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Abstract

We propose efficient algorithms for simultaneous clustering and completion of
incomplete high-dimensional data that lie in a union of low-dimensional subspaces.
We cast the problem as finding a completion of the data matrix so that each point
can be reconstructed as a linear or affine combination of a few data points. Since the
problem is NP-hard, we propose a lifting framework and reformulate the problem
as a group-sparse recovery of each incomplete data point in a dictionary built using
incomplete data, subject to rank-one constraints. To solve the problem efficiently,
we propose a rank pursuit algorithm and a convex relaxation. The solution of our
algorithms recover missing entries and provides a similarity matrix for clustering.
Our algorithms can deal with both low-rank and high-rank matrices, does not suffer
from initialization, does not need to know dimensions of subspaces and can work
with a small number of data points. By extensive experiments on synthetic data
and real problems of video motion segmentation and completion of motion capture
data, we show that when the data matrix is low-rank, our algorithm performs on
par with or better than low-rank matrix completion methods, while for high-rank
data matrices, our method significantly outperforms existing algorithms.

1 Introduction

High-dimensional data, which are ubiquitous in computer vision, image processing, bioinformatics
and social networks, often lie in low-dimensional subspaces corresponding to different categories
they belong to [1, 2, 3, 4, 5, 6]. Clustering and finding low-dimensional representations of data are
important unsupervised learning problems with numerous applications, including data compression
and visualization, image/video/costumer segmentation, collaborative filtering and more.

A major challenge in real problems is dealing with missing entries in data, due to sensor failure,
ad-hoc data collection, or partial knowledge of relationships in a dataset. For instance, in estimating
object motions in videos, the tracking algorithm may loose the track of features in some video frames
[7]; in the image inpainting problem, intensity values of some pixels are missing due to sensor failure
[8]; or in recommender systems, each user provides ratings for a limited number of products [9].

Prior Work. Existing algorithms that deal with missing entries in high-dimensional data can be
divided into two main categories. The first group of algorithms assume that data lie in a single
low-dimensional subspace. Probabilistic PCA (PPCA) [10] and Factor Analysis (FA) [11] optimize
a non-convex function using Expectation Maximization (EM), estimating low-dimensional model
parameters and missing entries of data in an iterative framework. However, their performance depends
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on initialization and degrades as the dimension of the subspace or the percentage of missing entries
increases. Low-rank matrix completion algorithms, such as [12, 13, 14, 15, 16, 17] recover missing
entries by minimizing the convex surrogate of the rank, i.e., nuclear norm, of the complete data
matrix. When the underlying subspace is incoherent with standard basis vectors and missing entries
locations are spread uniformly at random, they are guaranteed to recover missing entries.

The second group of algorithms addresses the more general and challenging scenario where data
lie in a union of low-dimensional subspaces. The goals in this case are to recover missing entries
and cluster data according to subspaces. Since the union of low-dimensional subspaces is often
high/full-rank, methods in the first category are not effective. Mixture of Probabilistic PCA (MPPCA)
[18, 19], Mixture of Factor Analyzers (MFA) [20] and K-GROUSE [21] address clustering and
completion of multi-subspace data, yet suffer from dependence on initialization and perform poorly
as the dimension/number of subspaces or the percentage of missing entires increases. On the other
hand, [22] requires a polynomial number of data points in the ambient space dimension, which often
cannot be met in high-dimensional datasets. Building on the unpublished abstract in [23], a clustering
algorithm using expectation completion on the data kernel matrix was proposed in [24]. However, the
algorithm only addresses clustering and the resulting non-convex optimization is dealt with using the
heuristic approach of shifting eigenvalues of the Hessian to nonnegative values. [25] assumes that the
observed matrix corresponds to applying a Lipschitz, monotonic function to a low-rank matrix. While
an important generalization to low-rank regime, [25] cannot cover the case of multiple subspaces.

