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Abstract

The importance of studying the robustness of learners to malicious data is well
established. While much work has been done establishing both robust estimators
and effective data injection attacks when the attacker is omniscient, the ability of
an attacker to provably harm learning while having access to little information is
largely unstudied. We study the potential of a “blind attacker” to provably limit
a learner’s performance by data injection attack without observing the learner’s
training set or any parameter of the distribution from which it is drawn. We provide
examples of simple yet effective attacks in two settings: firstly, where an “informed
learner” knows the strategy chosen by the attacker, and secondly, where a “blind
learner” knows only the proportion of malicious data and some family to which the
malicious distribution chosen by the attacker belongs. For each attack, we analyze
minimax rates of convergence and establish lower bounds on the learner’s minimax
risk, exhibiting limits on a learner’s ability to learn under data injection attack even
when the attacker is “blind”.

1 Introduction

As machine learning becomes more widely adopted in security and in security-sensitive tasks, it is
important to consider what happens when some aspect of the learning process or the training data
is compromised [1–4]. Examples in network security are common and include tasks such as spam
filtering [5, 6] and network intrusion detection [7, 8]; examples outside the realm of network security
include statistical fraud detection [9] and link prediction using social network data or communications
metadata for crime science and counterterrorism [10].

In a training set attack, an attacker either adds adversarial data points to the training set (“data
injection”) or preturbs some of the points in the dataset so as to influence the concept learned by the
learner, often with the aim of maximizing the learner’s risk. Training-set data injection attacks are
one of the most practical means by which an attacker can influence learning, as in many settings an
attacker which does not have insider access to the learner or its data collection or storage systems
may still be able to carry out some activity which is monitored and the resulting data used in the
learner’s training set [2, 6]. In a network security setting, an attacker might inject data into the training
set for an anomaly detection system so that malicious traffic is classified as normal, thus making a
network vulnerable to attack, or so that normal traffic is classified as malicious, thus harming network
operation.
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A growing body of research focuses on game-theoretic approaches to the security of machine learning,
analyzing both the ability of attackers to harm learning and effective strategies for learners to defend
against attacks. This work often makes strong assumptions about the knowledge of the attacker. In a
single-round game it is usually assumed that the attacker knows the algorithm used by the learner
(e.g. SVM or PCA) and has knowledge of the training set either by observing the training data or
the data-generating distribution [2, 5, 11]. This allows the construction of an optimal attack to be
treated as an optimization problem. However, this assumption is often unrealistic as it requires insider
knowledge of the learner or for the attacker to solve the same estimation problem the learner faces
to identify the data-generating distribution. In an iterated-game setting it is usually assumed the
attacker can query the learner and is thus able to estimate the learner’s current hypothesis in each
round [12–14]. This assumption is reasonable in some settings, but in other scenarios the attacker
may not receive immediate feedback from the learner, making the iterated-game setting inappropriate.
We provide analysis which makes weaker assumptions than either of these bodies of work by taking
a probabilistic approach in tackling the setting where a “blind attacker” has no knowledge of the
training set, the learner’s algorithm or the learner’s hypothesis.

Another motivation is provided by the field of privacy. Much work in the field of statistical privacy
concerns disclosure risk: the probability that an entry in a dataset might be identified given statistics
of the dataset released. This has been formalized by “differential privacy”, which provides bounds
on the maximum disclosure risk [15]. However, differential privacy hinges on the benevolence of
an organization to which you give your data: the privacy of individuals is preserved as long as
organizations which collect and analyze data take necessary steps to enforce differential privacy.
Many data are gathered without users’ deliberate consent or even knowledge. Organizations are also
not yet under legal obligation to use differentially-private procedures.

