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Abstract

Gaussian Process bandit optimization has emerged as a powerful tool for optimizing
noisy black box functions. One example in machine learning is hyper-parameter
optimization where each evaluation of the target function may require training
a model which may involve days or even weeks of computation. Most methods
for this so-called “Bayesian optimization” only allow sequential exploration of
the parameter space. However, it is often desirable to propose batches or sets
of parameter values to explore simultaneously, especially when there are large
parallel processing facilities at our disposal. Batch methods require modeling the
interaction between the different evaluations in the batch, which can be expensive
in complex scenarios. In this paper, we propose a new approach for parallelizing
Bayesian optimization by modeling the diversity of a batch via Determinantal
point processes (DPPs) whose kernels are learned automatically. This allows us
to generalize a previous result as well as prove better regret bounds based on
DPP sampling. Our experiments on a variety of synthetic and real-world robotics
and hyper-parameter optimization tasks indicate that our DPP-based methods,
especially those based on DPP sampling, outperform state-of-the-art methods.

1 Introduction
The optimization of an unknown function based on noisy observations is a fundamental problem
in various real world domains, e.g., engineering design [33], finance [36] and hyper-parameter
optimization [29]. In recent years, an increasingly popular direction has been to model smoothness
assumptions about the function via a Gaussian Process (GP), which provides an easy way to compute
the posterior distribution of the unknown function, and thereby uncertainty estimates that help to
decide where to evaluate the function next, in search of an optima. This Bayesian optimization (BO)
framework has received considerable attention in tuning of hyper-parameters for complex models
and algorithms in Machine Learning, Robotics and Computer Vision [16, 31, 29, 12].

Apart from a few notable exceptions [9, 8, 11], most methods for Bayesian optimization work by
exploring one parameter value at a time. However, in many applications, it may be possible and,
moreover, desirable to run multiple function evaluations in parallel. A case in point is when the
underlying function corresponds to a laboratory experiment where multiple experimental setups are
available or when the underlying function is the result of a costly computer simulation and multiple
simulations can be run across different processors in parallel. By parallelizing the experiments,
substantially more information can be gathered in the same time-frame; however, future actions must
be chosen without the benefit of intermediate results. One might conceptualize these problems as
choosing “batches” of experiments to run simultaneously. The key challenge is to assemble batches
(out of a combinatorially large set of batches) of experiments that both explore the function and
exploit by focusing on regions with high estimated value.

Our Contributions Given that functions sampled from GPs usually have some degree of smoothness,
in the so-called batch Bayesian optimization (BBO) methods, it is desirable to choose batches which
are diverse. Indeed, this is the motivation behind many popular BBO methods like the BUCB [9],
UCB-PE [8] and Local Penalization [11]. Motivated by this long line of work in BBO, we propose
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a new approach that employs Determinantal Point Processes (DPPs) to select diverse batches of
evaluations. DPPs are probability measures over subsets of a ground set that promote diversity, have
applications in statistical physics and random matrix theory [28, 21], and have efficient sampling
algorithms [17, 18]. The two main ways for fixed cardinality subset selection via DPPs are that of
choosing the subset which maximizes the determinant [DPP-MAX, Theorem 3.3] and sampling a
subset according to the determinantal probability measure [DPP-SAMPLE, Theorem 3.4]. Following
UCB-PE [8], our methods also choose the first point via an acquisition function, and then the rest
of the points are selected from a relevance region using a DPP. Since DPPs crucially depend on the
choice of the DPP kernel, it is important to choose the right kernel. Our method allows the kernel
to change across iterations and automatically compute it based on the observed data. This kernel
is intimately linked to the GP kernel used to model the function; it is in fact exactly the posterior
kernel function of the GP. The acquisition functions we consider are EST [34], a recently proposed
sequential MAP-estimate based Bayesian optimization algorithm with regret bounds independent of
the size of the domain, and UCB [30]. In fact, we show that UCB-PE can be cast into our framework
as just being DPP-MAX where the maximization is done via a greedy selection rule.