Paper Contributions. In this paper, we propose an efficient algorithm for the problem of simulta-
neous completion and clustering of incomplete data lying in a union of low-dimensional subspaces.
Building on the Sparse Subspace Clustering (SSC) algorithm [26], we cast the problem as finding a
completion of the data so that each complete point can be efficiently reconstructed using a few com-
plete points from the same subspace. Since the formulation is non-convex and, in general, NP-hard,
we propose a lifting scheme, where we cast the problem as finding a group-sparse representation of
each incomplete data point in a modified dictionary, subject to a set of rank-one constraints. In our
formulation, coefficients in groups correspond to pairwise similarities and missing entries of data.
More specifically, our group-sparse recovery formulation finds a few incomplete data points that
well reconstruct a given point and, at the same time, completes the selected data points in a globally
consistent fashion. Our framework has several advantages over the state of the art:

– Unlike algorithms such as [22] that require a polynomial number of points in the ambient-space
dimension, our framework needs about as many points as the subspace dimension not the ambient
space. In addition, we do not need to know dimensions of subspaces a priori.

– While two-stage methods such as [24], which first obtain a similarity graph for clustering and then
apply low-rank matrix completion to each cluster, fail when subspaces intersect or clustering fails,
our method simultaneously recovers missing entries and builds a similarity matrix for clustering,
hence, each goal benefits from the other. Moreover, in scenarios where a hard clustering does not
exist, we can still recover missing entries.

– While we motivate and present our algorithm in the context of clustering and completion of multi-
subspace data, our framework can address any task that relies on the self-expressiveness property of
the data, e.g., column subset selection in the presence of missing data.

– By experiments on synthetic and real data, we show that our algorithm performs on par with or better
than low-rank matrix completion methods when the data matrix is low-rank, while it significantly
outperforms state-of-the-art clustering and completion algorithms when the data matrix is high-rank.

2 Problem Statement

Assume we have L subspaces {S`}L`=1 of dimensions {d`}L`=1 in an n-dimensional ambient space,
Rn. Let {yj}Nj=1 denote a set ofN data points lying in the union of subspaces, where we observe only

some entries of each yj , [y1j y2j . . . ynj ]
>. Assume that we do not know a priori the bases for

subspaces nor do we know which data points belong to which subspace. Given the incomplete data
points, our goal is to recover missing entries and cluster the data into their underlying subspaces.
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To set the notation, let Ωj ⊆ {1, . . . , n} and Ωc
j denote, respectively, indices of observed and missing

entries of yj . Let UΩj
∈ Rn×|Ωj | be the submatrix of the standard basis whose columns are indexed

by Ωj . We denote by PΩj
∈ Rn×n the projection matrix onto the subspace spanned by UΩj

, i.e.,
PΩj

, UΩj
U>Ωj

. Hence, xj , U
>
Ωc

j
yj ∈ R|Ω

c
j | corresponds to the vector of missing entries of yj .

We denote by ȳj an n-dimensional vector whose i-th coordinate is yij for i ∈ Ωj and is zero for
i ∈ Ωc

j , i.e., ȳj , PΩjyj ∈ Rn. We can write each yj as the summation of two orthogonal vectors
with observed and unobserved entries, i.e.,

yj = PΩj
yj + PΩc

j
yj = ȳj +UΩc

j
U>Ωc

j
yj = ȳj +UΩc

j
xj . (1)

Finally, we denote by Y ∈ Rn×N and Ȳ ∈ Rn×N matrices whose columns are complete data points
{yj}Nj=1 and zero-filled data {ȳj}Nj=1, respectively.

To address completion and clustering of multi-subspace data, we propose a unified framework to
simultaneously recover missing entries and learn a similarity graph for clustering. To do so, we build
on the SSC algorithm [26, 4], which we review next.

3 Sparse Subspace Clustering Review

The sparse subspace clustering (SSC) algorithm [26, 4] addresses the problem of clustering complete
multi-subspace data. It relies on the observation that in a high-dimensional ambient space, while
there are many ways that each data point yj can be reconstructed using the entire dataset, a sparse
representation selects a few data points from the underlying subspace of yj , since each point in S`
can be represented using d` data points, in general directions, from S`. This motivates solving2

min
{c1j ,...,cNj}

N∑
i=1

|cij | s. t.