A user might wish to take action to preserve their own privacy without making any assumption of
benevolence on the part of those that collect data arising from the user’s actions. For example, they
may wish to prevent an online service from accurately estimating their income, ethnicity, or medical
history. The user may have to submit some quantity of genuine data in order to gain a result from the
service which addresses a specific query, and may not even observe all the data the service collects.
They may wish to enforce the privacy of their information by also submitting fabricated data to
the service or carrying out uncharacteristic activity. This is a data injection training set attack, and
studying such attacks thus reveals the ability of a user to prevent a statistician or learner from making
inferences from the user’s behavior.

In this paper we address the problem of a one-shot data injection attack carried out by a blind attacker
who does not observe the training set, the true distribution of interest, or the learner’s algorithm. We
approach this problem from the perspective of minimax decision theory to provide an analysis of
the rate of convergence of estimators on training sets subject to such attacks. We consider both an
“informed learner” setting where the learner is aware of the exact distribution used by the attacker
to inject malicious data, and a “blind learner” setting where the learner is unaware of the malicious
distribution. In both settings we suggest attacks which aim to minimize an upper bound on the
pairwise KL divergences between the distributions conditioned on particular hypotheses, and thus
maximize a lower bound on the minimax risk of the learner. We provide lower bounds on the rate of
convergence of any estimator under these attacks.

2 Setting and contributions

2.1 Setting

A learner attempts to learn some parameter θ of a distribution of interest Fθ with density fθ and
belonging to some family F = {Fθ, θ ∈ Θ}, where Θ is a set of candidate hypotheses for the
parameter. “Uncorrupted” data X1, ..., Xn ∈ X are drawn i.i.d. from Fθ. The attacker chooses some
malicious distribution Gφ with density gφ and from a family G = {Gφ : φ ∈ Φ}, where Φ is a
parameter set representing candidate attack strategies. “Malicious” data X ′1, .., X

′
n ∈ X are drawn

i.i.d from the malicious distribution. The observed dataset is made up of a fraction α of true examples
and 1− α of malicious examples. The learner observes a dataset Z1, ..., Zn ∈ Z , where

Zi =

{
Xi with probability α

X ′i with probability 1− α. (1)
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We denote the distribution of Z with P . P is clearly a mixture distribution with density:

p(z) = αfθ(z) + (1− α)gφ(z).

The distribution of Z conditional on X is:

p(z|x) = α1{z = x}+ (1− α)gφ(z).

We consider two distinct settings based on the knowledge of the attacker and of the learner. First
we consider the scenario where the learner knows the malicious distribution, Gφ and the fraction of
inserted examples (“informed learner”). Second we consider the scenario where the learner knows
only the family G to which Gφ belongs and fraction of inserted examples (“blind learner”). Our work
assumes that the attacker knows only the family of distributions F to which the true distribution
belongs (“blind attacker”). As such, the attacker designs an attack so as to maximally lower bound
the learner’s minimax risk. We leave as future work a probabilistic treatment of the setting where
the attacker knows the true Fθ but not the training set drawn from it (“informed attacker”). To our
knowledge, our work is the first to consider the problem of learning in a setting where the training
data is distributed according to a mixture of a distribution of interest and a malicious distribution
chosen by an adversary without knowledge of the distribution of interest.

2.2 Related work

Our paper has very strong connections to several problems which have previously been studied in the
minimax framework.

First is the extensive literature on robust statistics. Our framework is very similar to Huber’s
ε-contamination model, where the observed data follows the distribution:

(1− ε)Pθ + εQ.

Here ε controls the degree of corruption, Q is an arbitrary corruption distribution, and the learner
attempts to estimate θ robust to the contamination. A general estimator which achieves the minimax
optimal rate under Huber’s ε-contamination model was recently proposed by Chen, Gao and Ren[16].
Our work differs from the robust estimation literature in that rather than designing optimal estimators
for the learner, we provide concrete examples of attack strategies which harm the learning rate of any
estimator, even those which are optimal under Huber’s model. Unlike robust statistics, our attacker
does not have complete information on the generating distribution, and must select an attack which is
effective for any data-generating distribution drawn from some set. Our work has similar connections
to the literature on minimax rates of convergence of estimators for mixture models [17] and minimax
rates for mixed regression with multiple components [18], but differs in that we consider the problem
of designing a corrupting distribution.