Given that DPP-MAX is too greedy, it may be desirable to allow for uncertainty in the observations.
Thus, we define DPP-SAMPLE which selects the batches via sampling subsets from DPPs, and show
that the expected regret is smaller than that of DPP-MAX. To provide a fair comparison with an
existing method, BUCB, we also derive regret bounds for B-EST [Theorem 3.2]. Finally, for all
methods with known regret bounds, the key quantity is the information gain. In the appendix, we also
provide a simpler proof of the information gain for the widely-used RBF kernel which also improves
the bound from O((log T )d+1) [26, 30] to O((log T )d). We conclude with experiments on synthetic
and real-world robotics and hyper-parameter optimization for extreme multi-label classification tasks
which demonstrate that our DPP-based methods, especially the sampling based ones are superior or
competitive with the existing baselines.

Related Work One of the key tasks involved in black box optimization is of choosing actions that
both explore the function and exploit our knowledge about likely high reward regions in the function’s
domain. This exploration-exploitation trade-off becomes especially important when the function
is expensive to evaluate. This exploration-exploitation trade off naturally leads to modeling this
problem in the multi-armed bandit paradigm [25], where the goal is to maximize cumulative reward
by optimally balancing this trade-off. Srinivas et al. [30] analyzed the Gaussian Process Upper
Confidence Bound (GP-UCB) algorithm, a simple and intuitive Bayesian method [3] to achieve the
first sub-linear regret bounds for Gaussian process bandit optimization. These bounds however grow
logarithmically in the size of the (finite) search space.

Recent work by Wang et al. [34] considered an intuitive MAP-estimate based strategy (EST) which
involves estimating the maximum value of a function and choosing a point which has maximum
probability of achieving this maximum value. They derive regret bounds for this strategy and show
that the bounds are actually independent of the size of the search space. The problem setting for both
UCB and EST is of optimizing a particular acquisition function. Other popular acquisition functions
include expected improvement (EI), probability of improvement over a certain threshold (PI). Along
with these, there is also work on Entropy search (ES) [13] and its variant, predictive entropy search
(PES) [14] which instead aims at minimizing the uncertainty about the location of the optimum of
the function. All the fore-mentioned methods, though, are inherently sequential in nature.

The BUCB and UCB-PE both depend on the crucial observation that the variance of the posterior
distribution does not depend on the actual values of the function at the selected points. They exploit
this fact by “hallucinating” the function values to be as predicted by the posterior mean. The BUCB
algorithm chooses the batch by sequentially selecting the points with the maximum UCB score
keeping the mean function the same and only updating the variance. The problem with this naive
approach is that it is too “overconfident” of the observations which causes the confidence bounds on
the function values to shrink very quickly as we go deeper into the batch. This is fixed by a careful
initialization and expanding the confidence bounds which leads to regret bounds which are worse
than that of UCB by some multiplicative factor (independent of T and B). The UCB-PE algorithm
chooses the first point of the batch via the UCB score and then defines a “relevance region” and
selects the remaining points from this region greedily to maximize the information gain, in order to
focus on pure exploration (PE). This algorithm does not require any initialization like the BUCB and,
in fact, achieves better regret bounds than the BUCB.
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Both BUCB and UCB-PE, however, are too greedy in their selection of batches which may be really
far from the optimal due to our “immediate overconfidence” of the values. Indeed this is the criticism
of these two methods by a recently proposed BBO strategy PPES [27], which parallelizes predictive
entropy search based methods and shows considerable improvements over the BUCB and UCB-PE
methods. Another recently proposed method is the Local Penalization (LP) [11], which assumes that
the function is Lipschitz continuous and tries to estimate the Lipschitz constant. Since assumptions
of Lipschitz continuity naturally allow one to place bounds on how far the optimum of f is from a
certain location, they work to smoothly reduce the value of the acquisition function in a neighborhood
of any point reflecting the belief about the distance of this point to the maxima. However, assumptions
of Lipschitzness are too coarse-grained and it is unclear how their method to estimate the Lipschitz
constant and modelling of local penalization affects the performance from a theoretical standpoint.
Our algorithms, in constrast, are general and do not assume anything about the function other than it
being drawn from a Gaussian Process.