N∑
i=1

cijyi = 0, cjj = −1, (2)

where the constraints express that each yj should be written as a combination of other points. To
infer clustering, one builds a similarity graph using sparse coefficients, by connecting nodes i and j
of the graph, representing, respectively, yi and yj , with an edge with the weight wij = |cij |+ |cji|.
Clustering of data is obtained then by applying spectral clustering [27] to the similarity graph.

While [4, 26, 28] show that, under appropriate conditions on subspace angles and data distribution,
(2) is guaranteed to recover desired representations, the algorithm requires complete data points.

3.1 Naive Extensions of SSC to Deal with Missing Entries

In the presence of missing entries, the `1-minimization in (2) becomes non-convex, since coefficients
and a subset of data entries are both unknown. A naive approach is to solve (2) using zero-filled
data points, {ȳi}Ni=1, to perform clustering and then apply standard matrix completion on each
cluster. However, the drawback of this approach is that not only it does not take advantage of the
known locations of missing entries, but also zero-filled data will no longer lie in original subspaces,
and deviate more from subspaces as the percentage of missing entries increases. Hence, a sparse
representation does not necessarily find points from the same subspace and spectral clustering fails.

An alternative approach to deal with incomplete data is to use standard low-rank matrix completion
algorithms to recover missing values and then apply SSC to cluster data into subspaces. While this
approach works when the union of subspaces is low-rank, its effectiveness diminishes as the number
of subspaces or their dimensions increases and the data matrix becomes high/full-rank.

4 Sparse Subspace Clustering and Completion via Lifting

In this section, we propose an algorithm to recover missing entries and build a similarity graph for
clustering, given observations {yij ; i ∈ Ωj}Nj=1 for N data points lying in a union of subspaces.

2`1 is the convex surrogate of the cardinality function,
∑N

i=1 I(|cij |), where I(·) is the indicator function.
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4.1 SSC–Lifting Formulation

To address the problem, we start from the SSC observation that, given complete data {yj}Nj=1, the
solution of

min
{cij}

N∑
j=1

N∑
i=1

I(|cij |) s. t.

N∑
i=1

cijyi = 0, cjj = −1, ∀j (3)

ideally finds a representation of each yj as a linear combination of a few data points that lie in the
same subspace as of yj . I(·) denotes the indicator function, which is zero when its argument is zero
and is one otherwise. Notice that, using (1), we can write each yi as

yi = ȳi +UΩc
i
xi =

[
ȳi UΩc

i

] [ 1
xi

]
, (4)

where ȳi is the i-th data point whose missing entries are filled with zeros and xi is the vector
containing missing entries of yi. Thus, substituting (4) in the optimization (3), we would like to solve

min
{cij},{xi}

N∑
j=1

N∑
i=1

I(|cij |) s. t.

N∑
i=1

[
ȳi UΩc

i

][ cij
cijxi

]
= 0, cjj = −1, ∀j. (5)

Notice that matrices
[
ȳi UΩc

i

]
∈ Rn×|Ωc

i |+1 are given and known while vectors
[
cij cijx

>
i

]> ∈
R|Ωc

i |+1 are unknown. In fact, the optimization (5) has two sources of non-convexity: the `0-norm in
the objective function and the product of unknown variables {cij} and {xi} in the constraint.

To pave the way for an efficient algorithm, first we use the fact that the number of nonzero coefficients
cij is the same as the number of nonzero blocks

[
cij cijx

>
i

]>
, since cij is nonzero if and only if[

cij cijx
>
j

]>
is nonzero. Thus, we can write (5) as the equivalent group-sparse optimization

min
{cij},{xi}

N∑
j=1

N∑
i=1

I

(∥∥∥∥[ cij
cijxi

]∥∥∥∥
p

)
s. t.

N∑
i=1

[
ȳi UΩc

i

][ cij
cijxi

]
= 0, cjj = −1, ∀j, (6)

where ‖ · ‖p denotes the `p-norm for p > 0. Next, to deal with the non-convexity of the product of
cij and xi, we use the fact that for each i ∈ {1, . . . , N}, the matrix

Ai ,

[
ci1 · · · ciN
ci1xi · · · ciNxi

]
=

[
1
xi

]
[ci1 · · · ciN ] , (7)

is of rank one, since it can be written as the outer product of two vectors. This motivates to use a
lifting scheme where we define new optimization variables

αij , cijxi ∈ R|Ω
c
i |, (8)

and consider the group-sparse optimization program

min
{cij},{αij}
cjj=−1,∀j

N∑
j=1

N∑
i=1

I

(∥∥∥∥[ cijαij

]∥∥∥∥
p

)
s. t.