There are also connections to the work on PAC learning with contaminated data [19]. Here the key
difference, beyond the fact that we focus on strategies for a blind attacker as discussed earlier, is that
we use information-theoretic proof techniques rather than reductions to computational hardness. This
means that our bounds restrict all learning algorithms, not just polynomial-time learning algorithms.

Our work has strong connections to the analysis of minimax lower bounds in local differential privacy.
In [20] and [21], Duchi, Wainwright and Jordan establish lower bounds in the local differential
privacy setting, where P (Zi|Xi = x), the likelihood of an observed data point Zi given Xi takes any
value x, is no more than some constant factor greater than P (Zi|Xi = x′), the likelihood of Zi given
Xi takes any other value x′. Our work can be seen as an adaptation of those ideas to a new setting:
we perform very similar analysis but in a data injection attack setting rather than local differential
privacy setting. Our analysis for the blind attacker, informed learner setting and our examples in
Section 5 for both settings draw heavily from [21].

In fact, the blind attack setting is by nature locally differentially private with the likelihood ratio
upper bounded by maxz

αfθ(z)+(1−α)gφ(z)
(1−α)gφ(z) , as in the blind attack setting only α of the data points

are drawn from the distribution of interest F . This immediately suggests bounds on the minimax
rates of convergence according to [20]. However, the rates we obtain by appropriate choice of Gφ by
the attacker obtain lower bounds on the rate of convergence which are often much slower than the
bounds due to differential privacy obtained by arbitrary choice of Gφ.

The rest of this work proceeds as follows. Section 3.1 formalizes our notation. Section 3.2 introduces
our minimax framework and the standard techniques of lower bounding the minimax risk by reduction
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from parameter estimation to testing. Sections 3.3 and 3.4 discuss the “blind attacker; informed
learner” and “blind attacker; blind learner” settings in this minimax framework. Section 3.5 briefly
proposes how this framework could be extended to consider an “informed attacker” which observes
the true distribution of interest Fθ. Section 4 provides a summary of the main results. In Section 5 we
give examples of estimating a mean under blind attack in both the informed and blind learner setting
and performing linear regression in the informed learner setting. In Section 6 we conclude. Proof of
the main results is presented in the appendix.

3 Problem formulation

3.1 Notation

We denote the “uncorrupted” data with the random variables X1:n. Fi is the distribution and fi the
density of each Xi conditioning on θ = θi ∈ Θ; Fθ and fθ are the generic distribution and density
parametrized by θ. We denote malicious data with the random variables X ′1:n. In the “informed
learner” setting, G is the distribution and g the density from which each X ′i is drawn. In the “blind
learner” setting, Gj and gj are the distribution and density of X ′i conditioning on φ = φj ∈ Φ; Gφ
and gφ are the generic distribution and density parametrized by φ. We denote the observed data Z1:n,
which is distributed according to (1). Pi is the distribution and pi the density of each Zi, conditioning
on θ = θi and φ = φi. Pθ or Pθ,φ is the parametrized form. We say that Pi = αFi + (1 − α)Gi,
or equivalently pi(z) = αfi(z) + (1 − α)gi(z), to indicate that Pi is a weighted mixture of the
distributions Fi and Gi. We assume that X , X ′ and Z have the same support, denoted Z . Mn is the
minimax risk of a learner. DKL(P1||P2) is the KL-divergence. ||P1 − P2||TV is the total variation
distance. I(Z, V ) is the mutual information between the random variables Z and V . θ̂n : Zn → Θ

denotes an arbitrary estimator for θ with a sample size of n; ψ̂n : Zn → Ψ denotes an arbitrary
estimator for an arbitrary parameter vector ψ with a sample size of n.