2 Preliminaries
Gaussian Process Bandit Optimization We address the problem of finding, in the lowest possible
number of iterations, the maximum (m) of an unknown function f : X → R where X ⊂ Rd, i.e.,

m = f(x∗) = max
x∈X

f(x).

We consider the domain to be discrete as it is well-known how to obtain regret bounds for continous,
compact domains via suitable discretizations [30]. At each iteration t, we choose a batch {xt,b}1≤b≤B
of B points and then simultaneously observe the noisy values taken by f at these points, yt,b =
f(xt,b) + εt,b, where εt,k is i.i.d. Gaussian noise N (0, σ2). The function is assumed to be drawn
from a Gaussian process (GP), i.e., f ∼ GP (0, k), where k : X 2 → R+ is the kernel function. Given
the observations Dt = {(xτ , yτ )tτ=1} up to time t, we obtain the posterior mean and covariance
functions [24] via the kernel matrixKt = [k(xi, xj)]xi,xj∈Dt

and kt(x) = [k(xi, x)]xi∈Dt
: µt(x) =

kt(x)
T (Kt + σ2I)−1yt and kt(x, x′) = k(x, x′) − kt(x)

T (Kt + σ2I)−1kt(x
′). The posterior

variance is given by σ2
t (x) = kt(x, x). Define the Upper Confidence Bound (UCB) f+ and Lower

Confidence Bound (LCB) f− as
f+
t (x) = µt−1(x) + β

1/2
t σt−1(x) f−t (x) = µt−1(x)− β1/2

t σt−1(x)

A crucial observation made in BUCB [9] and UCB-PE [8] is that the posterior covariance and variance
functions do not depend on the actual function values at the set of points. The EST algorithm in [34]
chooses at each timestep t,the point which has the maximum posterior probability of attaining the
maximum value m, i.e., the argmaxx∈X Pr(Mx|m,Dt) where Mx is the event that point x achieves
the maximum value. This turns out to be equal to argminx∈X

[
(m− µt(x))/σt(x)

]
. Note that this

actually depends on the value of m which, in most cases, is unknown. [34] get around this by using
an approximation m̂ which, under certain conditions specified in their paper, is an upper bound on m.
They provide two ways to get the estimate m̂, namely ESTa and ESTn. We refer the reader to [34]
for details of the two estimates and refer to ESTa as EST.

Assuming that the horizon T is unknown, a strategy has to be good at any iteration. Let rt,b denote the
simple regret, the difference between the value of the maxima and the point queried xt,k, i.e., rt,b =
maxx∈X f(x)− f(xt,b). While, UCB-PE aims at minimizing a batched cumulative regret, in this
paper we will focus on the standard full cumulative regret defined as RTB =

∑T
t=1

∑B
b=1 rt,b. This

models the case where all the queries in a batch should have low regret. The key quantity controlling
the regret bounds of all known BO algorithms is the maximum mutual information that can be gained
about f from T measurements : γT = maxA⊆X ,|A|≤T I(yA, fA) = maxA⊆X ,|A|≤T

1
2 log det(I +

σ−2KA), where KA is the (square) submatrix of K formed by picking the row and column indices
corresponding to the set A. The regret for both the UCB and the EST algorithms are presented in the
following theorem which is a combination of Theorem 1 in [30] and Theorem 3.1 in [34].
Theorem 2.1. Let C = 2/ log(1 + σ−2) and fix δ > 0. For UCB, choose βt = 2 log(|X |t2π2/6δ)

and for EST, choose βt = (minx∈X
m̂−µt−1(x)
σt−1(x)

)2 and ζt = 2 log(π2t2/δ). With probability 1 − δ,
the cumulative regret up to any time step T can be bounded as

RT =

T∑
t=1

rt ≤

{√
CTβT γT for UCB√
CTγT (β

1/2
t∗ + ζ

1/2
T ) for EST

where t∗ = argmax
t
βt.