N∑
i=1

[
ȳi UΩc

i

][ cij
αij

]
= 0, rk

([
ci1 · · · ciN
αi1 · · · αiN

])
= 1,∀i, j,

(9)

where we have replaced cijxi with αij and have introduced rank-one constraints. In fact, we show
that one can recover the solution of (5) using (9) and vice versa.

Proposition 1 Given a solution {cij} and {αij} of (9), by computing xi’s via the factorization in
(7), {cij} and {xi} is a solution of (5). Also, given a solution {cij} and {xi} of (5), {cij} and
{αij , cijxi} would be a solution of (9).

Notice that, we have transferred the non-convexity of the product cijxi in (5) into a set of non-convex
rank-one constraints in (9). However, as we will see next, (9) admits an efficient convex relaxation.
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4.2 Relaxations and Extensions

The optimization program in (9) is, in general, NP-hard, due to the mixed `0/`p-norm in the objective
function. It is non-convex due to both mixed `0/`p-norm and rank-one constraints. To solve (9), we
first take the convex surrogate of the objective function, which corresponds to an `1/`p-norm [29, 30],
where we drop the indicator function and, for p ∈ {2,∞}, solve

min
{cij ,αij}
{cjj=−1}

λ

N∑
j=1

N∑
i=1

∥∥∥∥[ cijαij

]∥∥∥∥
p

+

N∑
j=1

ρ

(
N∑
i=1

[
ȳi UΩc

i

][ cij
αij

])
s. t. rk

([
ci1 · · · ciN
αi1 · · · αiN

])
=1,∀i.

(10)

The nonnegative parameter λ is a regularization parameter and the function ρ(·) ∈ {ρe(·), ρa(·)}
enforces whether the reconstruction of each point should be exact or approximate, where

ρe(u) ,

{
+∞ if u 6= 0

0 if u = 0
, ρa(u) ,

1

2
‖u‖22. (11)

More specifically, when dealing with missing entries from noise-free data, which perfectly lie in
multiple subspaces, we enforce exact reconstruction by selecting ρ(·) = ρe(·). On the other hand,
when dealing with real data where observed entries are corrupted by noise, exact reconstruction is
infeasible or comes at the price of losing the sparsity of the solution, which is undesired. Thus, to
deal with noisy incomplete data, we consider approximate reconstruction by selecting ρ(·) = ρa(·).

Notice that the objective function of (10) is convex for p ≥ 1, while the rank-one constraints are
non-convex. We can obtain a local solution, by solving (10) with an Alternating Direction Method of
Multipliers (ADMM) framework using projection onto the set of rank-one matrices.

To obtain a convex algorithm, we use a nuclear-norm3 relaxation [12, 14, 15] for the rank-one
constraints, where we replace rank(Ai) = 1 with ‖Ai‖∗ ≤ τ , for τ > 0. In addition, to reduce
the number of constraints and the complexity of the problem, we choose to bring the nuclear norm
constraints into the objective function using a Lagrange multiple γ > 0. Hence, we propose to solve

min
{cij ,αij}
{cjj=−1}

λ

N∑
j=1

N∑
i=1

∥∥∥∥[ cijαij

]∥∥∥∥
p

+ γ

N∑
i=1

∥∥∥∥[ ci1 · · · ciNαi1 · · · αiN

]∥∥∥∥
∗

+

N∑
j=1

ρ

(
N∑
i=1

[
ȳi UΩc

i

][ cij
αij

])
, (12)

which is convex for p ≥ 1 and can be solved efficiently using convex solvers. Finally, using the
solution of (10), we recover missing entries by finding the best rank-one factorization of each block
Ai as in (7), which results in4

x̂i =

∑N
j=1 cijαij∑N

j=1 c
2
ij

. (13)

In addition, we use the coefficients {cij} to build a similarity graph with weights wij = |cij |+ |cji|
and obtain clustering of data using graph partitioning. It is important to note that we do not need to
know dimensions of subspaces a priori, since (10) automatically selects the appropriate number of
data points from each subspace. Also, it is worth metioning that we can use

∑N
j=1

∑N
i=1 |cij | instead

of the group-sparsity term in (10) and (12).

