level A.

We now identify the clusters of a graphon; as in the finite case, we will frame our definition in terms
of maximally-connected components. We begin by gathering all subsets of [0, 1] which should
belong to some cluster at level A. Naturally, if a set is connected at level 4, it should be in a cluster
at level A; for technical reasons, we will also say that a set which is connected at all levels A" < A
(though perhaps not at 1) should be contained in a cluster at level A, as well. That is, for any A, the
collection 2, of sets which should be contained in some cluster at level 1is 0, = {A € £ : u(A) >
0 and A is connected at every level 2’ < 1}. Now suppose A;,A; € Ay, and that there is a set A € A,
such that A D A UA,. Naturally, the cluster to which A belongs should also contain A; and A,, since
both are subsets of A. We will therefore consider A; and A, to be equivalent, in the sense that they
should be contained in the same cluster at level 4. More formally, we define a relation o—-, on U,
by Aj oo, Ay &= JA € A, s.t. A D A; U A,. It can be verified that o—, is an equivalence relation
on U j; see Claim 9 in Appendix B.

Each equivalence class .« in the quotient space 2;/o—,. consists of connected sets which should
intuitively be clustered together at level A. Naturally, we will define the clusters to be the largest
elements of each class; in some sense, these are the maximally-connected components at level A.
More precisely, suppose o7 is such an equivalence class. It is clear that in general no single member
A € 4/ can contain all other members of <7, since adding a null set (i.e., a set of measure zero) to A
results in a larger set A’ which is nevertheless still a member of <7. However, we can find a member
A* € &/ which contains all but a null set of every other set in 7. More formally, we say that A*
is an essential maximum of the class o if A* € o/ and for every A € o, u(A\ A*) = 0. A" is of
course not unique, but it is unique up to a null set; i.e., for any two essential maxima A;, A, of <7,
we have u(A; A Ap) = 0. We will write the set of essential maxima of 7 as ess max «7; the fact that
the essential maxima are well-defined is proven in Claim 10 in Appendix B. We then define clusters
as the maximal members of each equivalence class in U, /o—o,:

Definition 2 (Clusters). The set of clusters at level A in W, written Cy(Q), is defined to be the
countable collection Cy(A) = { essmax .o/ : o/ € WA, [o—o,}.



Note that a cluster ¢ of a graphon is not a subset of the unit interval per se, but rather an equivalence
class of subsets which differ only by null sets. It is often possible to treat clusters as sets rather
than equivalence classes, and we may write u(%), € U ¢”, etc., without ambiguity. In addition, if
¢ : [0,1] — [0, 1] is a measure preserving transformation, then ¢~!(%’) is well-defined.

For a concrete example of our notion of a cluster, consider the graphon W depicted in Figure la. A,
B, and C represent sets of the graphon’s nodes. By our definitions there are three clusters at level
A3 o, B, and €. Clusters o7 and A merge into a cluster o7 U A at level A,, while € remains a
separate cluster. Everything is joined into a cluster &7 U 28 U % at level 4.

We have taken care to define the clusters of a graphon in such a way as to be robust to changes of
measure zero to the graphon itself. In fact, clusters are also robust to measure preserving transfor-
mations. The proof of this result is non-trivial, and comprises Appendix C.

Claim 1. Let W be a graphon and ¢ a measure preserving transformation. Then € is a cluster of
W¥¢ at level A if and only if there exists a cluster €' of W at level A such that € = ¢~ (€").

Cluster trees and mergeons. The set of all clusters of a graphon at any level has hierarchical
structure in the sense that, given any pair of distinct clusters 4] and %5, either one is “essentially”
contained within the other, i.e., 4] C %3, or ¥, C %), or they are “essentially” disjoint, i.e., u(%; N
%,) = 0, as is proven by Claim 8 in Appendix B. Because of this hierarchical structure, we call the
set Cyy of all clusters from any level of the graphon W the graphon cluster tree of W. It is this tree
that we hope to recover by applying a graph clustering algorithm to a graph sampled from W.

We may naturally speak of the height at which pairs of distinct clusters merge in od B EC
the cluster tree. For instance, let 4] and %, be distinct clusters of C. We say that A3

the merge height of €\ and %, is the level A at which they are joined into a single Ao

cluster, i.e., max{A : €, U%, € C(1)}. However, while the merge height of clusters

is well-defined, the merge height of individual points is not. This is because the A1

cluster tree is not a collection of sets, but rather a collection of equivalence classes Cw

of sets, and so a point does not belong to any one cluster more than any other. Note (a) Cluster tree

that this is distinct from the classical density case considered in [12], [9], and [1], ¢, of W.
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where the merge height of any pair of points is well-defined.