Determinantal Point Processes Given a DPP kernel K ∈ Rm×m of m elements {1, . . . ,m}, the k-
DPP distribution defined on 2Y is defined as pickingB, a k-subset of [m] with probability proportional
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Algorithm 1 GP-BUCB/B-EST Algorithm

Input: Decision set X , GP prior µ0, σ0, kernel function k(·, ·), feedback mapping fb[·]
for t = 1 to TB do

Choose β1/2
t =

{
C ′
[
2 log(|X |π2t2/6)δ

]
for BUCB

C ′
[
minx∈X (m̂− µfb[t])/σt−1(x)

]
for B-EST

Choose xt = argmaxx∈X [µfb[t](x) + β
1/2
t σt−1(x)] and compute σt(·)

if fb[t] < fb[t+ 1] then
Obtain yt′ = f(xt′) + εt′ for t′ ∈ {fb[t] + 1, . . . , fb[t+ 1]} and compute µfb[t+1](·)

end if
end for
return arg max

t=1...TB
yt

to det(KB). Formally,

Pr(B) =
det(KB)∑
|S|=k det(KS)

The problem of picking a set of size k which maximizes the determinant and sampling a set according
to the k-DPP distribution has received considerable attention [22, 7, 6, 10, 1, 17]. The maximization
problem in general is NP-hard and furthermore, has a hardness of approximation result of 1/ck for
some c > 1. The best known approximation algorithm is by [22] with a factor of 1/ek, which almost
matches the lower bound. Their algorithm however is a complicated and expensive convex program.
A simple greedy algorithm on the other hand gives a 1/2k log(k)-approximation. For sampling from
k-DPPs, an exact sampling algorithm exists due to [10]. This, however, does not scale to large
datasets. A recently proposed alternative is an MCMC based method by [1] which is much faster.

3 Main Results
In this section, we present our DPP-based algorithms. For a fair comparison of the various methods,
we first prove the regret bounds of the EST version of BUCB, i.e., B-EST. We then show the
equivalence between UCB-PE and UCB-DPP maximization along with showing regret bounds for the
EST version of PE/DPP-MAX. We then present the DPP sampling (DPP-SAMPLE) based methods
for UCB and EST and provide regret bounds. In Appendix 4, while borrowing ideas from [26], we
provide a simpler proof with improved bounds on the maximum information gain for the RBF kernel.
3.1 The Batched-EST algorithm
The BUCB has a feedback mapping fb which indicates that at any given time t (just in this case we
will mean a total of TB timesteps), the iteration upto which the actual function values are available.
In the batched setting, this is just b(t− 1)/BcB. The BUCB and B-EST, its EST variant algorithms
are presented in Algorithm 1. The algorithm mainly comes from the observation made in [34] that
the point chosen by EST is the same as a variant of UCB. This is presented in the following lemma.
Lemma 3.1. (Lemma 2.1 in [34]) At any timestep t, the point selected by EST is the same as the
point selected by a variant of UCB with β1/2

t = minx∈X (m̂− µt−1(x))/σt−1(x).
This will be sufficient to get to B-EST as well by just running BUCB with the βt as defined in
Lemma 3.1 and is also provided in Algorithm 1. In the algorithm, C ′ is chosen to be exp(2C), where
C is an upper bound on the maximum conditional mutual information I(f(x); yfb[t]+1:t−1|y1:fb[t])
(refer to [9] for details). The problem with naively using this algorithm is that the value of C ′, and
correspondingly the regret bounds, usually has at least linear growth in B. This is corrected in [9] by
two-stage BUCB which first chooses an initial batch of size T init by greedily choosing points based
on the (updated) posterior variances. The values are then obtained and the posterior GP is calculated
which is used as the prior GP in Algorithm 1. The C ′ value can then be chosen independent of B.
We refer the reader to the Table 1 in [9] for values of C ′ and T init for common kernels. Finally, the
regret bounds of B-EST are presented in the next theorem.