3.2 Minimax framework

The minimax risk of estimating a parameter ψ ∈ Ψ is equal to the risk of the estimator ψ̂n which
achieves smallest maximal risk across all ψ ∈ Ψ:

Mn = inf
ψ̂

sup
ψ∈Ψ

EZ1:n∼PnψL(ψ, ψ̂n).

The minimax risk thus provides a strong guarantee: the population risk of an estimator can be no
worse than the minimax risk, no matter which ψ ∈ Ψ happens to be the true parameter. Our analysis
aims to build insight into how the minimax risk increases when the training set is subjected to blind
data injection attacks. In the informed learner setting we fix some φ and Gφ, and consider Ψ = Θ,
letting L(θ, θ̂n) be the squared `2 distance ||θ − θ̂n||22. In the blind learner setting we account for
there being two parameters unknown to the learner φ and θ by letting Ψ = Φ×Θ and considering a
loss function which depends only on the value of θ and its estimator, L(ψ, ψ̂n) = ||θ − θ̂n||22
We follow the standard approach to lower bounding the minimax risk [22], reducing the problem of
estimating θ to that of testing the hypothesis H : V = Vj for Vj ∈ V , where V ∼ U(V), a uniform
distribution across V . V ⊂ Ψ is an appropriate finite packing of the parameter space.

The Le Cam method provides lower bound on the minimax risk of the learner in terms of the KL
divergence DKL(Pψ1 ||Pψ2) for ψ1, ψ2 ∈ Ψ [22]:

Mn ≥ L(ψ1, ψ2)
[1

2
− 1

2
√

2

√
nDKL(Pφ1

||Pφ2
)
]
. (2)

The Fano method provides lower bounds on the minimax risk of the learner in terms of the mutual
information I(Z, V ) between the observed data and V chosen uniformly at random from V , where
L(Vi, Vj) ≥ 2δ ∀Vi, Vj ∈ V [22]:

Mn ≥ δ
[
1− I(Z1:n;V ) + log 2

log |V|

]
. (3)
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The mutual information is upper bounded by the pariwise KL divergences as

I(Z1:n, V ) ≤ n

|V|2
∑
i

∑
j

DKL(PVi ||PVj ). (4)

3.3 Blind attacker, informed learner

In this setting we assume the attacker does not know Fθ but does know F . The learner knows both
Gφ and α prior to picking an estimator. In this case, as Gφ is known, we do not need to consider a
distribution over possible values of φ; instead, we consider some fixed p(z|x). The attacker chooses
Gφ to attempt to maximally lower bound the minimax risk of the learner:

φ∗ = argmaxφMn = argmaxφ inf
θ̂

sup
θ∈Θ

EZ1:n∼Pθ,ψL(θ, θ̂n),

where L(θ, θ′) is the learner’s loss function; in our case the squared `2 distance ||θ − θ′||22.

The attacker chooses a malicious distribution Gφ̂ which minimizes the sum of KL-divergences
between the distributions indexed by V:

φ̂ = argminφ
∑
θi∈V

∑
θj∈V

DKL(Pθi,φ||Pθj,φ) ≥ |V|
2

n
I(Zn; θ),

where Pθi,φ = αFθi + (1− α)Gφ.

This directly provides lower bounds on the minimax risk of the learner via (2) and (3).

3.4 Blind attacker, blind learner

In this setting, the learner does not know the specific malicious distribution Gφ used to inject points
into the training set, but is allowed to know the family G = {Gφ : φ ∈ Φ} from which the attacker
picks this distribution. We propose that the minimax risk is thus with respect to the worst-case choice
of both the true parameter of interest θ and the parameter of the malicious distribution φ:

Mn = inf
θ̂

sup
(φ,θ)∈Φ×Θ

EZ1:n∼Pθ,ψL(θ, θ̂n).

That is, the minimax risk in this setting is taken over worst-case choice of the parameter pair
(φ, θ) ∈ Φ×Θ, but the loss L(θ, θ̂) is with respect to only the true value of of θ and its estimator θ̂.
The attacker thus designs a family of malicious distributions G = {Gφ : φ ∈ Φ} so as to maximally
lower bound the minimax risk:

G∗ = argmax inf
θ̂

sup
(Fθ,Gφ)∈F×G

EZ1:nL(θ, θ̂).