Nevertheless, consider a measurable function M : [0, 1] — [0, 1] which assigns
a merge height to every pair of points. While the value of M on any given pair is
arbitrary, the value of M on sets of positive measure is constrained. Intuitively, if
% is a cluster at level A, then we must have M > A almost everywhere on ¢ X €.
If M satisfies this constraint for every cluster 4’ we call M a mergeon for C, as it
is a graphon which determines a particular choice for the merge heights of every
pair of points in [0, 1]. More formally:

o B 7
Definition 3 (Mergeon). Let C be a cluster tree. A mergeon! of C is a graphon  (b) Mergeon M
M such that for all 2 € [0,1], M~'[A,1] = Uwecyy € X €, where M2, 1] = ofCy.

{(-x’y) € [07 1]2 : M(X,)’) 2 /l} Figure 2

An example of a mergeon and the cluster tree it represents is shown in Figure 2. In fact, the cluster
tree depicted is that of the graphon W from Figure l1a. The mergeon encodes the height at which
clusters &7, %, and ¥ merge. In particular, the fact that M = A, everywhere on &7 X 2 represents
the merging of <7 and Z at level A, in W.

It is clear that in general there is no unique mergeon representing a graphon cluster tree, however,
the above definition implies that two mergeons representing the same cluster tree are equal almost
everywhere. Additionally, we have the following two claims, whose proofs are in Appendix B.

Claim 2. Let C be a cluster tree, and suppose M is a mergeon representing C. Then € € C(Q) if
and only if € is a cluster in M at level A. In other words, the cluster tree of M is also C.

Claim 3. Let W be a graphon and M a mergeon of the cluster tree of W. If ¢ is a measure preserving
transformation, then M¥ is a mergeon of the cluster tree of W¥.

I'The definition given here involves a slight abuse of notation. For a precise — but more technical — version,
see Appendix A.2.



4 Notions of consistency

We have so far defined the sense in which a graphon has hierarchical cluster structure. We now
turn to the problem of determining whether a clustering algorithm is able to recover this structure
when applied to a graph sampled from a graphon. Our approach is to define a distance between the
infinite graphon cluster tree and a finite clustering. We will then define consistency by requiring that
a consistent method converge to the graphon cluster tree in this distance for all inputs minus a set of
vanishing probability.

Merge distortion. A hierarchical clustering C of a set S — or, from now on, just a clustering of
S — is hierarchical collection of subsets of S such that S € C and for all C,C’ € C, either C c C’,
C’ c C,orCNC" = 0. Suppose C is a clustering of a finite set S consisting of graphon nodes; i.e,
S c [0, 1]. How might we measure the distance between this clustering and a graphon cluster tree
C? Intuitively, the two trees are close if every pair of points in § merges in C at about the same level
as they merge in C. But this informal description faces two problems: First, C is a collection of
equivalence classes of sets, and so the height at which any pair of points merges in C is not defined.
Recall, however, that the cluster tree has an alternative representation as a mergeon. A mergeon does
define a merge height for every pair of nodes in a graphon, and thus provides a solution to this first
issue. Second, the clustering C is not equipped with a height function, and so the height at which
any pair of points merges in C is also undefined. Following [10], our approach is to induce a merge
height function on the clustering using the mergeon in the following way:

Definition 4 (Induced merge height). Let M be a mergeon, and suppose S is a finite subset of
[0,1]. Let C be a clustering of S. The merge height function on C induced by M is defined by
Mc(s, §") = minyecis,s) M(u, v), for every s, s" € S X S, where C(s, s") denotes the smallest cluster
C € C which contains both s and s’.

We measure the distance between a clustering C and the cluster tree C using the merge distortion:

Definition S. Let M be a mergeon, S a finite subset of [0, 1], and C a clustering of S. The merge
distortion is defined by ds (M, Mc) = maX; yes, szy |M(s, s") — Mc(s, s')|.

Defining the induced merge height and merge distortion in this way leads to an especially meaningful
interpretation of the merge distortion. In particular, if the merge distortion between C and C is €,
then any two clusters of C which are separated at level A but merge below level A — € are correctly
separated in the clustering C. A similar result guarantees that a cluster in C is connected in C at
within € of the correct level. For a precise statement of these results, see Claim 5 in Appendix A 4.

The label measure. We will use the merge distortion to measure the distance between C, a hier-
archical clustering of a graph, and C, the graphon cluster tree. Recall, however, that the nodes of
a graph sampled from a graphon have integer labels. That is, C is a clustering of [n], and not of a
subset of [0, 1]. Hence, in order to apply the merge distortion, we must first relabel the nodes of the
graph, placing them in direct correspondence to nodes of the graphon, i.e., points in [0, 1].