Theorem 3.2. Choose αt =
(
minx∈X

m̂−µfb[t](x)

σt−1(x)

)2
and βt = (C ′)2αt, B ≥ 2, δ > 0 and the C ′

and T init values are chosen according to Table 1 in [9]. At any timestep T , let RT be the cumulative
regret of the two-stage initialized B-EST algorithm. Then

Pr{RT ≤ C ′RseqT + 2‖f‖∞T init,∀T ≥ 1} ≥ 1− δ
Proof. The proof is presented in Appendix 1.
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Algorithm 2 GP-(UCB/EST)-DPP-(MAX/SAMPLE) Algorithm

Input: Decision set X , GP prior µ0, σ0, kernel function k(·, ·)
for t = 1 to T do

Compute µt−1 and σt−1 according to Bayesian inference.

Choose β1/2
t =

{[
2 log(|X |π2t2/6)δ

]
for UCB[

minx∈X (m̂− µfb[t])/σt−1(x)
]

for EST
xt,1 ← argmaxx∈X µt−1(x) +

√
βtσt−1(x)

ComputeR+
t and construct the DPP kernel Kt,1

{xt,b}Bb=2 ←
{
kDPPMaxGreedy(Kt,1, B − 1) for DPP-MAX
kDPPSample(Kt,1, B − 1) for DPP-SAMPLE

Obtain yt,b = f(xt,b) + εt,b for b = 1, . . . , B
end for

3.2 Equivalence of Pure Exploration (PE) and DPP Maximization
We now present the equivalence between the Pure Exploration and a procedure which involves DPP
maximization based on the Greedy algorithm. For the next two sections, by an iteration, we mean all
B points selected in that iteration and thus, µt−1 and kt−1 are computed using (t− 1)B observations
that are available to us. We first describe a generic framework for BBO inspired by UCB-PE : At
any iteration, the first point is chosen by selecting the one which maximizes UCB or EST which can
be seen as a variant of UCB as per Lemma 3.1. A relevance region R+

t is defined which contains
argmaxx∈X f

+
t+1(x) with high probability. Let y•t = f−t (x•t ), where x•t = argmaxx∈X f

−
t (x).

The relevance region is formally defined as R+
t = {x ∈ X |µt−1 + 2

√
βt+1σt−1(x) ≥ y•t }. The

intuition for considering this region is that using R+
t guarantees that the queries at iteration t will

leave an impact on the future choices at iteration t + 1. The next B − 1 points for the batch are
then chosen from R+

t , according to some rule. In the special case of UCB-PE, the B − 1 points
are selected greedily fromR+

t by maximizing the (updated) posterior variance, while keeping the
mean function the same. Now, at the tth iteration, consider the posterior kernel function after xt,1
has been chosen (say kt,1) and consider the kernel matrix Kt,1 = I + σ−2[kt,1(pi, pj)]i,j over the
points pi ∈ R+

t . We will consider this as our DPP kernel at iteration t. Two possible ways of
choosing B − 1 points via this DPP kernel is to either choose the subset of size B − 1 of maximum
determinant (DPP-MAX) or sample a set from a (B − 1)-DPP using this kernel (DPP-SAMPLE). In
this subsection, we focus on the maximization problem. The proof of the regret bounds of UCB-PE
go through a few steps but in one of the intermediate steps (Lemma 5 of [8]), it is shown that the sum
of regrets over a batch at an iteration t is upper bounded as

B∑
b=1

rt,b ≤
B∑

b=1

(σt,b(xt,b))
2 ≤

B∑
b=1

C2σ
2 log(1 + σ−2σt,b(xt,b)) = C2σ

2 log

[ B∏
b=1

(1 + σ−2σt,b(xt,b)

]
where C2 = σ−2/ log(1 + σ−2). From the final log-product term, it can be seen (from Schur’s
determinant identity [5] and the definition of σt,b(xt,b)) that the product of the last B − 1 terms is
exactly the B − 1 principal minor of Kt,1 formed by the indices corresponding to S = {xt,b}Bb=2.
Thus, it is straightforward to see that the UCB-PE algorithm is really just (B− 1)-DPP maximization
via the greedy algorithm. This connection will also be useful in the next subsection for DPP-