We use the Le Cam approach (2) in this setting. To accommodate the additional set of parameters Φ
we consider nature picking (φ, θ) from Φ×Θ. The loss function isL

(
(ψi, θi), (ψj , θj)

)
= ||θi−θj ||22,

and thus only depends on θ. Therefore when constructing our hypothesis set we must choose well-
separated θ but may arbitrarily pick each element φ. The problem reduces from that of estimating
θ to that of testing the hypothesis H : (φ, θ) = (φ, θ)j for (φ, θ)j ∈ V , where nature chooses
(φ, θ) ∼ U(V).

The attacker again lower bounds the minimax risk by choosing G to minimize an upper bound on
the pairwise KL divergences. Unlike the informed learner setting where the KL divergence was
between the distributions indexed by θi and θj with φ fixed, here the KL divergence is between the
distributions indexed by appropriate choice of pairings (θi, φi) and (θj , φj):

Ĝ = argminG
∑

(θi,φi)∈V

∑
(θj,φj)∈V

DKL(Pθi,φi
||Pθj,φj

) ≥ |V|
2

n
I(Zn; θ),

where Pθi,φi = αFθi + (1− α)Gφi .
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3.5 Informed attacker

We leave this setting as future work, but briefly propose a formulation for completeness. In this
setting the attacker knows Fθ prior to picking Gφ. We assume that the learner picks some θ̂ which
is minimax-optimal over F and G as defined in Section 1.5 and 1.6 respectively. We denote the
appropriate set of such estimators as Θ̂. The attacker picks Gφ ∈ G so as to maximally lower bound
the risk for any θ̂ ∈ Θ:

Rθ,φ(θ̂) = EZ1:n∼Pθ,φL(θ, θ̂n).

This is similar to the setting in [11], with the modification that the learner can use any (potentially
non-convex) algorithm and estimator. The attacker must therefore identify an optimal attack using
information-theoretic techniques and knowledge of Fθ, rather than inverting the learner’s convex
learning problem and using convex optimization to maximize the learner’s risk.

4 Main results

4.1 Informed learner, blind attacker

In the informed learner setting, the attacker chooses a single malicious distribution (known to the
learner) from which to draw malicious data.

Theorem 1 (Uniform attack). The attacker picks gφ(z) := g uniform over Z in the informed learner
setting. We assume that Z is compact and that G� Fi � Fj ∀θi, θj ∈ Θ. Then:

DKL(Pi||Pj) +DKL(Pj ||Pi) ≤
α2

(1− α)
||Fi − Fj ||2TVVol(Z) ∀θi, θj ∈ Θ.

The proof modifies the analysis used to prove Theorem 1 in [21] and is presented in the appendix. By
applying Le Cam’s method to P1 and P2 as described in the theorem, we find:

Corollary 1.1 (Le Cam bound with uniform attack). Given a data injection attack as described in
Theorem 1, the minimax risk of the learner is lower bounded by

Mn ≥ L(θ1, θ2)
(1

2
− 1

2
√

2

√
α2

(1− α)
n||F1 − F2||2TVVol(Z)

)
.

We turn to the local Fano method. Consider the traditional setting (Pθ = Fθ), and consider a packing
set V of Θ which obeys L(θi, θj) ≥ 2δ ∀θi, θj ∈ V , and where the KL divergences are bounded such
that there exists some fixed τ fulfilling DKL(Fi||Fj) ≤ δτ ∀θi, θj ∈ V . We can use this inequality
and the bound on mutual information in (4) to rewrite the Fano bound in (3) as:

Mn ≥ δ
[
1− nδτ + log 2

log |V|

]
.