Remark 1 Notice that when all entries of all data points are observed, i.e., Ωc
i = ∅, the rank-

one constraints in (9) are trivially satisfied. Hence, (10) and (12) with γ = 0 reduce to the `1-
minimization of SSC. In other words, our framework is a generalization of SSC, which simultaneously
finds similarities and missing entries for incomplete data.

Table 1 shows the stable rank5 [31] of blocksAi of the solution for the synthetic dataset explained in
the experiments in Section 5. As the results show, the penalized optimization successfully recovers
close to rank-one solutions for practical values of γ and λ.

3The nuclear norm of A, denoted by ‖A‖∗, is the sum of its singular values, i.e., ‖A‖∗ =
∑

i σi(A).
4The denominator is always nonzero since cii = −1 for all i.
5Stable rank of B is defined as

∑
i σ

2
i /maxi σ

2
i , where σi’s are singular values of B.
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Table 1: Average stable-rank of matrices Ai for high-rank data, n = 100, L = 12, d = 10, N = 600, with
ρ = 0.4, explained in section 5. Notice that rank of Ai is close to one, and as γ increases, it gets closer to one.

γ = 0.001 γ = 0.01 γ = 0.1

λ = 0.01 1.015± 0.005 1.009± 0.005 1.004± 0.002
λ = 0.1 1.021± 0.007 1.011± 0.006 1.006± 0.003

· · ·

· · ·
Figure 1: Subset selection and completion via lifting on the Olivetti face dataset. Top: faces from the dataset
with missing entries. Bottom: solution of our method on the dataset. We successfully recover missing entries
and, at the same time, select a subset of faces as representatives.

Notice that the mixed `1/`p-norm in the objective function of (10) and (12) promotes selecting a few
nonzero coefficient blocks

[
cij α>ij

]
. In other words, we find a representation of each incomplete

data point using a few other incomplete data points, while, at the same time, find missing entries
of the selected data points. On the other hand, rank constraints on the sub-blocks of the solution
ensure that recovered missing entries are globally consistent, i.e., if a data point takes part in the
reconstruction of multiple points, the associated missing entries in each representation are the same.

Remark 2 Our lifting framework can also deal with missing entries in other tasks that rely the on
the self-expressiveness property, i.e., yj =

∑N
i=1 cijyi. Figure 1 shows results of the extension of

our method to column subset selection [32, 33] with missing entries. In fact, simultaneously selecting
a few data points that well reconstruct the entire dataset and recovering missing entires can be cast
as a modification of (10) or (12), where we modify the first term in the objective function in order to
select a few nonzero blocks,Ai.

5 Experiments
We study the performance of our algorithm for completion and clustering of synthetic and real data.
We implement (10) and (12) with

∑N
j=1

∑N
i=1 |cij | instead of the group-sparsity term using the

ADMM framework [34, 35]. Unless stated otherwise, we set λ = 0.01 and γ = 0.1. However, the
results are stable for λ ∈ [0.005, 0.05] and γ ∈ [0.01, 0.5].

We compare our algorithm, SSC-Lifting, with MFA [20], K-Subspaces with Missing Entries
(KSub-M) [21], Low-Rank Matrix Completion [13] followed by SSC (LRMC+SSC) or LSA [36]
(LRMC+LSA), and SSC using Column-wise Expectation Completion (SSC-CEC) [24]. It is worth
mentioning that in all experiments, we found that the performance of SSC-CEC is slightly better
than SSC using zero-filled data. In addition, as reported in [21], KSub-M generally outperforms
the high-rank matrix completion algorithm in [22], since the latter requires a very large number of
samples, which becomes impractical in high-dimensional problems. We compute

Clustering Error =
# Misclassified points

# All points
, Completion Error =

‖Ŷ − Y ‖F
‖Y ‖F

, (14)

where Y and Ŷ denote, respectively, the true and recovered matrix and ‖ · ‖F is the Frobenius norm.