SAMPLE. Thus,
∑B

b=1 rt,b ≤ C2σ
2

[
log(1 + σ−2σt,1(xt,1)) + log det((Kt,1)S)

]
. Finally, for EST-PE,

the proof proceeds like in the B-EST case by realising that EST is just UCB with an adaptive βt. The
final algorithm (along with its sampling counterpart; details in the next subsection) is presented in
Algorithm 2. The procedure kDPPMaxGreedy(K, k) picks a principal submatrix of K of size k by
the greedy algorithm. Finally, we have the theorem for the regret bounds for (UCB/EST)-DPP-MAX.

Theorem 3.3. At iteration t, let βt = 2 log(|X |π2t2/6δ) for UCB, βt = (min m̂−µt−1(x)
σt−1(x)

)2 and
ζt = 2 log(π2t2/3δ) for EST, C1 = 36/ log(1 + σ−2) and fix δ > 0, then, with probability ≥ 1− δ
the full cumulative regret RTB incurred by UCB-DPP-MAX is RTB ≤

√
C1TBβT γTB} and that

for EST-DPP-MAX is RTB ≤
√
C1TBγTB(β

1/2
t∗ + ζ

1/2
T ).

Proof. The proof is provided in Appendix 2. It should be noted that the term inside the logarithm in
ζt has been multiplied by 2 as compared to the sequential EST, which has a union bound over just
one point, xt. This happens because we will need a union bound over not just xt,b but also x•t .
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Figure 1: Immediate regret of the algorithms on two synthetic functions with B = 5 and 10
3.3 Batch Bayesian Optimization via DPP Sampling
In the previous subsection, we looked at the regret bounds achieved by DPP maximization. One
natural question to ask is whether the other subset selection method via DPPs, namely DPP sampling,
gives us equivalent or better regret bounds. Note that in this case, the regret would have to be defined
as expected regret. The reason to believe this is well-founded as indeed sampling from k-DPPs
results in better results, in both theory and practice, for low-rank matrix approximation [10] and
exemplar-selection for Nystrom methods [19]. Keeping in line with the framework described in the
previous subsection, the subset to be selected has to be of size B − 1 and the kernel should be Kt,1 at
any iteration t. Instead of maximizing, we can choose to sample from a (B − 1)-DPP. The algorithm
is described in Algorithm 2. The kDPPSample(K, k) procedure denotes sampling a set from the
k-DPP distribution with kernel K. The question then to ask is what is the expected regret of this
procedure. In this subsection, we show that the expected regret bounds of DPP-SAMPLE are less
than the regret bounds of DPP-MAX and give a quantitative bound on this regret based on entropy
of DPPs. By entropy of a k-DPP with kernel K, H(k − DPP(K)), we simply mean the standard
definition of entropy for a discrete distribution. Note that the entropy is always non-negative in this
case. Please see Appendix 3 for details. For brevity, since we always choose B − 1 elements from
the DPP, we denote H(DPP (K)) to be the entropy of (B − 1)-DPP for kernel K.
Theorem 3.4. The regret bounds of DPP-SAMPLE are less than that of DPP-MAX. Furthermore, at
iteration t, let βt = 2 log(|X |π2t2/6δ) for UCB, βt = (min m̂−µt−1(x)

σt−1(x)
)2 and ζt = 2 log(π2t2/3δ)

for EST, C1 = 36/ log(1+σ−2) and fix δ > 0, then the expected full cumulative regret of UCB-DPP-
SAMPLE satisfies

R2
TB ≤ 2TBC1βT

[
γTB −

T∑
t=1

H(DPP (Kt,1)) +B log(|X |)
]

and that for EST-DPP-SAMPLE satisfies

R2
TB ≤ 2TBC1(β

1/2
t + ζ

1/2
t )2

[
γTB −

T∑
t=1

H(DPP (Kt,1)) +B log(|X |)
]

Proof. The proof is provided in Appendix 3.
Note that the regret bounds for both DPP-MAX and DPP-SAMPLE are better than BUCB/B-EST
due to the latter having both an additional factor of B in the log term and a regret multiplier constant
C ′. In fact, for the RBF kernel, C ′ grows like ed

d

which is quite large for even moderate values of d.