If we consider the uniform attack setting with the same packing set V of Θ, then by applying Theorem
1) in addition to the bound on mutual information in (4) to the standard fano bound in (3), we obtain:

Corollary 1.2 (Local Fano bound with uniform attack). Given a data injection attack as described in
Theorem 1, and given any packing V of Θ so such L(θi, θj) ≥ 2δ ∀θi, θj ∈ V andDKL(Fi||Fj) ≤ δτ
∀θi, θj ∈ V , then the minimax risk of the learner is lower bounded by

Mn ≥ δ
(

1−
α2

(1−α)Vol(Z)nτδ + log 2

log |V |

)
.

Remarks. Comparing the two corollaries to the standard form of the Le Cam and Fano bounds shows
that a uniform attack has the effect of upper-bounding the effective sample size at n α2

(1−α)Vol(Z).
The range of α for which this bound results in a reduction in effective sample size beyond the trivial
reduction to αn depends on Vol(Z). We illustrate the consequences of these corollaries for some
classical estimation problems in Section 3.
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4.2 Blind learner, blind attacker

We begin with a lemma that shows that for α ≤ 1
2 the attacker can make learning impossible beyond

permutation for higher rates of injection. Similar results have been shown in [18] among others, and
this is included for completeness.
Lemma 1 (Impossibility of learning beyond permutation for α ≤ 0.5). Consider any hypotheses θ1

and θ2, with F1 � F2 and F2 � F1. We construct V = {F,G}2 = {(F1, G1), (F2, G2)}. For all
α ≤ 0.5, there exist choices of G1 and G2 such that DKL(P1||P2) +DKL(P2||P1) = 0.

The proof progresses by considering g1(z) = αf2(z)
(1−α) + c, g2(z) = αf1(z)

(1−α) + c, such that ||P1 −
P2||TV = 0. Full proof is provided in the appendix.

It is unnecessary to further consider values of α less than 0.5. We proceed with an attack where
the attacker chooses a family of malicious distributions G which mimics the family of candidate
distributions of interest F , and show that this increases the lower bound on the learner’s minimax
risk for 0.5 < α < 3

4 .
Theorem 2 (Mimic attack). Consider any hypotheses θ1 and θ2, with F1 � F2 and F2 � F1. The
attacker picks G = F . We construct V = {F,G}2 = {(F1, G1), (F2, G2)} where G1 = F2 and
G2 = F1. Then:

DKL(P1||P2) +DKL(P2||P1) ≤ (2α− 1)2

1− α
||F1 − F2||TV ≤ 4

α4

1− α
||F1 − F2||2TV.

The proof progresses by upper bounding | log p1(z)
p2(z) | by log α

1−α , and consequently upper bounding
the pairwise KL divergence in terms of the total variation distance. It is presented in the appendix. By
applying the standard Le Cam bound with the the bound on KL divergence provided by the theorem,
we obtain:
Corollary 2.1 (Le Cam bound with mimic attack). Given a data injection attack as described in
Theorem 2, the minimax risk of the learner is lower bounded by

Mn ≥ L(θ1, θ2)
(1

2
− 1√

2

√
(2α− 1)2

1− α
n||F1 − F2||2TV

)
.

Remarks. For α ∈ [0, 3
4 ], comparing the corollary to the standard form of the Le Cam bound shows

that this attack reduces the effective sample size from n to (2α−1)2

1−α n. We illustrate the consequences
of this corollary for estimating a mean in Section 3. There are two main differences in the result from
the bound for the uniform attack. Firstly, the dependence on (2α− 1)2 instead of α2 means that the
KL divergence rapidly approaches zero as α → 1

2 , rather than as α → 0 as in the uniform attack.
Secondly, there is no dependence on the volume of the support of the data.

5 Minimax rates of convergence under blind attack

We analyze the minimax risk in the settings of mean estimation and of fixed-design linear regression
by showing how the blind attack forms of the Le Cam and Fano bounds modify the lower bounds on
the minimax risk for each model.