5.1 Synthetic Experiments
In this section, we evaluate the performance of different algorithms on synthetic data. We generate L
random d-dimensional subspaces in Rn and draw Ng data points, at random, from each subspace. We
consider two scenarios: 1) a low-rank data matrix whose columns lie in a union of low-dimensional
subspaces; 2) a high rank data matrix whose columns lie in a union of low-dimensional subspaces.
Unless stated otherwise, for low-rank matrices, we set L = 3 and d = 5, hence, Ld = 15 < n = 100,
while for high-rank matrices, we set L = 12 and d = 10, hence, Ld = 120 > n = 100.

Completion Performance. We generate missing entries by selecting ρ fraction of entries of the
data matrix uniformly at random and dropping their values. The left and middle left plots in Figure 2
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Figure 2: Completion errors of different algorithms as a function of ρ. Left: low-rank matrices. Middle left:
high-rank matrices. Middle right: effect of the ambient space dimension, n. Right: effect of the number of data
points in each subspace, Ng , for low-rank (solid lines) and high-rank (dashed lines) matrices.

show completion errors of different algorithms for low-rank and high-rank matrices, respectively, as
a function of the fraction of missing entries, ρ. Notice that in both cases, MFA and KSub-M have
high errors, which rapidly increase as ρ increases, due to dependence on initialization and getting
trapped in local optima. In both cases, SSC-lifting outperforms all methods across all values of
ρ. Specifically, in the low-rank regime, while LRMC and SSC-lifting have almost zero error for
ρ ≤ 0.35, the performance of LRMC quickly degrades for larger ρ’s, while SSC-lifting performs well
for ρ ≤ 0.6. On the other hand, the performance of LRMC significantly degrades for the high-rank
case, with a large gap to SSC-lifting, which performs well for ρ < 0.45. The middle right plot in
Figure 2 demonstrates the effect of the ambient space dimension, n, for L = 7, d = 5, Ng = 100
and ρ = 0.3. Notice that errors of MFA and KSub-M increases as n increases, due to larger number
of local optima. LRMC has a large error for small values of n, where n is smaller than or close to Ld,
i.e., high-rank regime. As n increases and matrices becomes low-rank, the error decreases. Notice
that SSC-lifting for n ≥ 40 has a low error, demonstrating its effectiveness in handling both low-rank
and high-rank matrices. Finally, the right plot in Figure 2 demonstrates the effect of the number
of points, Ng, for low and high rank matrices with ρ = 0.5. We do not show results of MFA and
KSub-M, since they have large errors for all Ng . Notice that for all values of Ng , SSC-lifting obtains
smaller errors than LRMC, verifying the effectiveness of sparsity principle to complete the data.

Clustering Performance. Next, we compare the clustering performance. To better study the effect
of missing entries, we generate missing entries by selecting a fraction δ of data points and for each
selected data point, we drop the values for a fraction ρ of its entries, both uniformly at random. We
change δ in [0.1, 1.0] and ρ in [0.1, 0.9] and for each pair (ρ, δ), record the average clustering and
completion errors over 20 trials, each with different random subspaces and data points. Figure 3
shows the clustering errors of different algorithms for low-rank (top row) and high-rank (bottom
row) data matrices (completion errors provided in supplementary materials). In both cases, MFA
performs poorly, due to local optima. While LRMC+SSC, SSC-CEC and SSC-Lifting perform
similarly for low-rank matrices, SSC-Lifting performs best among all methods for high-rank matrices.
In particular, when the percentage of missing entries, ρ, is more than 70%, SSC-Lifting performs
significantly better than other algorithms. It is important to notice that for small values of (ρ, δ), since
completion errors via SSC-Lifting and LRMC are sufficiently small, the recovered matrices will be
noisy versions of the original matrices. As a result, Lasso-type optimizations of SSC and SSC-Lifting
will succeed in recovering subspace-sparse representations, leading to zero clustering errors. In the
high-rank case, SSC-EC has a higher clustering error than LRMC and SSC-Lifting, which is due to
the fact that it relies on a heuristic of shifting eigenvalues of the kernel matrix to non-negative values.