4 Experiments
In this section, we study the performance of the DPP-based algorithms, especially DPP-SAMPLE
against some existing baselines. In particular, the methods we consider are BUCB [9], B-EST,
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UCB-PE/UCB-DPP-MAX [8], EST-PE/EST-DPP-MAX, UCB-DPP-SAMPLE, EST-DPP-SAMPLE
and UCB with local penalization (LP-UCB) [11]. We used the publicly available code for BUCB and
PE1. The code was modified to include the code for the EST counterparts using code for EST 2. For
LP-UCB, we use the publicly available GPyOpt codebase 3 and implemented the MCMC algorithm
by [1] for k-DPP sampling with ε = 0.01 as the variation distance error. We were unable to compare
against PPES as the code was not publicly available. Furthermore, as shown in the experiments
in [27], PPES is very slow and does not scale beyond batch sizes of 4-5. Since UCB-PE almost
always performs better than the simulation matching algorithm of [4] in all experiments that we
could find in previous papers [27, 8], we forego a comparison against simulation matching as well to
avoid clutter in the graphs. The performance is measured after t batch evaluations using immediate
regret, rt = |f(x̃t) − f(x∗)|, where x∗ is a known optimizer of f and x̃t is the recommendation
of an algorithm after t batch evaluations. We perform 50 experiments for each objective function
and report the median of the immediate regret obtained for each algorithm. To maintain consistency,
the first point of all methods is chosen to be the same (random). The mean function of the prior
GP was the zero function while the kernel function was the squared-exponential kernel of the form
k(x, y) = γ2 exp[−0.5

∑
d(xd − y2d)/l2d]. The hyper-parameter λ was picked from a broad Gaussian

hyperprior and the the other hyper-parameters were chosen from uninformative Gamma priors.

Our first set of experiments is on a set of synthetic benchmark objective functions including Branin-
Hoo [20], a mixture of cosines [2] and the Hartmann-6 function [20]. We choose batches of size 5
and 10. Due to lack of space, the results for mixture of cosines are provided in Appendix 5 while
the results of the other two are shown in Figure 1. The results suggest that the DPP-SAMPLE
based methods perform superior to the other methods. They do much better than their DPP-MAX
and Batched counterparts. The trends displayed with regards to LP are more interesting. For the
Branin-Hoo, LP-UCB starts out worse than the DPP based algorithms but takes over DPP-MAX
relatively quickly and approaches the performance of DPP-SAMPLE when the batch size is 5. When
the batch size is 10, the performance of LP-UCB does not improve much but both DPP-MAX and
DPP-SAMPLE perform better. For Hartmann, LP-UCB outperforms both DPP-MAX algorithms
by a considerable margin. The DPP-SAMPLE based methods perform better than LP-UCB. The
gap, however, is more for the batch size of 10. Again, the performance of LP-UCB changes much
lesser compared to the performance gain of the DPP-based algorithms. This is likely because the
batches chosen by the DPP-based methods are more “globally diverse” for larger batch sizes. The
superior performance of the sampling based methods can be attributed to allowing for uncertainty in
the observations by sampling as opposed to greedily emphasizing on maximizing information gain.