5.1 Mean estimation

In this section we address the simple problem of estimating a one-dimensional mean when the training
set is subject to a blind attack. Consider the following family, where Θ is the interval [−1, 1]:

F = {Fθ : EFθX = θ;EFθX2 ≤ 1; θ ∈ Θ}.
We apply Theorems 1 and 2 and the associated Le Cam bounds to obtain:
Proposition 1 (Mean estimation under uniform attack — blind attacker, informed learner). If the
attacker carries out a uniform attack as presented in theorem 1, then there exists a universal constant
0 < c <∞ such that the minimax risk is bounded as:

Mn ≥ cmin
[
1,

√
2

1− α
α2n

]
.
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The proof is direct by using the uniform-attack form of the Le Cam lower bound on minimax risk
presented in corollary 1.1 in the proof of (20) in [21] in place of the differentially private form of the
lower bound in equation (16) of that paper.
Proposition 2 (Mean estimation under mimic attack — blind attacker, blind learner). If the attacker
carries out a mimic attack as presented in theorem 2, then there exists a universal constant 0 < c <∞
such that the minimax risk is bounded as:

Mn ≥ cmin
[
1,

1

2− 4α

√
1− α
n

]
.

The proof is direct by using the mimic-attack form of the Le Cam lower bound on minimax risk
presented in corollary 2.1 in the proof of (20) in [21] in place of the differentially private form of the
lower bound in equation (16) of that paper.

5.2 Linear regression with fixed design

We now consider the minimax risk in a standard fixed-design linear regression problem. Consider a
fixed design matrix X ∈ Rn×d, and the standard linear model

Y = Xθ∗ + ε,

where ε ∈ Rn is a vector of independent noise variables with each entry of the noise vector upper
bounded as |εi| ≤ σ <∞∀i. We assume that the problem is appropriately scaled so that ||X||∞ ≤ 1,
||Y ||∞ ≤ 1, and so that it suffices to consider θ∗ ∈ Θ, where Θ = Sd is the d-dimensional unit
sphere. The loss function is the squared `2 loss with respect to θ∗: L(θ̂n, θ

∗) = ||θ̂n − θ∗||22. It is
also assumed that X is full rank to make estimation of θ possible.
Proposition 3 (Linear regression under uniform attack - blind attacker, informed learner). If the
attacker carries out a uniform attack per Theorem 1, and si(A) is the ith singular value of A, then
the minimax risk is bounded by

Mn ≥ min
[
1,

σ2d(1− α)

nα2s2
max(X/

√
n)

]
.

The proof is direct by using the uniform-attack form of the Fano lower bound on minimax risk
presented in corollary 1.2 in the proof of (22) in [21] in place of the differentially private form of
the lower bound in equation (19) of that paper, noting that Vol(Z) ≤ 1 by construction. If we
consider the orthonormal design case such that s2

max(X/
√
n) = 1, and recall that lower bounds on

the minimax risk in linear regression in traditional settings is O(σ
2d
n ), we see a clear reduction in

effective sample size from n to α2

1−αn.

6 Discussion

We have approached the problem of data injection attacks on machine learners from a statistical
decision theory framework, considering the setting where the attacker does not observe the true
distribution of interest or the learner’s training set prior to choosing a distribution from which to draw
malicious examples. This has applications to the theoretical analysis of both security settings, where
an attacker attempts to compromise a machine learner through data injection, and privacy settings,
where a user of a service aims to protect their own privacy by sumbitting some proportion of falsified
data. We identified simple attacks in settings where the learner is and is not aware of the malicious
distribution used which reduce the effective sample size when considering rates of convergence of
estimators. These attacks maximize lower bounds on the minimax risk. These lower bounds may
not be tight, and we leave as future work thorough exploration of optimality of attacks in this setting
and the establishing of optimal estimation procedures in the presence of such attacks. Exploration of
attacks on machine learners in the minimax framework should lead to better understanding of the
influence an attacker might have over a learner in settings where the attacker has little information.
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