Recall that we sample a graph of size n from a graphon W by first drawing n
points Xi, ..., X, uniformly at random from the unit interval. We then generate
a graph on node set [n] by connecting nodes i and j with probability W(x;, x;).
However, the nodes of the sampled graph are not labeled by x;, . .., X;,, but rather
by the integers 1,...,n. Thus we may think of x; as being the “true” latent label
of node i. In general the latent node labeling is not recoverable from data, as is
demonstrated by the figure to the right. We might suppose that the graph shown is
sampled from the graphon above it, and that node 1 corresponds to a, node 2 to b,
node 3 to ¢, and node 4 to d. However, it is just as likely that node 4 corresponds
to d’, and so neither labeling is more “correct”. It is clear, though, that some
labelings are less likely than others. For instance, the existence of the edge (1,2)
makes it impossible that 1 corresponds to a and 2 to ¢, since W(a, ¢) is zero.

b cd d

o =
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Therefore, given a graph G = ([n], E) sampled from a graphon, there are many possible relabelings
of G which place its nodes in correspondence with nodes of the graphon, but some are more likely
than others. The merge distortion depends which labeling of G we assume, but, intuitively, a good
clustering of G will have small distortion with respect to highly probable labelings, and only have
large distortion on improbable labelings. Our approach is to assign a probability to every pair (G, S)
of a graph and possible labeling. We will thus be able to measure the probability mass of the set of



pairs for which a method performs poorly, i.e., results in a large merge distortion.

More formally, let ®, denote the set of all undirected, unweighted graphs on node set [n], and let
X" be the sigma-algebra of Lebesgue-measurable subsets of [0, 1]. A graphon W induces a unique
product measure Ay, defined on the product sigma-algebra 2% x " such that for all G € 2+ and
Seim

Awn(G X S) = Seg ([s Lw(SIG)dS ), where Lw(S 1G) = [ | Wexp [ [1- Wi, xp)

(i.))EE(G) (0, )EE(G)

where E(G) represents the edge set of the graph G. We recognize Ly/(S | G) as the integrand in
Equation 1 for the probability of a graph as determined by a graphon. If G is fixed, integrating
Lw(S | G)overall S € [0, 1]" gives the probability of G under the model defined by W.

We may now formally define our notion of consistency. First, some notation: If C is a clustering of
[n]and S = (x1,...,x,), write C o § to denote the relabeling of C by S, in which i is replaced by x;
in every cluster. Then if f is a hierarchical graph clustering method, f(G) o S is a clustering of §,
and M ;G).s denotes the merge function induced on f(G) o S by M.

Definition 6 (Consistency). Let W be a graphon and M be a mergeon of W. A hierarchical graph
clustering method f is said to be a consistent estimator of the graphon cluster tree of W if for any

fixed e >0, asn — oo, Ay, ({(G,S) 1 ds(M, Mf(G)oS) > 6}) — 0.

The choice of mergeon for the graphon W does not affect consistency, as any two mergeons of the
same graphon differ on a set of measure zero. Furthermore, consistency is with respect to the random
graph model, and not to any particular graphon representing the model. The following claim, the
proof of which is in Appendix B, makes this precise.

Claim 4. Let W be a graphon and ¢ a measure preserving transformation. A clustering method f
is a consistent estimator of the graphon cluster tree of W if and only if it is a consistent estimator of
the graphon cluster tree of W¥.

Consistency and the blockmodel. If a graph clustering method is consistent in the sense defined
above, it is also consistent in the stochastic blockmodel; i.e., it ensures strict recovery of the com-
munities with high probability as the size of the graphs grow large. For instance, suppose W is
a stochastic blockmodel graphon with « along the block-diagonal and 8 everywhere else. W has
two clusters at level @, merging into one cluster at level 5. When the merge distortion between the
graphon cluster tree and a clustering is less than a — 8, which will eventually be the case with high
probability if the method is consistent, the two clusters are totally disjoint in C; this implication is
made precise by Claim 5 in Appendix A.4.

5 Consistent algorithms

We now demonstrate that consistent clustering methods exist. We present two results: First, we
show that any method which is capable of consistently estimating the probability of each edge in a
random graph leads to a consistent clustering method. We then analyze a modification of an existing
algorithm to show that it consistently estimates edge probabilities. As a corollary, we identify a
graph clustering method which satisfies our notion of consistency. Our results will be for graphons
which are piecewise Lipschitz (or weakly isomorphic to a piecewise Lipschitz graphon):

Definition 7 (Piecewise Lipschitz). We say that B = {B, ..., By} is a block partition if each B; is an
open, half-open, or closed interval in [0, 1] with positive measure, B; N B; is empty whenever i # J,
and | ) B = [0, 1]. We say that a graphon W is piecewise c-Lipschitz if there exists a set of blocks B
such that for any (x,y) and (x',y") in B; X Bj, [W(x,y) = W(x',y)| < c(lx = X'| + [y = Y.