We now consider maximization of real-world objective functions. The first function we consider,
robot, returns the walking speed of a bipedal robot [35]. The function’s input parameters, which live
in [0, 1]8, are the robot’s controller. We add Gaussian noise with σ = 0.1 to the noiseless function.
The second function, Abalone4 is a test function used in [8]. The challenge of the dataset is to predict
the age of a species of sea snails from physical measurements. Similar to [8], we will use it as a
maximization problem. Our final experiment is on hyper-parameter tuning for extreme multi-label
learning. In extreme classification, one needs to deal with multi-class and multi-label problems
involving a very large number of categories. Due to the prohibitively large number of categories,
running traditional machine learning algorithms is not feasible. A recent popular approach for extreme
classification is the FastXML algorithm [23]. The main advantage of FastXML is that it maintains
high accuracy while training in a fraction of the time compared to the previous state-of-the-art. The
FastXML algorithm has 5 parameters and the performance depends on these hyper-parameters, to a
reasonable amount. Our task is to perform hyper-parameter optimization on these 5 hyper-parameters
with the aim to maximize the Precision@k for k = 1, which is the metric used in [23] to evaluate
the performance of FastXML compared to other algorithms as well. While the authors of [23] run
extensive tests on a variety of datasets, we focus on two small datasets : Bibtex [15] and Delicious[32].
As before, we use batch sizes of 5 and 10. The results for Abalone and the FastXML experiment on
Delicious are provided in the appendix. The results for Prec@1 for FastXML on the Bibtex dataset

1http://econtal.perso.math.cnrs.fr/software/
2https://github.com/zi-w/EST
3http://sheffieldml.github.io/GPyOpt/
4The Abalone dataset is provided by the UCI Machine Learning Repository at

http://archive.ics.uci.edu/ml/datasets/Abalone
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Figure 2: Immediate regret of the algorithms for Prec@1 for FastXML on Bibtex and Robot with B = 5 and 10

and for the robot experiment are provided in Figure 2. The blue horizontal line for the FastXML
results indicates the maximum Prec@k value found using grid search.

The results for robot indicate that while DPP-MAX does better than their Batched counterparts, the
difference in the performance between DPP-MAX and DPP-SAMPLE is much less pronounced for
a small batch size of 5 but is considerable for batch sizes of 10. This is in line with our intuition
about sampling being more beneficial for larger batch sizes. The performance of LP-UCB is quite
close and slightly better than UCB-DPP-SAMPLE. This might be because the underlying function is
well-behaved (Lipschitz continuous) and thus, the estimate for the Lipschitz constant might be better
which helps them get better results. This improvement is more pronounced for batch size of 10 as
well. For Abalone (see Appendix 5), LP does better than DPP-MAX but there is a reasonable gap
between DPP-SAMPLE and LP which is more pronounced for B = 10.

The results for Prec@1 for the Bibtex dataset for FastXML are more interesting. Both DPP based
methods are much better than their Batched counterparts. For B = 5, DPP-SAMPLE is only slightly
better than DPP-MAX. LP-UCB starts out worse than DPP-MAX but starts doing comparable to
DPP-MAX after a few iterations. For B = 10, there is not a large improvement in the gap between
DPP-MAX and DPP-SAMPLE. LP-UCB however, quickly takes over UCB-DPP-MAX and comes
quite close to the performance of DPP-SAMPLE after a few iterations. For the Delicious dataset (see
Appendix 5), we see a similar trend of the improvement of sampling to be larger for larger batch sizes.
LP-UCB displays an interesting trend in this experiment by doing much better than UCB-DPP-MAX
for B = 5 and is in fact quite close to the performance of DPP-SAMPLE. However, for B = 10, its
performance is much closer to UCB-DPP-MAX. DPP-SAMPLE loses out to LP-UCB only on the
robot dataset and does better for all the other datasets. Furthermore, this improvement seems more
pronounced for larger batch sizes. We leave experiments with other kernels and a more thorough
experimental evaluation with respect to batch sizes for future work.

5 Conclusion
We have proposed a new method for batched Gaussian Process bandit (batch Bayesian) optimization
based on DPPs which are desirable in this case as they promote diversity in batches. The DPP kernel
is automatically figured out on the fly which allows us to show regret bounds for DPP maximization
and sampling based methods for this problem. We show that this framework exactly recovers a
popular algorithm for BBO, namely the UCB-PE when we consider DPP maximization using the
greedy algorithm. We showed that the regret for the sampling based method is always less than the
maximization based method. We also derived their EST counterparts and also provided a simpler
proof of the information gain for RBF kernels which leads to a slight improvement in the best bound
known. Our experiments on a variety of synthetic and real-world tasks validate our theoretical claims
that sampling performs better than maximization and other methods.
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