5.2 Real Experiments on Motion Segmentation
We consider the problem of motion segmentation [37, 38] with missing entries on the Hopkins 155
dataset, with 155 sequences of 2 and 3 motions. Since the dataset consists of complete feature
trajectories (incomplete trajectories were removed manually to form the dataset), we select ρ fraction
of feature points across all frames uniformly at random and remove their x− y coordinate values.

Left plot in Figure 4 shows clustering error bars of different algorithms on the dataset as a function of
ρ. Notice that in all cases, MFA and SSC-CEC have large errors, due to, respectively, dependence
on initialization and the heuristic convex reformulation. On the other hand, LRMC+SSC and SSC-
Lifting perform well, achieving less than 5% error for all values of ρ. This comes from the fact that
sequences have at most L = 3 motions and dimension of each motion subspace is at most d = 4,
hence, Ld ≤ 12� 2F , where F is the number of video frames. Since the data matrix is low-rank
and LRMC succeeds, SSC and our method achieve roughly the same errors for different values of ρ.
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Figure 3: Clustering errors for low-rank matrices (top row) with L = 3, d = 5, n = 100 and high-rank matrices
(bottom row) with L = 12, d = 10, n = 100 as a function of (ρ, δ), where δ is the fraction of data with missing
entires (vertical axis) and ρ is the fraction of missing entries in each affected point (horizontal axis). Left to
Right: MFA, SSC-CEC, LRMC+SSC and SSC-Lifting.
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Figure 4: Left: Clustering error bars of MFA, LRMC+LSA, LRMC+SSC, SSC-CEC and SSC-Lifting as a
function of the fraction of missing entries, ρ. Middle: Singular values of CMU Mocap data reveal that each
activity lie in a low-dimensional subspace. Right: Average completion errors of MFA, LRMC and SSC-Lifting
on the CMU Mocap Dataset as a function of ρ. Solid lines correspond to δ = 0.5, i.e., 50% of data have missing
entries, while dashed lines correspond to δ = 1, i.e., all data have missing entries.

5.3 Real Experiments on Motion Capture Data

We consider completion of time-series trajectories from motion capture sensors, where a trajectory
consists of different human activities, such as running, jumping, squatting, etc. We use the CMU
Mocap dataset, where each data point corresponds to measurements from n sensors at a particular
time instant. Since transition from one activity to another happens gradually, we do not consider
clustering. However, as the middle plot in Figure 4 shows, excluding the transition time periods, data
from each activity lie in a low-rank subspace. Since typically there are L ≈ 7 activities, each having a
dimension of d ≈ 8, and there are n = 42 sensors, the data matrix is full-rank, as Ld ≈ 56 > n = 42.

To evaluate performance of different algorithms, we select δ ∈ {0.5, 1.0} fraction of data points and
remove entries of ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7} fraction of each selected point, both uniformly
at random. Right plot in Figure 4 shows completion errors of different algorithms as a function of ρ
for δ ∈ {0.5, 1.0}. Notice that, unlike the previous experiment, since the data matrix is high-rank,
LRMC has a large completion error, similar to synthetic experiments. On the other hand, SSC-Lifting
error is less than 0.1 for ρ = 0.1 and less than 0.55 for ρ = 0.7. In all cases, for δ = 1, the
performance degrades with respect to δ = 0.5. Lastly, it is important to notice that MFA performs
slightly better than LRMC, demonstrating the importance of the union of low-dimensional subspaces
model for the problem. However, getting trapped in local optima does not allow MFA to take full
advantage of such a model, as opposed to SSC-Lifting.

6 Conclusions
We proposed efficient algorithms, based on lifting, for simultaneous clustering and completion of
incomplete multi-subspace data. By extensive experiments on synthetic and real data, we showed
that for low-rank data matrices, our algorithm performs on par with or better than low-rank matrix
completion methods, while for high-rank data matrices, it significantly outperforms existing algo-
rithms. Theoretical guarantees of the proposed method and scaling the algorithm to large data is the
subject of our ongoing research.
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