Our first result concerns methods which are able to consistently estimate edge probabilities in the
following sense. Let S = (xy,...,X;,) be an ordered set of n uniform random variables drawn from
the unit interval. Fix a graphon W, and let P be the random matrix whose ij entry is given by
W(xi, xj). We say that P is the random edge probability matrix. Assuming that W has structure, it
is possible to estimate P from a single graph sampled from W. We say that an estimator P of P is
consistent in max-norm if, for any € > 0, lim,,_,o, P(max;4; |[P;; — P; jl > €) = 0. The following non-
trivial theorem, whose proof comprises Appendix D, states that any estimator which is consistent in
this sense leads to a consistent clustering algorithm:



Theorem 1. Let W be a piecewise c-Lipschitz graphon. Let P be a consistent estimator of Pin
max-norm. Let f be the clustering method which performs single-linkage clustering using P as a
similarity matrix. Then f is a consistent estimator of the graphon cluster tree of W.

Estimating the matrix of edge probabilities has
been a direction of recent research, however we
are only aware of results which show consis-
tency in mean squared error; That is, the liter-
ature contains estimators for which 1/»2||P — lA)||12r
tends to zero in probability. One practical
method is the neighborhood smoothing algo-
rithm of [21]. The method constructs for each
node i in the graph G a neighborhood of nodes

Algorithm 1 Clustering by nbhd. smoothing

Require: Adjacency matrix A, C € (0, 1)

% Step 1: Compute the estimated edge

% probability matrix P using neighborhood
% smoothing algorithm based on [21]

n < Size(A)

h « C+/(logn)/n

forAi # j € [n] X [n] do

A « A after setting row/column j to zero
for i/ € [n]\ {i, j} do . .
d(i,i") < maxgzp j (A% /)i — (A% /n)i]
end for
gij < hth quantile of {d;(i,i") : i’ # i, j}
Ny {0’ #1,j:d;(i,i") < q;;(h)}
end for

N; which are similar to i in the sense that for ev-
ery i’ € Nj, the corresponding column Ay of the
adjacency matrix is close to A; in a particular
distance. Aj; is clearly not a good estimate for
the probability of the edge (i, j), as it is either
zero or one, however, if the graphon is piece-
wise Lipschitz, the average Ay; over i’ € Nj
will intuitively tend to the true probability. Like ~ for (i, ) € [n] X [n] do

others, the method of [21] is proven to be con- pl.j - % (NL Sien, Avj+ NL S ren, Aij’)
sistent in mean squared error. Since Theorem 1 end for i Y J g
requires consistency in max-norm, we analyze PO .

a Elight modiﬁcatior}ll of this algorithm and shyow % Step 2: Cluster P with single linkage
that it consistently estimates P in this stronger C « the single linkage clusters of P

sense. The technical details are in Appendix E. return C

Theorem 2. [f the graphon W is piecewise Lipschitz, the modified neighborhood smoothing algo-
rithm in Appendix E is a consistent estimator of P in max-norm.

As a corollary, we identify a practical graph clustering algorithm which is a consistent estimator of
the graphon cluster tree. The algorithm is shown in Algorithm 1, and details are in Appendix E.2.
Appendix F contains experiments in which the algorithm is applied to real and synthetic data.

Corollary 1. If the graphon W is piecewise Lipschitz, Algorithm 1 is a consistent estimator of the
graphon cluster tree of W.

6 Discussion

We have presented a consistency framework for clustering in the graphon model and demonstrated
that a practical clustering algorithm is consistent. We now identify two interesting directions of
future research. First, it would be interesting to consider the extension of our framework to sparse
random graphs; many real-world networks are sparse, and the graphon generates dense graphs. Re-
cently, however, sparse models which extend the graphon have been proposed; see [7, 6]. It would
be interesting to see what modifications are necessary to apply our framework in these models.

Second, it would be interesting to consider alternative ways of defining the ground truth clustering of
a graphon. Our construction is motivated by interpreting the graphon W not only as a random graph
model, but also as a similarity function, which may not be desirable in certain settings. For example,
consider a “bipartite” graphon W, which is one along the block-diagonal and zero elsewhere. The
cluster tree of W consists of a single cluster at all levels, whereas the ideal bipartite clustering has
two clusters. Therefore, consider applying a transformation S to W which maps it to a “similarity”
graphon. The goal of clustering then becomes the recovery of the cluster tree of S(W) given a
random graph sampled from W. For instance, let S : W +— W2, where W? is the operator square
of the bipartite graphon W. The cluster tree of S(W) has two clusters at all positive levels, and
so represents the desired ground truth. In general, any such transformation S leads to a different
clustering goal. We speculate that, with minor modification, the framework herein can be used to
prove consistency results in a wide range of graph clustering settings.
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